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Simple and robust resistive dual-axis 
accelerometer using a liquid metal droplet
Myoung Huh1, Dong-Joon Won1, Joong Gil Kim2 and Joonwon Kim1*

Abstract 

This paper presents a novel dual-axis accelerometer that consists of a liquid metal droplet in a cone-shaped channel 

and an electrode layer with four Nichrome electrodes. The sensor uses the advantages of the liquid metal droplet (i.e., 

high surface tension, electrical conductivity, high density, and deformability). The cone-shaped channel imposes a 

restoring force on the liquid metal droplet. We conducted simulation tests to determine the appropriate design speci-

fications of the cone-shaped channel. Surface modifications to the channel enhanced the nonwetting performance 

of the liquid metal droplet. The performances of the sensor were analyzed by a tilting test. When the acceleration was 

applied along the axial direction, the device showed ~6 kΩ/g of sensitivity and negligible crosstalk between the X- 

and Y-axes. In a diagonal direction test, the device showed ~4 kΩ/g of sensitivity.
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Background

Different types of microelectromechanical systems 
(MEMS) accelerometers, which are widely used in mov-
ing systems (e.g., automotive systems and military 
weapon systems), have been developed [1–4]. Most of 
these accelerometers have solid proof mass parts that 
move with respect to input acceleration. �ese accel-
erometers, however, require complex signal processing 
steps (e.g., amplification, filtering, and conversion). Fur-
thermore, they use a proof mass that is suspended by 
fixed beams that are complicated to fabricate and may 
incur mechanical fatigue [5–9].

To increase the simplicity and robustness of the accel-
erometer, Park et  al. developed an accelerometer using 
a liquid metal (LM) droplet (i.e., mercury) [10]. Because 
mercury has electrical conductivity (specific electrical 
resistance: 0.96 × 10−6 Ω m) and high density (~13.5 g/
cm3), Park et al. used mercury as an electrode and proof 
mass simultaneously. Mercury also has the deformability 
of liquid, which does not suffer from fatigue. �erefore, 

the robustness of the device can be improved. �is accel-
erometer, however, measures the acceleration discontinu-
ously and only along a single axis.

In this paper, we introduce a simple and novel method 
to overcome the disadvantages of previously researched 
accelerometers that use an LM droplet. Our device con-
sists simply of two components: a cone-shaped chan-
nel made of thermoplastic, in which an LM droplet 
(i.e., mercury) is placed, and an electrode layer with 
four Nichrome [specific electrical resistance: (1.0–
1.5) × 10−6 Ω m] electrodes. Since the resistance of the 
device changes continuously according to the input accel-
eration, our device can measure the acceleration con-
tinuously. Moreover, the cone-shaped channel and four 
Nichrome electrodes make it possible to measure dual-
axis acceleration.

�e accelerometer was successfully fabricated using 
micromachining techniques. To improve its perfor-
mance, a cone-shaped channel is designed by simulation 
tests using the commercially available tool COMSOL 
Multiphysics. �e surface is modified by using a sand-
blaster to form the microstructures inside the chan-
nel to enhance the nonwetting characteristic of the LM 
droplet. �e performance of the fabricated device is ana-
lyzed through tilting tests. With these tests, we confirm 
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that our device can measure the X- or Y-axis (single-axis 
acceleration) and also the diagonal axis (dual-axis accel-
eration). �e device shows ~6 kΩ/g of sensitivity in the 
axial direction and ~4 kΩ/g in the diagonal direction.

Device concept and design

Con�guration and operational principle

�e device consists of two parts: a cone-shaped channel 
made of thermoplastic, in which LM is placed, and an 
electrode layer with four Nichrome electrodes (Fig.  1a). 
Figure  1b shows the fabricated device, in which an LM 
droplet is used as a proof mass.

As shown in Fig.  1c, in an accelerated state, the 
induced inertial force moves an LM droplet toward 
the edge of a channel. On the other hand, the move-
ment of the LM droplet induces an imbalance in the 
Laplace pressure between one side and the opposite 
sides of the LM. �e imbalance of the Laplace pressure 
induces a force by which the LM droplet moves toward 
the center of the channel. For simplicity, “Laplace pres-
sure” has the same meaning as the force by which the 
LM droplet moves toward the center of the channel in 

this paper. �e LM droplet stops moving when the bal-
ance between the inertial force and Laplace pressure are 
in equilibrium. Generally for electrodes, the resistance 
is proportional to the electrode length (L) and inversely 
proportional to the cross-sectional area (A). In our 
device, the cross-sectional area (A) of the electrodes is 
constant, but the electrode length (L) changes according 
to the position of the LM droplet. When the LM moves 
to the right, the length of the right electrode decreases. 
In the same manner, the resistance of the right electrode 
decreases. Since electric current takes the path of least 
resistance, it prefers to flow through the LM droplet 
rather than the Nichrome.

Figure 1d shows a schematic of the acceleration sensing 
mechanism. ΔRx and ΔRy are the differences in the resist-
ance between two electrodes along the X-axis and Y-axis, 
respectively (i.e., ΔRx = R1 − R3 and ΔRy = R2 − R4). As 
mentioned earlier, the LM droplet moves based on the 
input acceleration. If acceleration is applied in the direc-
tion of the X-axis only, ΔRx increases. On the other hand, 
ΔRy is almost zero since the changes in both resistances 
along the Y-axis are almost equal.

Fig. 1 Design and operating mechanism of dual-axis accelerometer. a Schematic of the device. b Device image. c Acceleration sensing mecha-

nism. Here, ∆Rx indicates the difference in resistance in the direction of the X-axis, and ∆Ry indicates that in the direction of the Y-axis. d Principle of 

resistance change
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Design of the channel

As shown in Fig. 2a, the Laplace pressures at the left and 
right sides in the liquid droplet between two nonparal-
lel plates are determined by a combination of the sur-
face tension (γ) of a liquid droplet, the contact angle (θ), 
the angle between the two plates (α), and the distance 
between the apex edge (d1 and d2) and the liquid drop-
let. �e liquid droplet between two nonparallel plates 
moves until the Laplace pressure difference is zero [11, 
12]. �e surface tension is a property of the LM droplet, 
and the contact angle is determined by the nature of the 
contacting materials [13]. �erefore, we cannot control 
these parameters by designing the channel. �e angle of 
the edge is a main parameter in designing the channel. 
We choose three designs to control the angle of the cone-
shaped channel, as shown in Table 1.

We conduct simulation tests for the three designs using 
the commercially available tool COMSOL Multiphys-
ics (Fig. 2a). We applied acceleration to the three designs 
via COMSOL Multiphysics and obtained the distance 
changes based on the right side of the LM droplet in the 
channel depending on the given accelerations. Finally, we 
selected a channel that has 10 mm of diameter and 1 mm 
of depth since the change in distance of the LM droplet is 
at its maximum (0.5 mm, 1 g) (Fig. 2b).

Surface modi�cation of channel

An LM droplet performs best as a proof mass when the 
liquid metal does not exhibit stiction, friction, or any 
kind of resistance to sensitivity, repeatability, or response 
time when moving. To facilitate the movement of the LM 
droplet, we form microstructures uniformly inside the 
thermoplastic channel by using a sandblaster (20  μm of 
sand, 0.7 MPa, 5 s) (Fig. 3a).

�e scanning electron microscopy (SEM) images of the 
bare and sandblasted surfaces of thermoplastic are shown 
in Fig.  3b, c. �e sandblasted surface was uniformly 
covered by microstructures, but the bare surface was 
smooth. To observe the wettability of the sandblasted and 
bare surfaces, we measured the contact angle (CA) and 
the contact angle hysteresis (CAH). �e CA between the 
bare thermoplastic surface and the LM droplet (volume 
~1 μL) is ~150°, and the CAH is ~20°. �e CA between 
the modified surface and the LM droplet is ~165°, and 
the CAH is ~2°. �e smaller CAH of the modified surface 
indicates that the LM droplet moves more easily on the 
sandblasted surface than on the bare surface.

Fabrication process

�ermoplastic and Nichrome electrode layers are used in 
our device. �e channel was fabricated on a thermoplas-
tic plate. We created a stainless steel 304 mold and fabri-
cated a channel (10 mm in diameter, 1 m in depth) simply 
by using a hot-embossing process (Fig.  4a, b). �e sur-
face was modified by using a sandblaster to form micro-
structures inside the channel to enhance the nonwetting 
performance of the LM droplet. An electrode layer was 
fabricated on a glass substrate by using a lift-off process 
(Fig.  4c). Nichrome electrodes (thickness of 2000  Å) 
were deposited by sputtering on an AZ5214E photoresist 

Fig. 2 Channel design. a Simulation for three designs using commercially available tool COMSOL Multiphysics. b Distance changes of liquid metal 

droplet caused by input acceleration in three different designs

Table 1 Design parameters of channel

D (mm) h (mm) θ (°)

Design 1 10 0.5 ~5.7

Design 2 10 1 ~11.3

Design 3 5 1 ~21.8



Page 4 of 6Huh et al. Micro and Nano Syst Lett  (2017) 5:5 

(width of 10 μm) patterned glass wafer. Finally, the elec-
trode pattern was achieved by dipping the wafer into an 
acetone solution. An LM droplet (~10  μL) was placed 
inside the microstructured channel, and the electrode 
layer was bonded using ultraviolet (UV) curable adhesive 
(Fig. 4d).

Results

Experimental setup

We performed a tilting test using a custom-built setup to 
verify the concept of the proposed dual-axis accelerom-
eter (Fig.  5). �e acceleration applied to the device was 
controlled by a rotary stage, and a digital multimeter 
(Agilent 34401A) was used to measure the resistance of 
the four electrodes. LabVIEW was used to control the 
tilting angle using serial communication, and to calculate 
the differences in the resistances of the electrodes.

Tilting test

Accelerations ranging from 0 to 1 g were applied to the 
sensor by controlling the tilting angle. When the accel-
erometer was vertical with respect to the ground, the 
acceleration was 1  g. On the other hand, when it was 
horizontal, the acceleration was 0  g. In Fig.  6, ΔR indi-
cates the difference in the resistances between two elec-
trodes along the X-axis (ΔRx) and Y-axis (ΔRy). When the 
input accelerations were applied along the X- or Y-axis, 
ΔR was about 6  kΩ at 1  g (Fig.  6a). Here, the interfer-
ence between the X- and Y-axis was negligible (close to 
0 kΩ). When the acceleration was applied in a diagonal 
direction, the values of ΔR were approximately 4 kΩ at 
1  g, which was similar to the magnitude between the 

X- and Y-axes (Fig.  6b). We confirmed that ΔR in the 
diagonal acceleration test (~4  kΩ) was less than that 
of the axial input test (~6  kΩ). �e reason is that the 
part of the LM droplet close to the axis of acceleration 
showed a tendency to deform more significantly in our 
channel design. �e slopes of the graphs show the sensi-
tivity of the device. �e device shows ~6 kΩ/g of sensi-
tivity in the axial direction and ~4 kΩ/g in the diagonal 
direction.

Fig. 3 Comparison of wettability. a Sandblasted channel image. b Bare surface (CA ~ 150°, CAH ~ 20°). c Modified surface (CA ~ 165°, CAH ~ 2°)

Fig. 4 Fabrication process. a Stainless steel mold. b Channel (bottom 

layer). c Electrodes (top layer). d Device assembly
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Conclusion

We developed a simple and robust dual-axis acceler-
ometer. �e device consists of two parts: a cone-shaped 
channel made of thermoplastic, which is filled with an 

LM droplet, and an electrode layer with four Nichrome 
electrodes. An LM droplet was used as a proof mass, 
and the input acceleration was measured by the differ-
ence in the resistance between two electrodes along 
the X-axis and Y-axis. �e channel design was achieved 
using the commercially available tool COMSOL Mul-
tiphysics. To enhance the nonwetting performance of 
the LM droplet, surface modifications were conducted 
using a sandblaster to form microstructures inside the 
channel. �e performances of the fabricated device 
were analyzed by tilting tests. From the test, we con-
firmed that our device can measure the X- or Y-axis 
(single-axis acceleration) and the diagonal axis (dual-
axis acceleration). �e device shows ~6 kΩ/g of sensi-
tivity in the axial direction and ~4 kΩ/g in the diagonal 
direction.

Fig. 5 Experimental setup for tilting test

Fig. 6 Results of tilting tests: ∆R (total resistance difference of each electrode) of sensor subjected to input accelerations. a Input accelerations 

along X- or Y-axis. b Input accelerations with diagonal direction
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MEMS: microelectromechanical systems; LM: liquid metal; SEM: scanning 

electron microscopy; CA: contact angle; CAH: contact angle hysteresis.
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