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Abstract

Bayesian neural networks and deep ensembles are principled approaches to esti-
mate the predictive uncertainty of a deep learning model. However their practicality
in real-time, industrial-scale applications are limited due to their heavy memory
and inference cost. This motivates us to study principled approaches to high-quality
uncertainty estimation that require only a single deep neural network (DNN). By
formalizing the uncertainty quantification as a minimax learning problem, we first
identify distance awareness, i.e., the model’s ability to properly quantify the dis-
tance of a testing example from the training data manifold, as a necessary condition
for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation.
We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple
method that improves the distance-awareness ability of modern DNNs, by adding
a weight normalization step during training and replacing the output layer with a
Gaussian Process. On a suite of vision and language understanding tasks and on
modern architectures (Wide-ResNet and BERT), SNGP is competitive with deep
ensembles in prediction, calibration and out-of-domain detection, and outperforms
the other single-model approaches.3

1 Introduction

Efficient methods that reliably quantify a deep neural network (DNN)’s predictive uncertainty
are important for industrial-scale, real-world applications, which include examples such as object
recognition in autonomous driving [22], ad click prediction in online advertising [76], and intent
understanding in a conversational system [84]. For example, for a natural language understanding
(NLU) model built for a domain-specific chatbot service (e.g, weather inquiry), the user’s input
utterance to the model can be of any topic, and the model needs to understand reliably and in real-time
whether to abstain or to trigger one of its known APIs.

When deep classifiers make predictions on input examples that are far from the support of the training
set, their performance can be arbitrarily bad [4, 14]. This motivates the need for methods that are
aware of the distance between an input test example and previously seen training examples, so they
can return a uniform (i.e., maximum entropy) distribution over output labels if the input is too far
from the training set (i.e., the input is out-of-domain) [30]. Gaussian processes (GPs) with suitable
kernels enjoy such a property. However, to apply Gaussian processes to a high-dimensional machine
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learning problem, it is usually necessary to perform some form of feature extraction or dimensionality
reduction using a DNN. Ideally, the hidden representation of a DNN should reflect a meaningful
distance in the data manifold (e.g., the semantic textual similarity between two sentences), such that
this “distance aware” property is preserved. However, as we will show in the experiments, this is
often not guaranteed for common deep learning models (cf. Figure 1).

(a) Gaussian Process (b) Deep Ensemble (c) MC Dropout (d) DNN-GP (e) SNGP (Ours)

(f) Gaussian Process (g) Deep Ensemble (h) MC Dropout (i) DNN-GP (j) SNGP (Ours)

Figure 1: The uncertainty surface of a GP and different DNN approaches on the two ovals (Top Row) and
two moons (Bottom Row) 2D classification benchmarks. SNGP is the only DNN-based approach achieving a
distance-aware uncertainty similar to the gold-standard GP. Training data for positive (Orange) and negative
classes (Blue). OOD data (Red) not observed during training. Background color represents the estimated model
uncertainty (See 1e and 1j for color map). See Section 5.1 for details.

We propose a simple solution to this problem, namely adding spectral normalization to the weights
in each (residual) layer [54]. We refer to our method as ”Spectral-normalized Neural Gaussian
Processes” (SNGP). We show that this provides bounds on ||h(x)−h(x′)||H relative to ||x−x′||X ,
where x and x′ are two inputs, h(x) is a deep feature extractor, and ||.||X a semantically meaningful
distance for the data manifold. We can then safely pass h(x) into a distance-aware GP output layer.
To ensure computational scalability, we approximate the GP posterior using a Laplace approximation
to the random feature expansion of the GP, which gives rise to a model posterior that can be learned
scalably and in closed-form with minimal modification to the training pipeline of a deterministic
DNN, and allows us to efficiently compute the predictive uncertainty on a per-input basis without
Monte Carlo sampling.

In the rest of this paper, we first theoretically motivate the importance of distance awareness for
a model’s ability uncertainty estimation by studying it as a minimax learning problem (Section
2). We then introduce our SNGP method in detail in Section 3, and experimentally evaluate its
performance against other single-model approaches as well as deep ensembles in Section 5 [42].
On two challenging real world problems, namely image classification (using a Wide Resnet model
on CIFAR-10 and CIFAR-100) and conversational intent understanding (using a BERT model on
CLINC out-of-scope (OOS) intent dataset), we show that the SNGP method attains an uncertainty
performance (e.g., calibration and out-of-domain (OOD) detection) that is competitive with that of a
deep ensemble, while maintaining the accuracy and latency of a single deterministic DNN.

2 Distance Awareness: An Important Condition for High-Quality

Uncertainty Estimation

Notation and Problem Setup Consider a data-generation distribution p∗(y|x), where y ∈
{1, . . . ,K} is the space of K-class labels, and x ∈ X ⊂ R

d is the input data manifold equipped
with a suitable metric ||.||X . In practice, the training data D = {yi,xi}

N
i=1 is often collected from a

subset of the full input space XIND ⊂ X . As a result, the full data-generating distribution p∗(y|x) is
in fact a mixture of an in-domain (IND) distribution pIND(y|x) = p∗(y|x,x ∈ XIND) and also an OOD
distribution pOOD(y|x) = p∗(y|x,x 6∈ XIND) [52, 66]:

p∗(y|x) = p∗(y,x ∈ XIND|x) + p∗(y,x 6∈ XIND|x)

= p∗(y|x,x ∈ XIND)∗ p∗(x ∈ XIND)+ p∗(y|x,x 6∈ XIND)∗ p∗(x 6∈ XIND). (1)
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During training, the model learns the in-domain distribution p∗(y|x,x ∈ XIND) from the data D , but
does not have knowledge about p∗(y|x,x 6∈ XIND). In the weather-service chatbot example, the out-
of-domain space XOOD =X /XIND is the space of all natural utterances not related to weather queries,
whose elements usually do not have a meaningful correspondence with the in-domain intent labels
yk ∈ {1, . . . ,K}. Therefore, the out-of-domain distribution p∗(y|x,x 6∈ XIND) can be very different
from the in-domain distribution p∗(y|x,x ∈ XIND), and we only expect the model to generalize well
within XIND. However, during testing, the model needs to construct a predictive distribution p(y|x)
for the entire input space X = XIND∪XOOD, since the users’ utterances can be of any topic.

2.1 Uncertainty Estimation as a Minimax Learning Problem

To formulate the uncertainty estimation as a learning problem under (1), we need to define a loss
function to measure a model p(y|x)’s quality of predictive uncertainty. A popular uncertainty

metric is Expected Calibration Error (ECE), defined as C(p, p∗) = E
[

|E(y∗ = ŷ| p̂ = p)− p|
]

, which
measures the difference in expectation between the model’s predictive confidence (e.g., the maximum
probability score) and its actual accuracy [29, 56]. However, ECE is not suitable as a loss function,
since it is not uniquely minimized at p = p∗. Specifically, there can exist a trivial predictor that
ignores the input example and achieves perfect calibration by predicting randomly according to the
marginal distribution of the labels [24].

To this end, a theoretically more well-founded uncertainty metric is to examine strictly proper scoring
rules [25] s(., p∗), which is uniquely minimized by the true distribution p = p∗. Examples include
log-loss and Brier score. Proper scoring rules are related to ECE in that it is an upper bound of the
calibration error by the classic calibration-refinement decomposition [10]. Therefore, minimizing
a proper scoring rule implies minimizing the calibration error of the model. Consequently, we
can formalize the problem of uncertainty quantification as the problem of constructing an optimal
predictive distribution p(y|x) to minimize the expected risk over the entire x ∈X , i.e., an Uncertainty
Risk Minimization problem:

inf
p∈P

S(p, p∗) = inf
p∈P

E
x∈X

[

s(p, p∗|x)
]

. (2)

Unfortunately, directly minimizing (2) over the entire input space X is not possible even with
infinite amounts of data. This is because since the data is collected only from XIND, the true OOD
distribution p∗(y|x,x 6∈ XIND) is never learned by the model, and generalization is not guaranteed
since p∗(y|x,x ∈ XIND) and p∗(y|x,x 6∈ XIND) are not assumed to be similar. As a result, the naive
practice of using a model trained only with in-domain data to generate OOD predictions can lead to
arbitrarily bad results, since nature can happen to produce an OOD distribution p∗(y|x,x 6∈ XIND)
that is at odds with the model prediction. This is clearly undesirable for safety-critical applications.
To this end, a more prudent strategy is to instead minimize the worst-case risk with respect to all
possible p∗ ∈ P∗, i.e., construct p(y|x) to minimize the Minimax Uncertainty Risk:

inf
p∈P

[

sup
p∗∈P∗

S(p, p∗)
]

. (3)

In game-theoretic nomenclature, the uncertainty estimation problem acts as a two-player game of
model v.s. nature, where the goal of the model is to produce a minimax strategy p that minimizes the
risk S(p, p∗) against all possible (even adversarial) moves p∗ of nature. Under the classification task
and for Brier score, the solution to the minimax problem (3) adopts a simple and elegant form:

p(y|x) = p(y|x,x ∈ XIND)∗ p∗(x ∈ XIND)+ puniform(y|x,x 6∈ XIND)∗ p∗(x 6∈ XIND). (4)

This is very intuitive: if an input point is in the training data domain, trust the model, otherwise use a
uniform (maximum entropy) prediction. For the practice of uncertainty estimation, (4) is conceptually
important in that it verifies that there exists a unique optimal solution to the uncertainty estimation
problem (3). Furthermore, this optimal solution can be constructed conveniently. Specifically, it can
be constructed as a mixture of a discrete uniform distribution puniform and the in-domain predictive
distribution p(y|x,x ∈XIND) that the model has already learned from data, assuming one can quantify
p∗(x ∈ XIND) well. In fact, the expression (4) can be shown to be optimal for a broad family of
scoring rules known as the Bregman score, which includes the Brier score and the widely used log
score as the special cases. We derive (4) in Appendix B.

2.2 Input Distance Awareness as a Necessary Condition

In light of Equation (4), a key capacity for a deep learning model to reliably estimate predictive
uncertainty is its ability to quantify, either explicitly or implicitly, the domain probability p(x ∈XIND).
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This requires the model to have a good notion of the distance (or dissimilarity) between a testing
example x and the training data XIND with respect to a meaningful distance ||.||X for the data manifold
(e.g., semantic textual similarity [12] for language data). Definition 1 makes this notion more precise:

Definition 1 (Input Distance Awareness). Consider a predictive distribution p(y|x) trained on a
domain XIND ⊂ X , where (X , ||.||X ) is the input data manifold equipped with a suitable metric
||.||X . We say p(y|x) is input distance aware if there exists u(x) a summary statistic of p(y|x) that
quantifies model uncertainty (e.g., entropy, predictive variance, etc) that reflects the distance between
x and the training data with respect to ||.||X , i.e.,

u(x) = v
(

d(x,XIND)
)

where v is a monotonic function and d(x,XIND) = Ex′∼XIND
||x−x′||2X . is the distance between x and

the training data domain.

A classic model that satisfies the distance-awareness property is a Gaussian process (GP) with a
radial basis function (RBF) kernel. Its predictive distribution p(y|x) = so f tmax(g(x)) is a soft-
max transformation of the GP posterior g ∼ GP under the cross-entropy likelihood, and its pre-

dictive uncertainty can be expressed by the posterior variance u(x∗) = var(g(x∗)) = 1−k∗⊤Vk∗

for k∗
i = exp(− 1

2l
||x∗−xi||

2
X ) and VN×N a fixed matrix determined by data. Then u(x∗) increases

monotonically toward 1 as x∗ moves further away from XIND [61]. In view of the expression (4), the
input distance awareness property is important for both calibration and OOD detection. However,
this property is not guaranteed for a typical deep learning model [33]. Consider a discriminative

deep classifier with dense output layer logitk(x) = h(x)⊤β k, whose model confidence (i.e., maximum
predictive probability) is characterized by the magnitude of the class logits, which is defined by the
inner product distances between the hidden representation h(x) and the decision boundaries {β k}

K
k=1

(see, e.g., Figure 1b-1c and 1g-1h). As a result, the model computes confidence for a x∗ based not on
its distance from the training data XIND, but based on its distance from the decision boundaries, i.e.,
the model uncertainty is not input distance aware.

Two Conditions for Input Distance Awareness in Deep Learning Notice that a deep learning
model logit(x) = g◦h(x) is commonly composed of a hidden mapping h : X → H that maps the
input x into a hidden representation space h(x)∈H , and an output layer g that maps h(x) to the label
space. To this end, a DNN logit(x) = g◦h(x) can be made input distance aware via a combination
of two conditions: (1) make the output layer g distance aware, so it outputs an uncertainty metric
reflecting distance in the hidden space ||h(x)−h(x′)||H (in practice, this can be achieved by using
a GP with a shift-invariant kernel as the output layer), and (2) make the hidden mapping distance
preserving (defined below), so that the distance in the hidden space ||h(x)−h(x′)||H has a meaningful
correspondence to the distance ||x−x′||X in the data manifold. From the mathematical point of view,
this is equivalent to requiring h to satisfy the bi-Lipschitz condition [67]:

L1 ∗ ||x1 −x2||X ≤ ||h(x1)−h(x2)||H ≤ L2 ∗ ||x1 −x2||X , (5)

for positive and bounded constants 0 < L1 < 1 < L2. It is worth noticing that for a deep learning
model, the bi-Lipschitz condition (5) usually leads the model’s hidden space to preserve a semantically
meaningful distance in the input data manifold X , rather than a naive metric such as the square
distance in the pixel space. This is because that the upper Lipschitz bound ||h(x1)− h(x2)||H ≤
L2 ∗ ||x1 −x2||X is an important condition for the adversarial robustness of a deep network, which
prevents the hidden representations h(x) from being overly sensitive to the semantically meaningless
perturbations in the pixel space [65, 80, 75, 37, 71]. On the other hand, the lower Lipschitz bound
||h(x1)−h(x2)||H ≥ L1 ∗ ||x1 −x2||X prevents the hidden representation from being unnecessarily
invariant to the semantically meaningful changes in the input manifold [38, 77]. Combined together,
the bi-Lipschitz condition essentially encourages h to be an approximately isometric mapping, thereby
ensuring that the learned representation h(x) has a robust and meaningful correspondence with the
semantic properties of the input data x. Although not stated explicitly, learning an approximately
isometric and geometry-preserving mapping is a common goal in machine learning. For example,
image classifiers strive to learn a mapping from image manifold to a hidden space that can be well-
separated by a set of linear decision boundaries, and sentences encoders aim to project sentences into
a vector space where the cosine distance reflects the semantic similarity in natural language. Finally,
it is worth noting that preserving such approximate isometry in a neural network is possible even
after significant dimensionality reduction [8, 32, 59, 64].
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3 SNGP: A Simple Approach to Distance-aware Deep Learning

In this section we propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method
to improve the input distance awareness ability of a modern residual-based DNN (e.g., ResNet,
Transformer) by (1) making the output layer distance aware and (2) making the hidden layers
distance preserving, as discussed in Section 2.2. Full method is summarized in Algorithms 1-2.

3.1 Distance-aware Output Layer via Laplace-approximated Neural Gaussian Process

To make the output layer g : H → Y distance aware, SNGP replaces the typical dense output layer
with a Gaussian process (GP) with an RBF kernel, whose posterior variance at x∗ is characterized by
its L2 distance from the training data in the hidden space. Specifically, given N training samples D =
{yi,xi}

N
i=1 and denoting hi = h(xi), the Gaussian-process output layer gN×1 = [g(h1), . . . ,g(hN)]

⊤

follows a multivariate normal distribution a priori:

gN×1 ∼ MV N(0N×1,KN×N),where Ki, j = exp(−||hi −h j||
2
2/2), (6)

and the posterior distribution is computed as p(g|D) ∝ p(D |g)p(g) where p(g) is the GP prior in
(6) and p(D |g) is the data likelihood for classification (i.e., the exponentiated cross-entropy loss).
However, computing the exact Gaussian process posterior for a large-scale classification task is
both analytically intractable and computationally expensive, In this work, we propose a simple
approximation strategy for GP that is based on a Laplace approximation to the random Fourier feature
(RFF) expansion of the GP posterior [61]. Our approach gives rise to a closed-form posterior that
is end-to-end trainable with the rest of the neural network, and empirically leads to an improved
quality in estimating the posterior uncertainty. Specifically, we first approximate the GP prior in (6)

by deploying a low-rank approximation to the kernel matrix K = ΦΦ⊤ using random features [60]:

gN×1 ∼ MV N(0N×1,ΦΦ⊤
N×N), where Φi,DL×1 =

√

2/DL ∗ cos(−WLhi +bL), (7)

where hi = h(xi) is the hidden representation in the penultimate layer with dimension DL−1. Φi is
the final layer with dimension DL, it contains WL,DL×DL−1

a fixed weight matrix whose entries are

sampled i.i.d. from N(0,1), and bL,DL×1 a fixed bias term whose entries are sampled i.i.d. from

Uni f orm(0,2π). As a result, for the kth logit, the RFF approximation to the GP prior in (6) can be
written as a neural network layer with fixed hidden weights W and learnable output weights β k:

gk(hi) =
√

2/DL ∗ cos(−WLhi +bL)
⊤β k, with prior β k,DL×1 ∼ N(0,IDL×DL

). (8)

Notice that conditional on h, β = {β k}
K
k=1 is the only learnable parameter in the model. As a

result, the RFF approximation in (8) reduces an infinite-dimensional GP to a standard Bayesian
linear model, for which many posterior approximation methods (e.g., expectation propagation (EP))
can be applied [53]. In this work, we choose the Laplace method due to its simplicity and the
fact that its posterior variance has a convenient closed form [61]. Briefly, the Laplace method
approximates the RFF posterior p(β |D) using a Gaussian likelihood centered around the maximum

a posterior (MAP) estimate β̂ = argmaxβ p(β |D), such that p(βk|D)≈ MV N(β̂k, Σ̂k = Ĥ−1
k ), where

Ĥk,(i, j) =
∂ 2

∂βi∂β j
log p(βk|D)|

βk=β̂k
is the DL ×DL Hessian matrix of the log posterior likelihood

evaluated at the MAP estimates. Under the linear-model formulation of the RFF posterior, the

posterior precision matrix (i.e., the inverse covariance matrix) adopts a simple expression Σ̂
−1

k =
I+∑

N
i=1 p̂i,k(1− p̂i,k)ΦiΦ

⊤
i , where pi,k is the model prediction so f tmax(ĝi) under the MAP estimates

β̂ = {βk}
K
k=1 [61]. To summarize, the Laplace posterior for GP under the RFF approximation is:

βk|D ∼ MV N(β̂k, Σ̂k), where Σ̂
−1

k = I+
N

∑
i=1

p̂i,k(1− p̂i,k)ΦiΦ
⊤
i . (9)

During minibatch training, the posterior mean β̂ is updated via regular stochastic gradient descent

(SGD) with respect to the (unnormalized) log posterior − log p(β |D) = − log p(D |β ) + 1
2
||β ||2

where − log p(D |β ) is the cross-entropy loss. The posterior precision matrix is updated cheaply as

Σ̂
−1

k,t = (1−m)∗ Σ̂
−1

k,t−1 +m∗∑
M
i=1 p̂i,k(1− p̂i,k)ΦiΦ

⊤
i for a minibatch of size M and m a small scaling

coefficient. This computation only needs to be performed by passing through training data once at
the final epoch. As a result, the GP posterior (9) can be learned scalably and in closed-form with
minimal modification to the training pipeline of a deterministic DNN. It is worth noting that the
Laplace approximation to the RFF posterior is asymptotically exact by the virtue of the Bernstein-von
Mises (BvM) theorem and the fact that (8) is a finite-rank model [16, 23, 46, 57].

5



3.2 Distance-preserving Hidden Mapping via Spectral Normalization

Replacing the output layer g with a Gaussian process only allows the model logit(x) = g◦h(x) to
be aware of the distance in the hidden space ||h(x1)− h(x2)||H . It is also important to ensure the
hidden mapping h is distance preserving so that the distance in the hidden space ||h(x)−h(x′)||H
has a meaningful correspondence to the distance in the input space ||x−x′||X . To this end, we notice
that modern deep learning models (e.g., ResNets, Transformers) are commonly composed of residual
blocks, i.e., h(x) = hL−1 ◦ · · · ◦h2 ◦h1(x) where hl(x) = x+gl(x). For such models, there exists a
simple method to ensure h is distance preserving: by bounding the Lipschitz constants of all nonlinear

residual mappings {gl}
L−1
l=1 to be less than 1. We state this result formally below:

Proposition 1 (Lipschitz-bounded residual block is distance preserving [3]). Consider a hidden
mapping h : X → H with residual architecture h = hL−1 ◦ . . .h2 ◦h1 where hl(x) = x+gl(x). If for
0 < α ≤ 1, all gl’s are α-Lipschitz, i.e., ||gl(x)−gl(x

′)||H ≤ α||x−x′||X ∀(x,x′) ∈ X . Then:

L1 ∗ ||x−x′||X ≤ ||h(x)−h(x′)||H ≤ L2 ∗ ||x−x′||X ,

where L1 = (1−α)L−1 and L2 = (1+α)L−1, i.e., h is distance preserving.

Proof is in Appendix E.1. The ability of a residual network to construct a geometry-preserving metric
transform between the input space X and the hidden space H is well-established in learning theory
and generative modeling literature, but the application of these results in the context of uncertainty
estimation for DNN appears to be new [3, 5, 32, 64].

Consequently, to ensure the hidden mapping h is distance preserving, it is sufficient to ensure that
the weight matrices for the nonlinear residual block gl(x) = σ(Wlx+bl) to have spectral norm (i.e.,
the largest singular value) less than 1, since ||gl ||Lip ≤ ||Wlx+bl ||Lip ≤ ||Wl ||2 ≤ 1. In this work,
we enforce the aforementioned Lipschitz constraint on gl’s by applying the spectral normalization

(SN) on the weight matrices {Wl}
L−1
l=1 as recommended in [5]. Briefly, at every training step, the SN

method first estimate the spectral norm λ̂ ≈ ||Wl ||2 using the power iteration method [26, 54], and
then normalizes the weights as:

Wl =

{

c∗Wl/λ̂ if c < λ̂

Wl otherwise
(10)

where c > 0 is a hyperparameter used to adjust the exact spectral norm upper bound on ||Wl ||2 (so
that ||Wl ||2 ≤ c). This hyperparameter is useful in practice since the other regularization mechanisms
(e.g., Dropout, Batch Normalization) in the hidden layers can rescale the Lipschitz constant of the
original residual mapping [26]. Therefore, (10) allows us more flexibility in controlling the spectral
norm of the neural network weights so it is the most compatible with the architecture at hand.
Method Summary We summarize the method in Algorithms 1-2. As shown, for every minibatch

step, the model first updates the hidden-layer weights {Wl ,bl}
L−1
l=1 and the trainable output weights

β = {βk}
K
k=1 via SGD, then performs spectral normalization, and finally (if in the final epoch)

performs precision matrix update (Equation (9). We discuss further details (e.g. computational
complexity) in Appendix A.

Algorithm 1 SNGP Training

1: Input:
Minibatches {Di}

N
i=1 for Di = {ym,xm}

M
m=1.

2: Initialize:

Σ̂ = I,WL
iid
∼ N(0,1),bL

iid
∼ U(0,2π)

.3: for train step= 1 to max step do

4: SGD update
{

β ,{Wl}
L−1
l=1 ,{bl}

L−1
l=1

}

5: Spectral Normalization {Wl}
L−1
l=1 (10).

6: if final epoch then

7: Update precision matrix {Σ̂
−1

k }K
k=1 (9).

8: end if
9: end for

10: Compute posterior covariance Σ̂k = inv(Σ̂
−1

k ).

Algorithm 2 SNGP Prediction

1: Input: Testing example x.
2: Compute Feature:

ΦDL×1 =
√

2/DL ∗ cos(WLh(x)+bL),

3: Compute Posterior Mean:

logitk(x) = Φ⊤β k

4: Compute Posterior Variance:

vark(x) = Φ⊤Σ̂kΦ.

5: Compute Predictive Distribution:

p(y|x) =
∫

m∼N(logit(x),var(x))
softmax(m)
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4 Related Work

Single-model approaches to deep classifier uncertainty Recent work examines uncertainty meth-
ods that add few additional parameters or runtime cost to the base model. The state-of-the-art on
large-scale tasks are efficient ensemble methods [79, 21], which cast a set of models under a single
one, encouraging independent member predictions using low-rank perturbations. These methods are
parameter-efficient but still require multiple forward passes from the model. SNGP investigates an
orthogonal approach that improves the uncertainty quantification by imposing suitable regularization
on a single model, and therefore requires only a single forward pass during inference. There exists
other runtime-efficient, single-model approaches to estimate predictive uncertainty, achieved by
either replacing the loss function [33, 50, 51, 68, 69], the output layer [6, 72, 11, 48], or computing a
closed-form posterior for the output layer [62, 70, 41]. SNGP builds on these approaches by also
considering the intermediate representations which are necessary for good uncertainty estimation,
and proposes a simple method (spectral normalization) to achieve it. A recent method named De-
terministic Uncertainty Quantification (DUQ) also regulates the neural network mapping but uses a
two-sided gradient penalty [77]. The two-sided gradient penalty can be undesirable for a residual
network, since imposing ||∇ f ||= 1 onto a residual connection f (x) = x+g(x) can force g(x) toward
0, leading to an identity mapping. We compare with DUQ in our experiments.

Laplace approximation and GP inference with DNN Laplace approximation has a long history
in GP and NN literature [73, 17, 61, 49, 63], and the theoretical connection between a Laplace-
approximated DNN and GP has being explored recently [40]. Differing from these works, SNGP
applies the Laplace approximation to the posterior of a neural GP, rather than to a shallow GP or
a dense-output-layer DNN. Earlier works that combine a GP with a DNN usually perform MAP
estimation [11] or structured Variational Inference (VI) [9, 81]. These approaches were shown to
lead to poor calibration by recent work [74], which proposed a simple fix by combing Monte Carlo
Dropout (MC Dropout) with random Fourier features, which we term Calibrated Deep Gaussian
Process (MCD-GP). SNGP differs from MCD-GP in that it considered a different regularization
approach (spectral normalization) and can compute its posterior uncertainty more efficiently in a
single forward pass. We compare with MCD-GP in our experiments. Appendix D contains further
related work on distance-preserving neural networks and open-set classification.

5 Experiments

5.1 2D Synthetic Benchmark

We first study the behavior of the uncertainty surface of a SNGP model under a suite of 2D clas-
sification benchmarks. Specifically, we consider the two ovals benchmark (Figure 1, row 1) and
the two moons benchmark (Figure 1, row 2). The two ovals benchmark consists of two near-flat
Gaussian distributions, which represent the two in-domain classes (orange and blue) that are separable
by a linear decision boundary. There also exists an OOD distribution (red) that the model doesn’t
observe during training. Similarly, the two moons dataset consists of two banana-shaped distributions
separable by a nonlinear decision boundary. We consider a 12-layer, 128-unit deep architecture
ResFFN-12-128. The full experimental details are in Appendix C.

Figure 1 shows the results, where the background color visualizes the uncertainty surface output by
each model. We first notice that the shallow Gaussian process models (Figures 1a and 1f) exhibit
an expected behavior for high-quality predictive uncertainty: it generates low uncertainty in XIND

that is supported by the training data (purple color), and generates high uncertainty when x is far
from XIND (yellow color), i.e., input distance awareness. As a result, the shallow GP model is able to
assign low confidence to the OOD data (colored in red), indicating reliable uncertainty quantification.
On the other hand, deep ensembles (Figures 1b, 1g) and MC Dropout (Figures 1c, 1h) are based on
dense output layers that are not distance aware. As a result, both methods quantify their predictive
uncertainty based on the distance from the decision boundaries, assigning low uncertainty to OOD
examples even if they are far from the data. Finally, the DNN-GP (Figures 1d and1i) and SNGP
(Figures 1e and1j) both use GP as their output layers, but with SNGP additionally imposing the
spectral normalization on its hidden mapping h(.). As a result, the DNN-GP’s uncertainty surfaces
are still strongly impacted by the distance from decision boundary, likely caused by the fact that the
un-regularized hidden mapping h(x) is free to discard information that is not relevant for prediction.
On the other hand, the SNGP is able to maintain the input distance awareness property via its
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bi-Lipschitz constraint, and exhibits a uncertainty surface that is analogous to the gold-standard
model (shallow GP) despite the fact that SNGP is based on a 12-layer network.

5.2 Vision and Language Understanding

Baseline Methods All methods included in the vision and language understanding experiments are
summarized in Table 1. Specifically, we evaluate SNGP on a Wide ResNet 28-10 [83] for image
classification, and BERTbase [18] for language understanding. We compare against a deterministic
baseline and two ensemble approaches: MC Dropout (with 10 dropout samples) and deep ensem-
bles (with 10 models), all trained with a dense output layer and no spectral regularization. We
consider three single-model approaches: MCD-GP (with 10 samples), Deterministic Uncertainty
Quantification (DUQ) (see Section 4). For all models that use GP layer, we keep DL = 1024 and
compute predictive distribution by performing Monte Carlo averaging with 10 samples. We also
include two ablated version of SNGP: DNN-SN which uses spectral normalization on its hidden
weights and a dense output layer (i.e. distance preserving hidden mapping without distance-aware
output layer), and DNN-GP which uses the GP as output layer but without spectral normalization
on its hidden layers (i.e., distance-aware output layer without distance-preserving hidden mapping).
Further experiment details and recommendations for practical implementation are in Appendix C. All
baselines are built on the uncertainty baselines framework.

Additional Output Ensemble Multi-pass
Methods Regularization Layer Training Inference

Deterministic - Dense - -

MC Dropout Dropout Dense - Yes
Deep Ensemble - Dense Yes Yes

MCD-GP Dropout GP - Yes
DUQ Gradient Penalty RBF - -

DNN-SN Spec Norm Dense - -
DNN-GP - GP - -

SNGP Spec Norm GP - -

Table 1: Summary of methods used in experiments. Multi-pass Inference refers to whether the method needs to
perform multiple forward passes to generate the predictive distribution.

CIFAR-10 and CIFAR-100 We evaluate the model’s predictive accuracy and calibration error under
both clean CIFAR testing data and its corrupted versions termed CIFAR-*-C [34]. To evaluate the
model’s OOD detection performance, we consider two tasks: a standard OOD task using SVHN as
the OOD dataset for a model trained on CIFAR-10/-100, and a difficult OOD task using CIFAR-100
as the OOD dataset for a model trained on CIFAR-10, and vice versa. We compute the uncertainty
score for OOD using the Dempster-Shafer metric as introduced in [68], which empirically leads
to better performance for distance-aware models (see Appendix C). Table 2-3 reports the results.
As shown, for predictive accuracy, SNGP is competitive with that of a deterministic network, and
outperforms the other single-model approaches. For calibration error, SNGP clearly outperforms the
other single-model approaches and is competitive with the deep ensemble. Finally, for OOD detection,
SNGP outperforms not only the deep ensembles and MC Dropout approaches that are based on a
dense output layer, but also the MCD-GP and DUQ that are based on the GP layer, illustrating the
importance of the input distance awareness property for high-quality performance in uncertainty
quantification.

Accuracy (↑) ECE (↓) NLL (↓) OOD AUPR (↑) Latency (↓)
Method Clean Corrupted Clean Corrupted Clean Corrupted SVHN CIFAR-100 (ms / example)

Deterministic 96.0 ± 0.01 72.9 ± 0.01 0.023 ± 0.002 0.153 ± 0.011 0.158 ± 0.01 1.059 ± 0.02 0.781 ± 0.01 0.835 ± 0.01 3.91

MC Dropout 96.0 ± 0.01 70.0 ± 0.02 0.021 ± 0.002 0.116 ± 0.009 0.173 ± 0.01 1.152 ± 0.01 0.971 ± 0.01 0.832 ± 0.01 27.10
Deep Ensembles 96.6 ± 0.01 77.9 ± 0.01 0.010 ± 0.001 0.087 ± 0.004 0.114 ± 0.01 0.815 ± 0.01 0.964 ± 0.01 0.888 ± 0.01 38.10

MCD-GP 95.5 ± 0.02 70.0 ± 0.01 0.024 ± 0.004 0.100 ± 0.007 0.172 ± 0.01 1.157 ± 0.01 0.960 ± 0.01 0.863 ± 0.01 29.53
DUQ 94.7 ± 0.02 71.6 ± 0.02 0.034 ± 0.002 0.183 ± 0.011 0.239 ± 0.02 1.348 ± 0.01 0.973 ± 0.01 0.854 ± 0.01 8.68

DNN-SN 96.0 ± 0.01 72.5 ± 0.01 0.025 ± 0.004 0.178 ± 0.013 0.171 ± 0.01 1.306 ± 0.01 0.974 ± 0.01 0.859 ± 0.01 5.20
DNN-GP 95.9 ± 0.01 71.7 ± 0.01 0.029 ± 0.002 0.175 ± 0.008 0.221 ± 0.02 1.380 ± 0.01 0.976 ± 0.01 0.887 ± 0.01 5.58

SNGP (Ours) 95.9 ± 0.01 74.6 ± 0.01 0.018 ± 0.001 0.090± 0.012 0.138 ± 0.01 0.935 ± 0.01 0.990 ± 0.01 0.905 ± 0.01 6.25

Table 2: Results for Wide ResNet-28-10 on CIFAR-10, averaged over 10 seeds.

Detecting Out-of-Scope Intent in Conversational Language Understanding To validate the
method beyond image modalities, we also evaluate SNGP on a practical language understanding task
where uncertainty quantification is of natural importance: dialog intent detection [44, 78, 82, 84]. In a
goal-oriented dialog system (e.g. chatbot) built for a collection of in-domain services, it is important
for the model to understand if an input natural utterance from an user is in-scope (so it can activate
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Accuracy (↑) ECE (↓) NLL (↓) OOD AUPR (↑) Latency (↓)
Method Clean Corrupted Clean Corrupted Clean Corrupted SVHN CIFAR-10 (ms / example)

Deterministic 79.8 ± 0.02 50.5 ± 0.04 0.085 ± 0.004 0.239 ± 0.020 0.872 ± 0.01 2.756 ± 0.03 0.882 ± 0.01 0.745 ± 0.01 5.20

MC Dropout 79.6 ± 0.02 42.6 ± 0.08 0.050 ± 0.003 0.202 ± 0.010 0.825 ± 0.01 2.881 ± 0.01 0.832 ± 0.01 0.757 ± 0.01 46.79
Deep Ensemble 80.2 ± 0.01 54.1 ± 0.04 0.021 ± 0.004 0.138± 0.013 0.666 ± 0.02 2.281 ± 0.03 0.888 ± 0.01 0.780 ± 0.01 42.06

MCD-GP 79.5± 0.04 45.0 ± 0.05 0.085 ± 0.005 0.159 ± 0.009 0.937 ± 0.01 2.584 ± 0.02 0.873 ± 0.01 0.754 ± 0.01 44.20
DUQ 78.5 ± 0.02 50.4 ± 0.02 0.119 ± 0.001 0.281 ± 0.012 0.980 ± 0.02 2.841 ± 0.01 0.878 ± 0.01 0.732 ± 0.01 6.51

DNN-SN 79.9 ± 0.02 48.6 ± 0.02 0.098± 0.004 0.272± 0.011 0.918 ± 0.01 3.013± 0.01 0.879± 0.03 0.745± 0.01 6.20
DNN-GP 79.2 ± 0.03 47.7 ± 0.03 0.064± 0.005 0.166± 0.003 0.885± 0.009 2.629± 0.01 0.876± 0.01 0.746± 0.02 6.82

SNGP (Ours) 79.9 ± 0.03 49.0 ± 0.02 0.025 ± 0.012 0.117 ± 0.014 0.847 ± 0.01 2.626 ± 0.01 0.923 ± 0.01 0.801 ± 0.01 6.94

Table 3: Results for Wide ResNet-28-10 on CIFAR-100, averaged over 10 seeds.

one of the in-domain services) or out-of-scope (where the model should abstain). To this end, we
consider training an intent understanding model using the CLINC OOS intent detection benchmark
dataset [44]. Briefly, the OOS dataset contains data for 150 in-domain services with 150 training
sentences in each domain, and also 1500 natural out-of-domain utterances. We train the models only
on in-domain data, and evaluate their predictive accuracy on the in-domain test data, their calibration
and OOD detection performance on the combined in-domain and out-of-domain data. The results
are in Table 4. As shown, consistent with the previous vision experiments, SNGP is competitive in
predictive accuracy when compared to a deterministic baseline, and outperforms other approaches in
calibration and OOD detection.

Accuracy (↑) ECE (↓) NLL (↓) OOD Latency (↓)
Method AUROC (↑) AUPR (↑) (ms / example)

Deterministic 96.5 ± 0.11 0.024 ± 0.002 3.559 ± 0.11 0.897 ± 0.01 0.757 ± 0.02 10.42

MC Dropout 96.1 ± 0.10 0.021 ± 0.001 1.658 ± 0.05 0.938 ± 0.01 0.799 ± 0.01 85.62
Deep Ensemble 97.5 ± 0.03 0.013 ± 0.002 1.062 ± 0.02 0.964 ± 0.01 0.862 ± 0.01 84.46

MCD-GP 95.9 ± 0.05 0.015 ± 0.003 1.664 ± 0.04 0.906 ± 0.02 0.803 ± 0.01 88.38
DUQ 96.0 ± 0.04 0.059 ± 0.002 4.015 ± 0.08 0.917 ± 0.01 0.806 ± 0.01 15.60

DNN-SN 95.4 ± 0.10 0.037 ± 0.004 3.565 ± 0.03 0.922 ± 0.02 0.733 ± 0.01 17.36
DNN-GP 95.9 ± 0.07 0.075 ± 0.003 3.594 ± 0.02 0.941 ± 0.01 0.831 ± 0.01 18.93

SNGP 96.6 ± 0.05 0.014 ± 0.005 1.218 ± 0.03 0.969 ± 0.01 0.880 ± 0.01 17.36

Table 4: Results for BERTBase on CLINC OOS, averaged over 10 seeds.

6 Conclusion

We propose SNGP, a simple approach to improve a single deterministic DNN’s ability in predictive
uncertainty estimation. It makes minimal changes to the architecture and training/prediction pipeline
of a deterministic DNN, only adding spectral normalization to the hidden mapping, and replacing the
dense output layer with a random feature layer that approximates a GP. We theoretically motivate
input distance awareness, the key design principle behind SNGP, via a learning-theoretic analysis
of the uncertainty estimation problem. We also propose a closed-form approximation method to
make the GP posterior end-to-end trainable in linear time with the rest of the neural network. On a
suite of vision and language understanding tasks and on modern architectures (ResNet and BERT),
SNGP is competitive with a deep ensemble in prediction, calibration and out-of-domain detection,
and outperforms other single-model approaches.

A central observation we made in this work is that good representational learning is important
for good uncertainty quantification. In particular, we highlighted bi-Lipschitz (Equation (5)) as
an important condition for the learned representation of a DNN to attain high-quality uncertainty
performance, and proposed spectral normalization as a simple approach to ensure such property in
practice. However, it is worth noting that there exists other representation learning techniques, e.g.,
data augmentation or unsupervised pretraining, that are known to also improve a network’s uncertainty
performance [35, 36]. Analyzing whether and how these approaches contribute to improve a DNN bi-
Lipschitz condition, and whether the bi-Lipschitz condition is sufficient in explaining these methods’
success, are interesting avenues of future work. Furthermore, we note that the spectral norm bound
α < 1 in Proposition 1 forms only a sufficient condition for ensuring bi-Lipschitz [5]. In practice, we
observed that for convolutional layers, a looser norm bound is needed for state-of-the-art performance
(see Section C), raising questions of whether the current regularization approach is precise enough
in controlling the spectral norm of a convolutional kernel, or if there is an alternative mechanism at
play in ensuring the bi-Lipschitz criterion. Finally, from a probabilistic learning perspective, SNGP
focuses on learning a single high-quality model pθ (y|x) for a deterministic representation. Therefore
we expect it to provide complementary benefits to approaches such as (efficient) ensembles and
Bayesian neural networks [21, 42, 79] which marginalize over the representation parameters as well.
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Broader Impact

This work proposed a simple and practical methodology to improve the uncertainty estimation
performance of a deterministic deep learning model. Experiment results showcased the method’s
ability in improving model performance in calibration and OOD detection while maintaining similar
level of accuracy and latency, therefore illustrating its feasibility for industrial-scale applications.
We hope the proposed approach can be used to bring concrete improvements to AI-driven, socially-
relevant services where uncertainty is of natural importance. Examples include medical and policy
decision making, online toxic comment management, fairness-aware recommendation systems, etc.

Nonetheless, we do not claim that the improvement illustrated in this paper solve the problem of
model uncertainty entirely. This is because the analysis and experiments in this study may not capture
the full complexity of the real-world use cases, and there will always be room for improvement.
Designers of machine learning systems are encouraged to proactively confront the shortcomings of
model uncertainty and the underlying models that generate these confidences. Even with a proper
user interface, there is always room to misinterpret model outputs and probabilities, such as with
nuanced applications such as election predictions, and users of these models should to be properly
trained to take these factors into account.
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