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Abstract

Deep neural networks (NNs) are powerful black box predictors that have recently
achieved impressive performance on a wide spectrum of tasks. Quantifying pre-
dictive uncertainty in NNs is a challenging and yet unsolved problem. Bayesian
NNs, which learn a distribution over weights, are currently the state-of-the-art
for estimating predictive uncertainty; however these require significant modifica-
tions to the training procedure and are computationally expensive compared to
standard (non-Bayesian) NNs. We propose an alternative to Bayesian NNs that
is simple to implement, readily parallelizable, requires very little hyperparameter
tuning, and yields high quality predictive uncertainty estimates. Through a series
of experiments on classification and regression benchmarks, we demonstrate that
our method produces well-calibrated uncertainty estimates which are as good or
better than approximate Bayesian NNs. To assess robustness to dataset shift, we
evaluate the predictive uncertainty on test examples from known and unknown
distributions, and show that our method is able to express higher uncertainty on
out-of-distribution examples. We demonstrate the scalability of our method by
evaluating predictive uncertainty estimates on ImageNet.

1 Introduction

Deep neural networks (NNs) have achieved state-of-the-art performance on a wide variety of machine
learning tasks [35] and are becoming increasingly popular in domains such as computer vision
[32], speech recognition [25], natural language processing [42], and bioinformatics [2, 61]. Despite
impressive accuracies in supervised learning benchmarks, NNs are poor at quantifying predictive
uncertainty, and tend to produce overconfident predictions. Overconfident incorrect predictions can be
harmful or offensive [3], hence proper uncertainty quantification is crucial for practical applications.

Evaluating the quality of predictive uncertainties is challenging as the ‘ground truth’ uncertainty
estimates are usually not available. In this work, we shall focus upon two evaluation measures that
are motivated by practical applications of NNs. Firstly, we shall examine calibration [12, 13], a
frequentist notion of uncertainty which measures the discrepancy between subjective forecasts and
(empirical) long-run frequencies. The quality of calibration can be measured by proper scoring rules
[17] such as log predictive probabilities and the Brier score [9]. Note that calibration is an orthogonal
concern to accuracy: a network’s predictions may be accurate and yet miscalibrated, and vice versa.
The second notion of quality of predictive uncertainty we consider concerns generalization of the
predictive uncertainty to domain shift (also referred to as out-of-distribution examples [23]), that is,
measuring if the network knows what it knows. For example, if a network trained on one dataset is
evaluated on a completely different dataset, then the network should output high predictive uncertainty
as inputs from a different dataset would be far away from the training data. Well-calibrated predictions
that are robust to model misspecification and dataset shift have a number of important practical uses
(e.g., weather forecasting, medical diagnosis).
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There has been a lot of recent interest in adapting NNs to encompass uncertainty and probabilistic
methods. The majority of this work revolves around a Bayesian formalism [4], whereby a prior
distribution is specified upon the parameters of a NN and then, given the training data, the posterior
distribution over the parameters is computed, which is used to quantify predictive uncertainty.
Since exact Bayesian inference is computationally intractable for NNs, a variety of approximations
have been developed including Laplace approximation [40], Markov chain Monte Carlo (MCMC)
methods [46], as well as recent work on variational Bayesian methods [6, 19, 39], assumed density
filtering [24], expectation propagation [21, 38] and stochastic gradient MCMC variants such as
Langevin diffusion methods [30, 59] and Hamiltonian methods [53]. The quality of predictive
uncertainty obtained using Bayesian NNs crucially depends on (i) the degree of approximation due
to computational constraints and (ii) if the prior distribution is ‘correct’, as priors of convenience
can lead to unreasonable predictive uncertainties [50]. In practice, Bayesian NNs are often harder
to implement and computationally slower to train compared to non-Bayesian NNs, which raises
the need for a ‘general purpose solution’ that can deliver high-quality uncertainty estimates and yet
requires only minor modifications to the standard training pipeline.

Recently, Gal and Ghahramani [15] proposed using Monte Carlo dropout (MC-dropout) to estimate
predictive uncertainty by using Dropout [54] at test time. There has been work on approximate
Bayesian interpretation [15, 29, 41] of dropout. MC-dropout is relatively simple to implement
leading to its popularity in practice. Interestingly, dropout may also be interpreted as ensemble model
combination [54] where the predictions are averaged over an ensemble of NNs (with parameter
sharing). The ensemble interpretation seems more plausible particularly in the scenario where the
dropout rates are not tuned based on the training data, since any sensible approximation to the true
Bayesian posterior distribution has to depend on the training data. This interpretation motivates the
investigation of ensembles as an alternative solution for estimating predictive uncertainty.

It has long been observed that ensembles of models improve predictive performance (see [14] for a
review). However it is not obvious when and why an ensemble of NNs can be expected to produce
good uncertainty estimates. Bayesian model averaging (BMA) assumes that the true model lies within
the hypothesis class of the prior, and performs soft model selection to find the single best model within
the hypothesis class [43]. In contrast, ensembles perform model combination, i.e. they combine the
models to obtain a more powerful model; ensembles can be expected to be better when the true model
does not lie within the hypothesis class. We refer to [11, 43] and [34, §2.5] for related discussions.
It is important to note that even exact BMA is not guaranteed be robust to mis-specification with
respect to domain shift.

Summary of contributions: Our contribution in this paper is two fold. First, we describe a simple and
scalable method for estimating predictive uncertainty estimates from NNs. We argue for training
probabilistic NNs (that model predictive distributions) using a proper scoring rule as the training
criteria. We additionally investigate the effect of two modifications to the training pipeline, namely
(i) ensembles and (ii) adversarial training [18] and describe how they can produce smooth predictive
estimates. Secondly, we propose a series of tasks for evaluating the quality of the predictive uncertainty
estimates, in terms of calibration and generalization to unknown classes in supervised learning
problems. We show that our method significantly outperforms (or matches) MC-dropout. These tasks,
along with our simple yet strong baseline, serve as an useful benchmark for comparing predictive
uncertainty estimates obtained using different Bayesian/non-Bayesian/hybrid methods.

Novelty and Significance: Ensembles of NNs, or deep ensembles for short, have been successfully
used to boost predictive performance (e.g. classification accuracy in ImageNet or Kaggle contests)
and adversarial training has been used to improve robustness to adversarial examples. However, to
the best of our knowledge, ours is the first work to investigate their usefulness for predictive uncer-
tainty estimation and compare their performance to current state-of-the-art approximate Bayesian
methods on a series of classification and regression benchmark datasets. Compared to Bayesian
NNs (e.g. variational inference or MCMC methods), our method is much simpler to implement,
requires surprisingly few modifications to standard NNs, and well suited for distributed computation,
thereby making it attractive for large-scale deep learning applications. To demonstrate scalability of
our method, we evaluate predictive uncertainty on ImageNet (and are the first to do so, to the best of
our knowledge). Most work on uncertainty in deep learning focuses on Bayesian deep learning; we
hope that the simplicity and strong empirical performance of our approach will spark more interest in
non-Bayesian approaches for predictive uncertainty estimation.
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2 Deep Ensembles: A Simple Recipe For Predictive Uncertainty Estimation

2.1 Problem setup and High-level summary

We assume that the training dataset D consists of N i.i.d. data points D = {xn, yn}
N
n=1, where

x 2 R
D represents the D-dimensional features. For classification problems, the label is assumed

to be one of K classes, that is y 2 {1, . . . ,K}. For regression problems, the label is assumed to
be real-valued, that is y 2 R. Given the input features x, we use a neural network to model the
probabilistic predictive distribution pθ(y|x) over the labels, where ✓ are the parameters of the NN.

We suggest a simple recipe: (1) use a proper scoring rule as the training criterion, (2) use adversarial
training [18] to smooth the predictive distributions, and (3) train an ensemble. Let M denote the
number of NNs in the ensemble and {✓m}Mm=1 denote the parameters of the ensemble. We first
describe how to train a single neural net and then explain how to train an ensemble of NNs.

2.2 Proper scoring rules

Scoring rules measure the quality of predictive uncertainty (see [17] for a review). A scoring rule
assigns a numerical score to a predictive distribution pθ(y|x), rewarding better calibrated predictions
over worse. We shall consider scoring rules where a higher numerical score is better. Let a scoring
rule be a function S(pθ, (y,x)) that evaluates the quality of the predictive distribution pθ(y|x) relative
to an event y|x ⇠ q(y|x) where q(y,x) denotes the true distribution on (y,x)-tuples. The expected
scoring rule is then S(pθ, q) =

R

q(y,x)S(pθ, (y,x))dydx. A proper scoring rule is one where
S(pθ, q)  S(q, q) with equality if and only if pθ(y|x) = q(y|x), for all pθ and q. NNs can then be
trained according to measure that encourages calibration of predictive uncertainty by minimizing the
loss L(✓) = �S(pθ, q).

It turns out many common NN loss functions are proper scoring rules. For example, when maximizing
likelihood, the score function is S(pθ, (y,x)) = log pθ(y|x), and this is a proper scoring rule due
to Gibbs inequality: S(pθ, q) = Eq(x)q(y|x) log pθ(y|x)  Eq(x)q(y|x) log q(y|x). In the case of
multi-class K-way classification, the popular softmax cross entropy loss is equivalent to the log

likelihood and is a proper scoring rule. Interestingly, L(✓) = �S(pθ, (y,x)) = K�1
PK

k=1

�

�k=y �

pθ(y = k|x)
�2

, i.e., minimizing the squared error between the predictive probability of a label and
one-hot encoding of the correct label, is also a proper scoring rule known as the Brier score [9].
This provides justification for this common trick for training NNs by minimizing the squared error
between a binary label and its associated probability and shows it is, in fact, a well defined loss with
desirable properties.1

2.2.1 Training criterion for regression

For regression problems, NNs usually output a single value say µ(x) and the parameters are optimized

to minimize the mean squared error (MSE) on the training set, given by
PN

n=1

�

yn � µ(xn)
�2

.
However, the MSE does not capture predictive uncertainty. Following [47], we use a network
that outputs two values in the final layer, corresponding to the predicted mean µ(x) and variance2

�
2(x) > 0. By treating the observed value as a sample from a (heteroscedastic) Gaussian distribution

with the predicted mean and variance, we minimize the negative log-likelihood criterion:

� log pθ(yn|xn) =
log �2

θ
(x)

2
+

�

y � µθ(x)
�2

2�2
θ
(x)

+ constant. (1)

We found the above to perform satisfactorily in our experiments. However, two simple extensions are
worth further investigation: (i) Maximum likelihood estimation over µθ(x) and �

2
θ
(x) might overfit;

one could impose a prior and perform maximum-a-posteriori (MAP) estimation. (ii) In cases where
the Gaussian is too-restrictive, one could use a complex distribution e.g. mixture density network [5]
or a heavy-tailed distribution.

1Indeed as noted in Gneiting and Raftery [17], it can be shown that asymptotically maximizing any proper
scoring rule recovers true parameter values.

2We enforce the positivity constraint on the variance by passing the second output through the softplus
function log(1 + exp(·)), and add a minimum variance (e.g. 10−6) for numerical stability.
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2.3 Adversarial training to smooth predictive distributions

Adversarial examples, proposed by Szegedy et al. [55] and extended by Goodfellow et al. [18], are
those which are ‘close’ to the original training examples (e.g. an image that is visually indistin-
guishable from the original image to humans), but are misclassified by the NN. Goodfellow et al.
[18] proposed the fast gradient sign method as a fast solution to generate adversarial examples.
Given an input x with target y, and loss `(✓,x, y) (e.g. � log pθ(y|x)), the fast gradient sign method

generates an adversarial example as x0 = x+ ✏ sign
�

rx `(✓,x, y)
�

, where ✏ is a small value such
that the max-norm of the perturbation is bounded. Intuitively, the adversarial perturbation creates
a new training example by adding a perturbation along a direction which the network is likely to
increase the loss. Assuming ✏ is small enough, these adversarial examples can be used to augment
the original training set by treating (x0, y) as additional training examples. This procedure, referred
to as adversarial training,3 was found to improve the classifier’s robustness [18].

Interestingly, adversarial training can be interpreted as a computationally efficient solution to smooth
the predictive distributions by increasing the likelihood of the target around an ✏-neighborhood of
the observed training examples. Ideally one would want to smooth the predictive distributions along
all 2D directions in {1,�1}D; however this is computationally expensive. A random direction
might not necessarily increase the loss; however, adversarial training by definition computes the
direction where the loss is high and hence is better than a random direction for smoothing predictive
distributions. Miyato et al. [44] proposed a related idea called virtual adversarial training (VAT),
where they picked ∆x = argmax∆x KL

�

p(y|x)||p(y|x + ∆x)
�

; the advantage of VAT is that
it does not require knowledge of the true target y and hence can be applied to semi-supervised
learning. Miyato et al. [44] showed that distributional smoothing using VAT is beneficial for efficient
semi-supervised learning; in contrast, we investigate the use of adversarial training for predictive
uncertainty estimation. Hence, our contributions are complementary; one could use VAT or other
forms of adversarial training, cf. [33], for improving predictive uncertainty in the semi-supervised
setting as well.

2.4 Ensembles: training and prediction

The most popular ensembles use decision trees as the base learners and a wide variety of method
have been explored in the literature on ensembles. Broadly, there are two classes of ensembles:
randomization-based approaches such as random forests [8], where the ensemble members can
be trained in parallel without any interaction, and boosting-based approaches where the ensemble
members are fit sequentially. We focus only on the randomization based approach as it is better suited
for distributed, parallel computation. Breiman [8] showed that the generalization error of random
forests can be upper bounded by a function of the strength and correlation between individual trees;
hence it is desirable to use a randomization scheme that de-correlates the predictions of the individual
models as well as ensures that the individual models are strong (e.g. high accuracy). One of the
popular strategies is bagging (a.k.a. bootstrapping), where ensemble members are trained on different
bootstrap samples of the original training set. If the base learner lacks intrinsic randomization (e.g. it
can be trained efficiently by solving a convex optimization problem), bagging is a good mechanism
for inducing diversity. However, if the underlying base learner has multiple local optima, as is the
case typically with NNs, the bootstrap can sometimes hurt performance since a base learner trained
on a bootstrap sample sees only 63% unique data points.4 In the literature on decision tree ensembles,
Breiman [8] proposed to use a combination of bagging [7] and random subset selection of features at
each node. Geurts et al. [16] later showed that bagging is unnecessary if additional randomness can
be injected into the random subset selection procedure. Intuitively, using more data for training the
base learners helps reduce their bias and ensembling helps reduce the variance.

We used the entire training dataset to train each network since deep NNs typically perform better
with more data, although it is straightforward to use a random subsample if need be. We found that
random initialization of the NN parameters, along with random shuffling of the data points, was
sufficient to obtain good performance in practice. We observed that bagging deteriorated performance
in our experiments. Lee et al. [36] independently observed that training on entire dataset with
random initialization was better than bagging for deep ensembles, however their goal was to improve

3Not to be confused with Generative Adversarial Networks (GANs).
4 The bootstrap draws N times uniformly with replacement from a dataset with N items. The probability

an item is picked at least once is 1− (1− 1/N)N , which for large N becomes 1− e−1
≈ 0.632. Hence, the

number of unique data points in a bootstrap sample is 0.632×N on average.
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predictive accuracy and not predictive uncertainty. The overall training procedure is summarized in
Algorithm 1.

Algorithm 1 Pseudocode of the training procedure for our method

1: . Let each neural network parametrize a distribution over the outputs, i.e. pθ(y|x). Use a proper
scoring rule as the training criterion `(✓,x, y). Recommended default values are M = 5 and
✏ = 1% of the input range of the corresponding dimension (e.g 2.55 if input range is [0,255]).

2: Initialize ✓1, ✓2, . . . , ✓M randomly
3: for m = 1 : M do . train networks independently in parallel
4: Sample data point nm randomly for each net . single nm for clarity, minibatch in practice
5: Generate adversarial example using x

0

nm

= xnm
+ ✏ sign

�

rxnm

`(✓m,xnm
, ynm

)
�

6: Minimize `(✓m,xnm
, ynm

) + `(✓m,x0

nm

, ynm
) w.r.t. ✓m . adversarial training (optional)

We treat the ensemble as a uniformly-weighted mixture model and combine the predictions as

p(y|x) = M�1
PM

m=1 pθm(y|x, ✓m). For classification, this corresponds to averaging the predicted
probabilities. For regression, the prediction is a mixture of Gaussian distributions. For ease of
computing quantiles and predictive probabilities, we further approximate the ensemble prediction as a
Gaussian whose mean and variance are respectively the mean and variance of the mixture. The mean
and variance of a mixture M�1

P

N
�

µθm
(x),�2

θm
(x)

�

are given by µ⇤(x) = M�1
P

m µθm
(x)

and �
2
⇤
(x) = M�1

P

m

�

�
2
θm

(x) + µ2
θm

(x)
�

� µ2
⇤
(x) respectively.

3 Experimental results

3.1 Evaluation metrics and experimental setup

For both classification and regression, we evaluate the negative log likelihood (NLL) which depends
on the predictive uncertainty. NLL is a proper scoring rule and a popular metric for evaluating
predictive uncertainty [49]. For classification we additionally measure classification accuracy and

the Brier score, defined as BS = K�1
PK

k=1

�

t⇤k � p(y = k|x⇤)
�2

where t⇤k = 1 if k = y⇤, and 0
otherwise. For regression problems, we additionally measured the root mean squared error (RMSE).
Unless otherwise specified, we used batch size of 100 and Adam optimizer with fixed learning rate of
0.1 in our experiments. We use the same technique for generating adversarial training examples for
regression problems. Goodfellow et al. [18] used a fixed ✏ for all dimensions; this is unsatisfying
if the input dimensions have different ranges. Hence, in all of our experiments, we set ✏ to 0.01
times the range of the training data along that particular dimension. We used the default weight
initialization in Torch.

3.2 Regression on toy datasets

First, we qualitatively evaluate the performance of the proposed method on a one-dimensional toy
regression dataset. This dataset was used by Hernández-Lobato and Adams [24], and consists of 20
training examples drawn as y = x3 + ✏ where ✏ ⇠ N (0, 32). We used the same architecture as [24].

A commonly used heuristic in practice is to use an ensemble of NNs (trained to minimize MSE),
obtain multiple point predictions and use the empirical variance of the networks’ predictions as an
approximate measure of uncertainty. We demonstrate that this is inferior to learning the variance by
training using NLL.5 The results are shown in Figure 1.

The results clearly demonstrate that (i) learning variance and training using a scoring rule (NLL) leads
to improved predictive uncertainty and (ii) ensemble combination improves performance, especially
as we move farther from the observed training data.

3.3 Regression on real world datasets

In our next experiment, we compare our method to state-of-the-art methods for predictive uncertainty
estimation using NNs on regression tasks. We use the experimental setup proposed by Hernández-
Lobato and Adams [24] for evaluating probabilistic backpropagation (PBP), which was also used

5See also Appendix A.2 for calibration results on a real world dataset.
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Figure 1: Results on a toy regression task: x-axis denotes x. On the y-axis, the blue line is the ground
truth curve, the red dots are observed noisy training data points and the gray lines correspond to
the predicted mean along with three standard deviations. Left most plot corresponds to empirical
variance of 5 networks trained using MSE, second plot shows the effect of training using NLL using
a single net, third plot shows the additional effect of adversarial training, and final plot shows the
effect of using an ensemble of 5 networks respectively.

by Gal and Ghahramani [15] to evaluate MC-dropout.6 Each dataset is split into 20 train-test folds,
except for the protein dataset which uses 5 folds and the Year Prediction MSD dataset which uses
a single train-test split. We use the identical network architecture: 1-hidden layer NN with ReLU
nonlinearity [45], containing 50 hidden units for smaller datasets and 100 hidden units for the larger
protein and Year Prediction MSD datasets. We trained for 40 epochs; we refer to [24] for further
details about the datasets and the experimental protocol. We used 5 networks in our ensemble. Our
results are shown in Table 1, along with the PBP and MC-dropout results reported in their respective
papers.

Datasets RMSE NLL
PBP MC-dropout Deep Ensembles PBP MC-dropout Deep Ensembles

Boston housing 3.01 ± 0.18 2.97 ± 0.85 3.28 ± 1.00 2.57 ± 0.09 2.46 ± 0.25 2.41 ± 0.25
Concrete 5.67 ± 0.09 5.23 ± 0.53 6.03 ± 0.58 3.16 ± 0.02 3.04 ± 0.09 3.06 ± 0.18
Energy 1.80 ± 0.05 1.66 ± 0.19 2.09 ± 0.29 2.04 ± 0.02 1.99 ± 0.09 1.38 ± 0.22
Kin8nm 0.10 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 -0.90 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02
Naval propulsion plant 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 -3.73 ± 0.01 -3.80 ± 0.05 -5.63 ± 0.05
Power plant 4.12 ± 0.03 4.02 ± 0.18 4.11 ± 0.17 2.84 ± 0.01 2.80 ± 0.05 2.79 ± 0.04
Protein 4.73 ± 0.01 4.36 ± 0.04 4.71 ± 0.06 2.97 ± 0.00 2.89 ± 0.01 2.83 ± 0.02
Wine 0.64 ± 0.01 0.62 ± 0.04 0.64 ± 0.04 0.97 ± 0.01 0.93 ± 0.06 0.94 ± 0.12
Yacht 1.02 ± 0.05 1.11 ± 0.38 1.58 ± 0.48 1.63 ± 0.02 1.55 ± 0.12 1.18 ± 0.21
Year Prediction MSD 8.88 ± NA 8.85 ± NA 8.89 ± NA 3.60 ± NA 3.59 ± NA 3.35 ± NA

Table 1: Results on regression benchmark datasets comparing RMSE and NLL. See Table 2 for
results on variants of our method.

We observe that our method outperforms (or is competitive with) existing methods in terms of NLL.
On some datasets, we observe that our method is slightly worse in terms of RMSE. We believe that
this is due to the fact that our method optimizes for NLL (which captures predictive uncertainty)
instead of MSE. Table 2 in Appendix A.1 reports additional results on variants of our method,
demonstrating the advantage of using an ensemble as well as learning variance.

3.4 Classification on MNIST, SVHN and ImageNet

Next we evaluate the performance on classification tasks using MNIST and SVHN datasets. Our goal
is not to achieve the state-of-the-art performance on these problems, but rather to evaluate the effect
of adversarial training as well as the number of networks in the ensemble. To verify if adversarial
training helps, we also include a baseline which picks a random signed vector. For MNIST, we used
an MLP with 3-hidden layers with 200 hidden units per layer and ReLU non-linearities with batch
normalization. For MC-dropout, we added dropout after each non-linearity with 0.1 as the dropout
rate.7 Results are shown in Figure 2(a). We observe that adversarial training and increasing the
number of networks in the ensemble significantly improve performance in terms of both classification
accuracy as well as NLL and Brier score, illustrating that our method produces well-calibrated
uncertainty estimates. Adversarial training leads to better performance than augmenting with random
direction. Our method also performs much better than MC-dropout in terms of all the performance
measures. Note that augmenting the training dataset with invariances (such as random crop and
horizontal flips) is complementary to adversarial training and can potentially improve performance.

6We do not compare to VI [19] as PBP and MC-dropout outperform VI on these benchmarks.
7We also tried dropout rate of 0.5, but that performed worse.

6



0 5 10 15
1umEer Rf nets

1.0

1.2

1.4

1.6

1.8
ClassLfLcatLRn ErrRr

EnsemEle

EnsemEle + 5

EnsemEle + AT

0C drRSRut

0 5 10 15
1umEer Rf nets

0.02

0.04

0.06

0.08

0.10

0.12

0.14
1LL

EnsemEle

EnsemEle + 5

EnsemEle + AT

0C drRSRut

0 5 10 15
1umEer Rf nets

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030
BrLer 6cRre

EnsemEle

EnsemEle + 5

EnsemEle + AT

0C drRSRut

(a) MNIST dataset using 3-layer MLP
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Figure 2: Evaluating predictive uncertainty as a function of ensemble size M (number of networks
in the ensemble or the number of MC-dropout samples): Ensemble variants significantly outperform
MC-dropout performance with the corresponding M in terms of all 3 metrics. Adversarial training
improves results for MNIST for all M and SVHN when M = 1, but the effect drops as M increases.

To measure the sensitivity of the results to the choice of network architecture, we experimented
with a two-layer MLP as well as a convolutional NN; we observed qualitatively similar results; see
Appendix B.1 in the supplementary material for details.

We also report results on the SVHN dataset using an VGG-style convolutional NN.8 The results are
in Figure 2(b). Ensembles outperform MC dropout. Adversarial training helps slightly for M = 1,
however the effect drops as the number of networks in the ensemble increases. If the classes are
well-separated, adversarial training might not change the classification boundary significantly. It is
not clear if this is the case here, further investigation is required.

Finally, we evaluate on the ImageNet (ILSVRC-2012) dataset [51] using the inception network [56].
Due to computational constraints, we only evaluate the effect of ensembles on this dataset. The
results on ImageNet (single-crop evaluation) are shown in Table 4. We observe that as M increases,
both the accuracy and the quality of predictive uncertainty improve significantly.

Another advantage of using an ensemble is that it enables us to easily identify training examples
where the individual networks disagree or agree the most. This disagreement9 provides another
useful qualitative way to evaluate predictive uncertainty. Figures 10 and 11 in Appendix B.2 report
qualitative evaluation of predictive uncertainty on the MNIST dataset.

3.5 Uncertainty evaluation: test examples from known vs unknown classes

In the final experiment, we evaluate uncertainty on out-of-distribution examples from unseen classes.
Overconfident predictions on unseen classes pose a challenge for reliable deployment of deep learning
models in real world applications. We would like the predictions to exhibit higher uncertainty when
the test data is very different from the training data. To test if the proposed method possesses this
desirable property, we train a MLP on the standard MNIST train/test split using the same architecture
as before. However, in addition to the regular test set with known classes, we also evaluate it on a
test set containing unknown classes. We used the test split of the NotMNIST10 dataset. The images
in this dataset have the same size as MNIST, however the labels are alphabets instead of digits. We
do not have access to the true conditional probabilities, but we expect the predictions to be closer
to uniform on unseen classes compared to the known classes where the predictive probabilities
should concentrate on the true targets. We evaluate the entropy of the predictive distribution and
use this to evaluate the quality of the uncertainty estimates. The results are shown in Figure 3(a).
For known classes (top row), both our method and MC-dropout have low entropy as expected. For
unknown classes (bottom row), as M increases, the entropy of deep ensembles increases much faster
than MC-dropout indicating that our method is better suited for handling unseen test examples. In
particular, MC-dropout seems to give high confidence predictions for some of the test examples, as
evidenced by the mode around 0 even for unseen classes. Such overconfident wrong predictions can
be problematic in practice when tested on a mixture of known and unknown classes, as we will see in
Section 3.6. Comparing different variants of our method, the mode for adversarial training increases
slightly faster than the mode for vanilla ensembles indicating that adversarial training is beneficial

8The architecture is similar to the one described in http://torch.ch/blog/2015/07/30/cifar.html.
9More precisely, we define disagreement as

P
M

m=1
KL(pθm(y|x)||pE(y|x)) where KL denotes the

Kullback-Leibler divergence and pE(y|x) = M−1
P

m
pθm(y|x) is the prediction of the ensemble.

10Available at http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
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for quantifying uncertainty on unseen classes. We qualitatively evaluate results in Figures 12(a)
and 12(b) in Appendix B.2. Figure 12(a) shows that the ensemble agreement is highest for letter ‘I’
which resembles 1 in the MNIST training dataset, and that the ensemble disagreement is higher for
examples visually different from the MNIST training dataset.
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(a) MNIST-NotMNIST
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(b) SVHN-CIFAR10

Figure 3: : Histogram of the predictive entropy on test examples from known classes (top row) and
unknown classes (bottom row), as we vary ensemble size M .

We ran a similar experiment, training on SVHN and testing on CIFAR-10 [31] test set; both datasets
contain 32⇥ 32⇥ 3 images, however SVHN contains images of digits whereas CIFAR-10 contains
images of object categories. The results are shown in Figure 3(b). As in the MNIST-NotMNIST
experiment, we observe that MC-dropout produces over-confident predictions on unseen examples,
whereas our method produces higher uncertainty on unseen classes.

Finally, we test on ImageNet by splitting the training set by categories. We split the dataset into
images of dogs (known classes) and non-dogs (unknown classes), following Vinyals et al. [58] who
proposed this setup for a different task. Figure 5 shows the histogram of the predictive entropy as
well as the maximum predicted probability (i.e. confidence in the predicted class). We observe that
the predictive uncertainty improves on unseen classes, as the ensemble size increases.

3.6 Accuracy as a function of confidence

In practical applications, it is highly desirable for a system to avoid overconfident, incorrect predictions
and fail gracefully. To evaluate the usefulness of predictive uncertainty for decision making, we
consider a task where the model is evaluated only on cases where the model’s confidence is above an
user-specified threshold. If the confidence estimates are well-calibrated, one can trust the model’s
predictions when the reported confidence is high and resort to a different solution (e.g. use human in
a loop, or use prediction from a simpler model) when the model is not confident.

We re-use the results from the experiment in the previous section where we trained a network on
MNIST and test it on a mix of test examples from MNIST (known classes) and NotMNIST (unknown

M Top-1 error Top-5 error NLL Brier Score

% % ⇥10�3

1 22.166 6.129 0.959 0.317
2 20.462 5.274 0.867 0.294
3 19.709 4.955 0.836 0.286
4 19.334 4.723 0.818 0.282
5 19.104 4.637 0.809 0.280
6 18.986 4.532 0.803 0.278
7 18.860 4.485 0.797 0.277
8 18.771 4.430 0.794 0.276
9 18.728 4.373 0.791 0.276

10 18.675 4.364 0.789 0.275

Figure 4: Results on ImageNet: Deep
Ensembles lead to lower classification
error as well as better predictive uncer-
tainty as evidenced by lower NLL and
Brier score.

Figure 5: ImageNet trained only on dogs: Histogram of the
predictive entropy (left) and maximum predicted probabil-
ity (right) on test examples from known classes (dogs) and
unknown classes (non-dogs), as we vary the ensemble size.
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Figure 6: Accuracy vs Confidence curves: Networks trained on MNIST and tested on both MNIST
test containing known classes and the NotMNIST dataset containing unseen classes. MC-dropout can
produce overconfident wrong predictions, whereas deep ensembles are significantly more robust.

classes). The network will produce incorrect predictions on out-of-distribution examples, however we
would like these predictions to have low confidence. Given the prediction p(y = k|x), we define the
predicted label as ŷ = argmaxk p(y = k|x), and the confidence as p(y = ŷ|x) = maxk p(y = k|x).
We filter out test examples, corresponding to a particular confidence threshold 0  ⌧  1 and plot the
accuracy for this threshold. The confidence vs accuracy results are shown in Figure 6. If we look at
cases only where the confidence is � 90%, we expect higher accuracy than cases where confidence
� 80%, hence the curve should be monotonically increasing. If the application demands an accuracy
x%, we can trust the model only in cases where the confidence is greater than the corresponding
threshold. Hence, we can compare accuracy of the models for a desired confidence threshold of the
application. MC-dropout can produce overconfident wrong predictions as evidenced by low accuracy
even for high values of ⌧ , whereas deep ensembles are significantly more robust.

4 Discussion

We have proposed a simple and scalable non-Bayesian solution that provides a very strong baseline
on evaluation metrics for predictive uncertainty quantification. Intuitively, our method captures two
sources of uncertainty. Training a probabilistic NN pθ(y|x) using proper scoring rules as training
objectives captures ambiguity in targets y for a given x. In addition, our method uses a combination
of ensembles (which captures “model uncertainty” by averaging predictions over multiple models
consistent with the training data), and adversarial training (which encourages local smoothness),
for robustness to model misspecification and out-of-distribution examples. Ensembles, even for
M = 5, significantly improve uncertainty quality in all the cases. Adversarial training helps on
some datasets for some metrics and is not strictly necessary in all cases. Our method requires very
little hyperparameter tuning and is well suited for large scale distributed computation and can be
readily implemented for a wide variety of architectures such as MLPs, CNNs, etc including those
which do not use dropout e.g. residual networks [22]. It is perhaps surprising to the Bayesian deep
learning community that a non-Bayesian (yet probabilistic) approach can perform as well as Bayesian
NNs. We hope that our work will encourage the community to consider non-Bayesian approaches
(such as ensembles) and other interesting evaluation metrics for predictive uncertainty. Concurrent
with our work, Hendrycks and Gimpel [23] and Guo et al. [20] have also independently shown that
non-Bayesian solutions can produce good predictive uncertainty estimates on some tasks. Abbasi
and Gagné [1], Tramèr et al. [57] have also explored ensemble-based solutions to tackle adversarial
examples, a particularly hard case of out-of-distribution examples.

There are several avenues for future work. We focused on training independent networks as training
can be trivially parallelized. Explicitly de-correlating networks’ predictions, e.g. as in [37], might
promote ensemble diversity and improve performance even further. Optimizing the ensemble weights,
as in stacking [60] or adaptive mixture of experts [28], can further improve the performance. The
ensemble has M times more parameters than a single network; for memory-constrained applications,
the ensemble can be distilled into a simpler model [10, 26]. It would be also interesting to investigate
so-called implicit ensembles the where ensemble members share parameters, e.g. using multiple
heads [36, 48], snapshot ensembles [27] or swapout [52].
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