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Abstract

A new multireference perturbation approach has been developed for the recently proposed AP1roG

scheme, a computationally facile parametrization of an antisymmetric product of nonorthogonal

geminals. This perturbation theory of second-order closely follows the biorthogonal treatment from

multiconfiguration perturbation theory as introduced by Surján et al., but makes use of the additional

feature of AP1roG that the expansion coefficients within the space of closed-shell determinants are

essentially correct already, which further increases the predictive power of the method. Building upon

the ability of AP1roG to model static correlation, the perturbation correction accounts for dynam-

ical electron correlation, leading to absolute energies close to full configuration interaction results.

Potential surfaces for multiple bond dissociation in H2O and N2 are predicted with high accuracy

up to bond breaking. The computational cost of the method is the same as that of conventional

single-reference MP2.
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In a recent study,[1] we introduced size-consistent, antisymmetric products of nonorthogonal

geminals that preserve the mean-field computational scaling of simpler, strongly-orthogonal, geminal

models like the antisymmetric product of strongly orthogonal geminals (APSG) or generalized valence

bond (GVB) theory.[2, 3, 4, 5] One very promising approach is AP1roG (which includes APSG and

GVB as special cases), where every geminal possesses one reference orbital that is not shared with any

other geminal.[6] Using the notation of second-quantization,[7] this wavefunction can be expressed

as

|ψAP1roG〉 =
occ.
∏

i

G†
i |〉 =

occ.
∏

i

(

a†ia
†
ı̄ +

vir.
∑

a

cai a
†
aa

†
ā

)

|〉, (1)

where G†
i is a geminal creator that fills the vacuum-state |〉 with pairs of electrons residing in occupied

(i, ı̄) and virtual (a, ā) spatial orbitals weighted with geminal coefficients cai . The distinction between

occupied and virtual orbitals allows the definition of a reference determinant |0〉 =
∏occ.
i a†ia

†
ı̄ |〉 and

a straightforward introduction of a projection space with respect to that determinant. The AP1roG

energy is then defined by projection onto the reference determinant,

Egem
def
=

〈0|Ĥ|ψ〉

〈0|ψ〉
(2)

using a second-quantized Hamiltonian

Ĥ =
∑

pq

hpqa
†
paq +

1

2

∑

pqrs

gpqrsa
†
pa

†
qasar. (3)

A projection of the Schrödinger equation onto pair-excited determinants (P) yields a set of coupled

non-linear equations

0 = −〈L|Ĥ|ψ〉+
〈L|ψ〉

〈0|ψ〉
〈0|Ĥ|ψ〉 ∀ 〈L| ∈ P (4)

that can be solved for the unknown coefficients cai of the AP1roG wavefunction.[6] By pair excitations

we mean all closed-shell double excitations with respect to |0〉. Eq. (4) can be solved with O(n4)

computational cost, which makes the AP1roG method scaling with the fourth power of system size

n.
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This approach turns out to be a special case of coupled-cluster (CC) pairs, namely CCSD with all

amplitudes zero that refer to open-shell Slater determinants. The energies of AP1roG are in very good

agreement with doubly-occupied configuration interaction (DOCI), which can be viewed as the ”best

possible” wavefunction within the Hilbert-space of closed-shell determinants.[8, 9] The limitation of

AP1roG and related methods is that all geminals share the same orbital pairing-scheme. This is nec-

essary for both a mathematically concise formulation and a computationally facile implementation.

It is however possible to extend the capabilities of these methods by using broken-symmetry orbitals

(p and p̄ can belong to different spatial orbitals and even can have mixed-spin character).[10, 11]

Since the AP1roG wavefunction is an expansion of closed-shell determinants in an optimized single

particle basis, the energy is only a function of the diagonal one-particle matrix elements hpp and the

two-index, two-particle matrix elements gpqpq, gpqqp and gppqq in eq. (3). Such restrictions are called

seniority zero wavefunctions or JK -only functionals in the literature.[9, 12] Provided the orbitals

are properly optimized, these methods generally describe strong (static, bond breaking) electron

correlation very accurately, but will always suffer from deficiencies in modelling weak (dynamical)

correlation due to the missing three- and four-index matrix elements gpqpr, gpqqr, gpqrr, gpqrs and the

off-diagonal one-particle elements hpq.

A cheap and straightforward way to add dynamical correlation to geminal wavefunctions is the

application of perturbation theory (PT). Many multireference perturbative schemes have been devel-

oped in the past, some specifically with geminal product wavefunctions in mind.[13, 14, 15, 16, 17, 18]

A very appealing approach is the multiconfiguration perturbation theory (MCPT) using a non-

diagonal zeroth-order Hamiltonian Ĥ0, recently proposed by Kobayashi et al.[19] Its deficiencies,

i.e. size-inconsistency and the necessity of choosing a designated reference state, are more than

compensated by the simplicity of the mathematical formulation and computational cost similar to

conventional Møller-Plesset PT of second-order (MP2). Moreover, size-consistency is only broken

by the occupied-virtual matrix elements fia of the Fock operator in the optimized basis, which are

generally orders of magnitudes smaller than the occupied-occupied fij or virtual-virtual fab elements.

In fact, calculated bond dissociation curves show that the MCPT approach provides a surprisingly
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good description of multireference states, despite its inherently single-reference nature.[19] In this

communication we adapt the formalism of MCPT for the AP1roG wavefunction giving rise to two

new methods termed AP1roG-PTa and AP1roG-PTb. With this, dynamical electron correlation in

AP1roG can, for the first time, be described beyond closed-shell determinants.

The general strategy of MCPT and related approaches is to define the zeroth-order Hamiltonian

by means of (potentially skew) projection operators |ψ〉〈ψ̃|

〈ψ̃|ψ〉
and P̂ = 1− |ψ〉〈ψ̃|

〈ψ̃|ψ〉
as

Ĥ0 = E0

|ψ〉〈ψ̃|

〈ψ̃|ψ〉
+ P̂ V̂ P̂ (5)

with |ψ〉 being the unperturbed state, and 〈ψ̃| its dual, which is not necessarily equal to |ψ〉. Both

can be any kind of wavefunction in principle, although the focus here is on the AP1roG wavefunction.

Various types of PT are obtained for different choices of operator V̂ , the zeroth-order energy E0, and

the dual state 〈ψ̃| in the projector. Before defining these quantities exactly, it is possible to derive

some general expressions.

From ordinary Rayleigh-Schrödinger PT, the equations

Ĥ0|ψ〉 = E0|ψ〉 (6)

Ĥ0|ψ1〉+ (Ĥ − Ĥ0)|ψ〉 = E0|ψ1〉+ E1|ψ〉 (7)

Ĥ0|ψ2〉+ (Ĥ − Ĥ0)|ψ1〉 = E0|ψ2〉+ E1|ψ1〉+ E2|ψ〉 (8)

are obtained for zeroth-, first- and second-order perturbation corrections with orthogonal correction

vectors 〈ψ̃|ψ1〉 = 〈ψ̃|ψ2〉 = . . . = 0. Projecting eq. (6) onto 〈ψ̃| immediately returns E0 and |ψ〉 as

an eigenvalue and eigenvector of Ĥ0 by construction. In the same manner, projecting eqs. (7) and

(8) onto 〈ψ̃|, using 〈ψ̃|Ĥ0 = E0〈ψ̃|, yields expressions for the energy corrections as

E1 + E0 =
〈ψ̃|Ĥ|ψ〉

〈ψ̃|ψ〉

def
= Eref (9)

E2 =
〈ψ̃|Ĥ|ψ1〉

〈ψ̃|ψ〉
=
∑

K

tK
〈ψ̃|Ĥ|K〉

〈ψ̃|ψ〉
(10)
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where in the last equality |ψ1〉 is expanded in terms of Slater determinants |K〉. The amplitudes tK

cannot be chosen independently, as they have to fulfill the condition 〈ψ̃|ψ1〉 = 0. To this end, one

of the determinants is chosen as the reference determinant |0〉. This determinant should preferably

possess a large overlap with the multireference state |ψ〉. In the case of AP1roG, such a reference

is already designated within the space of optimized orbitals, from which also every other |K〉 is

constructed. The amplitude t0 depends on the other amplitudes according to

t0 = −
S,D,...
∑

K

tK
〈ψ̃|K〉

〈ψ̃|0〉
(11)

with K running over singly-, doubly-, etc. excited determinants with respect to |0〉. This ensures

〈ψ̃|ψ1〉 = 0 and changes eq. (10) into

E2 =
S,D,...
∑

K

tK

[

〈ψ̃|Ĥ|K〉

〈ψ̃|ψ〉
−

〈ψ̃|K〉

〈ψ̃|0〉

〈ψ̃|Ĥ|0〉

〈ψ̃|ψ〉

]

. (12)

To the remaining determinants |K〉 and the wavefunction |ψ〉, one can construct a biorthogonal

set of states 〈L̃| = 〈L| − 〈L|ψ〉
〈0|ψ〉

〈0| that fulfill 〈L̃|ψ〉 = 0 and 〈L̃|K〉 = δKL. Projecting eq. (7) onto 〈L̃|

leads then to a set of coupled equations

〈L̃|V̂ − E0|ψ1〉 = t0〈L̃|V̂ − E0|0〉+
S,D,...
∑

K

tK〈L̃|V̂ − E0|K〉 = −〈L̃|Ĥ|ψ〉, (13)

which determine the amplitudes tK , needed to evaluate the energy expression in eq. (12).

Up to this point, the PT scheme is completely general for arbitrary choices of 〈ψ̃|, V̂ and E0, as

well as the dimensionality of the projection space spanned by {|K〉}. Inspired by conventional MP2,

we restrict now the projection space to doubly-excited determinants only, force V̂ to be a one-particle

operator, and define the ground state energy E0 as E0 = 〈0|V̂ |0〉. These assumptions further simplify

eq. (13) to
D
∑

K

tK〈L|V̂ − E0|K〉 = −〈L|Ĥ|ψ〉+
〈L|ψ〉

〈0|ψ〉
〈0|Ĥ|ψ〉. (14)

It should be noted that this new set of coupled equations is completely independent of the choice for
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〈ψ̃|. Hence the amplitudes tK can be evaluated prior to any assumptions for that quantity. Defining

concrete expressions for 〈ψ̃| and V̂ yields different flavors of multireference PT:

• Setting 〈ψ̃| = 〈0| and define V̂ = F̂ , with F̂ being the Fock operator as it is the case in MP2,

the equations of MP-uMCPT are retrieved.[19, 20] The energy corrections of eqs. (9) and (12)

turn into readily solvable expressions

Eref =
〈0|Ĥ|ψ〉

〈0|ψ〉
= Egem and E2 =

D
∑

K

tK
〈0|Ĥ|K〉

〈0|ψ〉
.

For |ψ〉 being the AP1roG wavefunction, Eref exactly coincides with the definition of the geminal

energy in eq. (2) which is necessary for a consistent formalism. In the following, we refer to

this method as PTa.

• Ideally, the projectors in Ĥ0 should be Hermitian, which is achieved by setting 〈ψ̃| = 〈ψ|.

For AP1roG, this is prohibitive due to the appearance of terms like 〈ψ|Ĥ|ψ〉 and 〈ψ|ψ〉 in

the energy expressions, which are computationally infeasible. For variational methods like

APSG however, these terms pose no problems and the method is known as MP-pMCPT in the

literature. Unfortunately, the results reported are inferior to MP-uMCPT.[19]

• There is a way to get rid of the norm 〈ψ|ψ〉, which at the same time turns out to enhance

the quality of the MP-pMCPT method. For this, V̂ is redefined as V̂ = F̂ /〈ψ|ψ〉, followed by

absorbing the wavefunction overlap into the coefficients tK := tK/〈ψ|ψ〉. That last step leaves

the coefficients tK from eq. (14) unchanged. Instead, the second-order energy (12) is modified

to

E2 =
D
∑

K

tK

[

〈ψ|Ĥ|K〉 −
〈ψ|K〉

〈ψ|0〉
〈ψ|Ĥ|0〉

]

(15)

Now we make use of the special structure of the AP1roG wavefuction, which implies that |ψ〉

consists of closed-shell determinants only. A look at eq. (4) verifies that the energy contribution
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of all pair-excited states exactly cancels, such that

E2 =
D\P
∑

K

tK〈ψ|Ĥ|K〉, (16)

where the summation now includes only open-shell doubles. Moreover, eq. (4) can also be

identified as the right-hand side of eq. (14), which implies that all pair-excited amplitudes tK

would trivially evaluate to zero if coupling to the open-shell space was absent. In other words,

there is no perturbative improvement of the AP1roG energy within the space of closed-shell

determinants only. Due to coupling however, the pair-excited amplitudes take values different

from zero and influence E2 indirectly by altering the open-shell amplitudes.

There remains one caveat in the theory, namely that the reference energy of eq. (9) is not equal

to the geminal energy in this case. However, these two energies are usually very close to each

other, which can be illustrated if one expands the AP1roG wavefunction 〈ψ| into determinants

up to double excitations

〈ψ| = 〈ψ|0〉〈0|+
P
∑

K

〈ψ|K〉〈K|+ . . . (17)

neglecting any higher order determinant. With the aid of eq. (4) one can reduce eq. (9) back

to

Eref =
〈ψ|0〉〈0|Ĥ|ψ〉+

∑P
K〈ψ|K〉〈K|Ĥ|ψ〉+ . . .

〈ψ|0〉〈0|ψ〉+
∑P
K〈ψ|K〉〈K|ψ〉+ . . .

≈ Egem, (18)

which is exact if all weights beyond double excitation were zero. It is thus possible to use

〈ψ̃| = 〈ψ| also for AP1roG, obtaining another perturbation method, we will refer to as PTb.

The equations for this method are eqs. (14) and (16). An expansion in terms of matrix elements

in order to obtain numerical values, plus a brief description of the algorithm and its scaling

can be found as supplementary information.

In Table I, the different percentages of correlation energy retrieved by various methods are pre-

sented for the neon atom and small hydrocarbons. For systems at equilibrium geometry, a large

fraction of electron correlation is of dynamical nature and methods like DOCI and AP1roG, which

8



target only static correlation, recover up to half of the overall correlation energy. This is changed

when PT is introduced. The energies significantly improve and the amount of correlation energy

retrieved usually has the ordering PTa>PTb>MP2. Occasionally, PTa outperforms even CCSD

energies.

In weakly correlated systems, the benefits of geminal wavefunctions are not fully apparent. In fact

MP2 is only slightly inferior to PTa and PTb, and CCSD(T) agrees almost perfectly with the reference

value. By contrast, for bond dissociation, geminal-based approaches are decisively better. Figs. 1

and 2 report the energy profiles for the symmetric H2O stretch and the N2 dissociation, respectively.

The reference curves in both figures are obtained by n-electron valence state PT (NEVPT2), an

expensive but size-consistent multireference PT method on top of a complete active space calculation

(here, we use 10 active electrons in 14 spatial orbitals).[21] Unsurprisingly, restricted Hartree-Fock

(HF) and MP2, as typical single-reference methods, both fail terribly for bond distances away from

equilibrium (> 2 Å). DOCI and AP1roG, capable of describing strong electron correlation, precisely

model the shape of the reference potential, but are off by a near-constant energy of about 0.12

Hartree for H2O and 0.30 Hartree for N2. Once more, it was found that both methods are virtually

indistinguishable from each other, with energy deviations of at most fractions of a milli-Hartree.[6]

Hence, only AP1roG is shown in the figures, being identical with DOCI on such scales. If the PT

correction for AP1roG is switched on, the remaining correlation energy is modeled very accurately

in the bonding regime. After bond breaking (> 3 Å), both PT methods qualitatively fail to predict

the asymptotic convergence towards the energy of the infinitely separated fragments. This is the

well-known intruder state problem due to quasi-degeneracies in the frontier orbitals, from which also

many other PT methods suffer.[18, 22, 23] A remedy to this might be the use of unrestricted orbitals,

which will lead to improved single-reference energies for bond distances > 1.7 Å.

Comparing the two versions of PTa and PTb, one finds that PTa generally predicts lower energies

than PTb at small distances but then, shortly after bond breaking, underestimates the correlation

energy, causing dissociation energies to be overestimated. PTb has a very small non-parallelity error

and thus closely follows the reference curve up to bond breaking. After that, the intruder state
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problem sets in. The characteristics of the dissociation profiles for N2 are summarized in Table II

(cf. also the results of Table 3 in Ref. [19]). Clearly, PTb is more accurate than PTa with respect to

both the reference calculation and the experimental values.

To conclude, we want to emphasize that the computational cost for both PT schemes is the

same and depends on the size of the projection space and on the number of nonzero elements in the

summation of eq. (14). If only double excitations are considered, the dimension of the projection

space scales as O(n4). Since F̂ is a one-particle operator, there are O(n) nonzero elements for any

of these determinants. If the linear equations of eq. (14) are solved iteratively, the overall scaling of

the method is O(n5), which competes with conventional MP2.

From the two PT schemes proposed here, PTb is the method of choice, at least if the unperturbed

wavefunction is already a very good solution within the space of closed-shell determinants (which

is the case for AP1roG). It is capable of modelling the potential energy very accurately in the

entire range of bond breaking (i.e. before the reference energy stabilizes at the dissociation limit).

The benefits of PTa are slightly more accurate energies for equilibrium geometries and a broader

applicability to any kind of wavefunction, which includes also other geminal methods like APSG or

GVB.
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Tables

Table I. Relative correlation energy of PTa and PTb corrected AP1roG for different molecules and

basis sets in comparison to MP2, coupled-cluster singles and doubles (with and without perturbative

triples corrections) DOCI and uncorrected AP1roG.a

Molecule Basis MP2 CCSD CCSD(T) DOCI AP1roG PTa PTb

Ne cc-pVTZ 97.86% 98.45% 99.97% 31.75% 31.75% 99.34% 97.16%

C2 6-31G 91.57% 92.22% 100.02% 54.63% 54.62% 98.88% 89.35%

C2H2 6-31G 89.57% 96.61% 99.50% 48.18% 48.16% 97.19% 91.54%

C2H4 6-31G 84.68% 97.30% 99.70% 54.73% 54.72% 96.47% 92.81%

CH4 6-311G* 86.49% 97.90% 99.78% 52.76% 52.76% 95.85% 93.84%

aThe reference values for 0% and 100% are EHF = {-128.53186, -75.34911, -76.79276, -78.00446,

-40.20264} Hartree and EMPS = {-128.81522, -75.64400, -76.99755, -78.21785, -40.39330} Hartree,

respectively. The latter numbers were obtained by matrix product state calculations (cf. Ref. [25])

and are identical to full configuration interaction within the digits given here. The geometry for all

calculations are optimized HF-equilibrium structures using the corresponding basis set.
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Table II. Equilibrium distance re, harmonic vibrational frequency νe and dissociation energy De of

N2 for the curves shown in Figure 2.

Method re/Å νe/cm
−1 De/eV

HF 1.067 2773 33.097

MP2 1.109 2261 4.329a

DOCIb 1.087 2535 11.054

AP1roG 1.086 2539 11.138

PTa 1.107 2312 11.448a

PTb 1.097 2435 9.486a

NEVPT2 1.099 2401 9.896

exp.c 1.098 2359 9.905
aIn the case of non-asymptotic dissociation limits, the energy for the separated fragments is taken

as the local maximum occurring in these curves. Otherwise it is the value at 11 Å.

bCalculated with frozen 1s orbitals.

cRef. [26]. De is reported including the zero point energy of 0.146 eV.
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Figure 1: The symmetric removal of both hydrogens from H2O at a fixed angle of 104.6 degrees

applying the 6-311G** basis set. The upper panel contains dissociation curves of different methods.

The energy is plotted with an offset, where zero corresponds to the full configuration interaction

energy of the completely separated atoms. The lower panel shows the same data relative to the

reference calculation.
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Figure 2: N2 bond dissociation applying the cc-pVTZ basis set. The upper panel contains dissociation

curves of different methods. The energy is plotted with an offset, where zero corresponds to the full

configuration interaction energy of the completely separated atoms. The lower panel shows the same

data relative to the reference calculation.
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