Simple ant routing algorithm strategies for a (Multipurpose) MANET model

Fernando Correia, Teresa Vazao

Portuguese Naval Academy, Inesc-ID and Instituto Superior Tecnico, Lisboa, Portugal Inesc-ID and Instituto Superior Tecnico, Lisboa, Portugal

Ad Hoc Networks (2010)

Outline

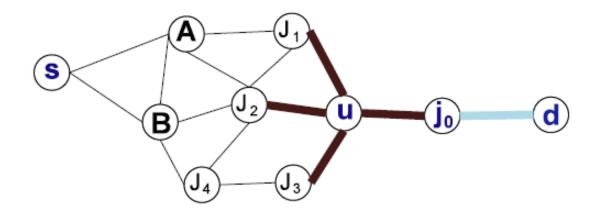
- Introduction
- SARA architecture
 - Route discovery
 - Route maintenance
 - Route selection
 - Route repair
- Simulation
- Conclusions

Introduction

- Ant colony optimization
 - Real ants can converge on the shortest path that connects their nest to a source of food.

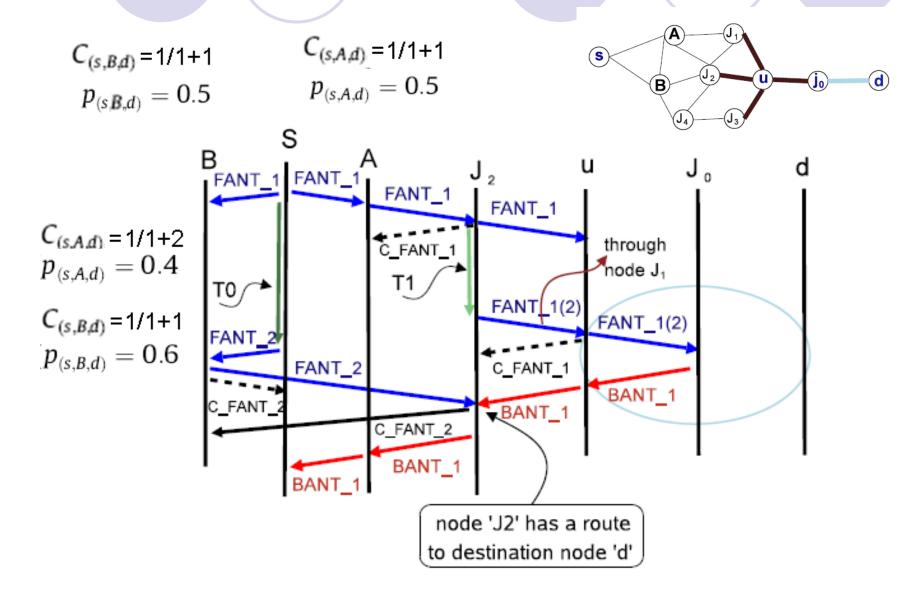
While moving, the ants deposit the "pheromones" and tend to follow the paths with the highest intensity of pheromones

- In the traditional ACO
 - The source node starts a route discovery process by sending Forward ANT (FANT) packet
 - The destination node will send another packet back, the Backward ANT (BANT)
- CNB (controlled neighbor broadcast)
 - Each node broadcasts the FANT to all of its neighbors, but only one of them broadcasts the FANT again
 - The policy used is to select different nodes each time a FANT is generated using a probabilistic approach.


The probability

$$\forall j_i \in Adj[u], \exists p_{(u,j_i,d)}:$$

$$p_{(u,j_i,d)} = \frac{C_{(u,j_i,d)}}{\sum_{k=0}^{k=M} C_{(u,j_k,d)}} \wedge C_{(u,j_i,d)} = \frac{1}{1+n},$$


n is number of times the link was selected

M is the number of adjacencies of node u

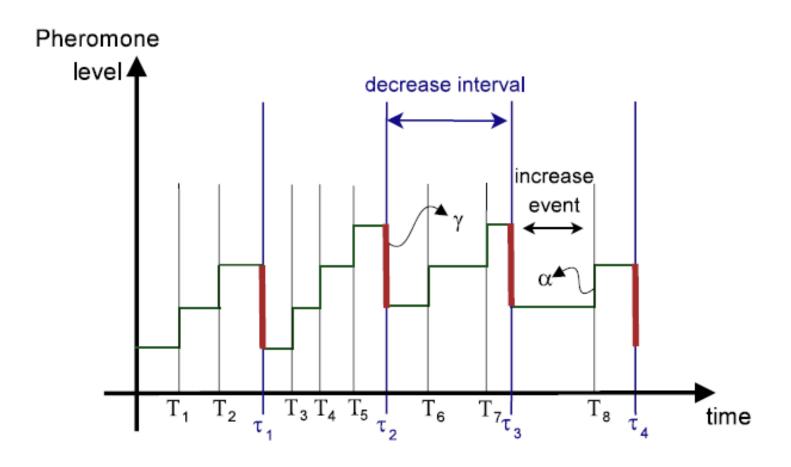
- Two timers
 - Route discovery confirmation timer (T0)
 - The timer is initiated by the source node
 - If the timer ends and the source node does not have a route to the destination, a new FANT is created
 - FANT confirmation timer (T1)
 - The timer is initiated by all network nodes which are responsible for forwarding the FANT
 - The timer is cancelled upon the reception of an acknowledgment packet (C_FANT_n) sent by the next forwarding node
 - If the timer expired, a copy of the FANT is transmitted.

- When receiving the FANT message, any node with destination route information must generate a BANT
- The FANT message continues traveling in the network until
 - It reaches the destination node
 - The node responsible to forward the FANT has a valid route to the destination node
- All nodes that received the FANT have the responsibility to update the source node route entry, this is used to form the network topology

SARA architecture - route maintenance

- Pheromone level
 - An indicator of the activity and the quality of a link
- Increase pheromone intensity
 - Every packet (data or control) that crosses a link increases the pheromone intensity by α
- Decrease pheromone intensity
 - As time goes, the pheromone level decreases automatically by γ

SARA architecture - route maintenance


Increase

$$\forall pkt(T_i), ph_{(u,j,T_i)} = ph_{(u,j,t)} + \alpha,$$
where:
 $t = T_{i-1}, \quad \text{if } T_{i-1} > \tau_{i-1}$
 $t = \tau_{i-1}, \quad \text{if } T_{i-1} < \tau_{i-1}$

Decrease

$$\forall pkt(\tau_i), \\
ph_{(u,j,\tau_i)} = \begin{cases}
ph_{(u,j,T_i)} - \gamma, & ph_{(u,j,T_i)} > \gamma, \\
0, & ph_{(u,j,T_i)} \leqslant \gamma.
\end{cases}$$

SARA architecture - route maintenance

Fig. 3. Pheromone level evaluation.

SARA architecture - route selection

 The route selection is a probabilistic procedure used to choose the next hop to forward traffic to the destination

$$\forall j_{i} \in Adj[u], \exists p_{(u,j_{i},d)} : p_{(u,j_{i},d)} = \frac{\Phi_{(u,j_{i},d)}}{\sum_{k=0}^{k=M} \Phi_{(u,j_{k},d)}}$$

$$\Phi_{(u,j_{i},d)} = \frac{(ph_{(u,j_{i},d)} + 1)^{F}}{e^{nh_{(j_{i},d)}}}$$

 $nh_{(j_i,d)}$ is the number of hops from node j to destination node d

SARA architecture - route repair

 To detect a broken link, SARA calculates MAX_Tx that indicates maximum transmission attempts

$$NTx_{(u,j,t_i)} = \begin{cases} NTx_{(u,j,t_{i-1})} + \lambda & \text{if unsuccessful} \\ & \text{transmission,} \\ NTx_{(u,j,t_{i-1})} - \delta & \text{if successful} \\ & \text{transmission.} \end{cases}$$

 $NTx_{(u,j,t_i)} > MAX_Tx$.

SARA architecture - route repair

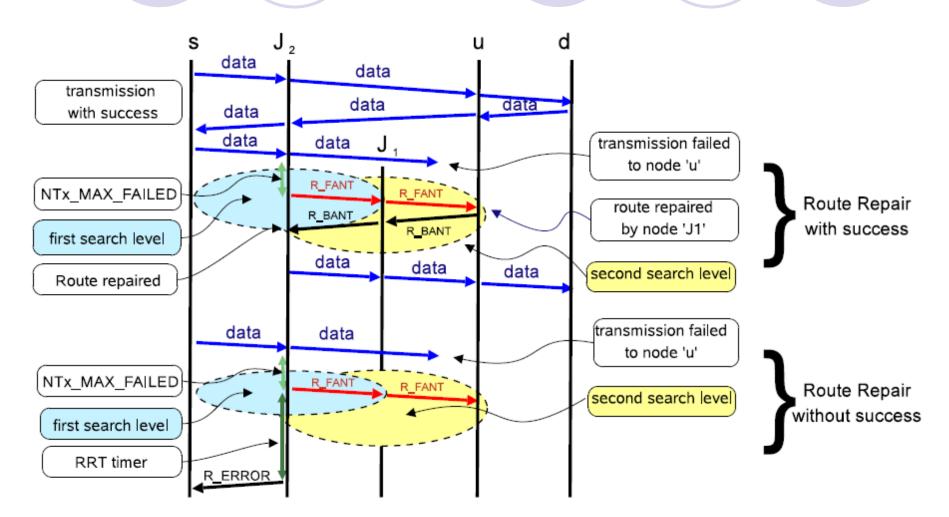
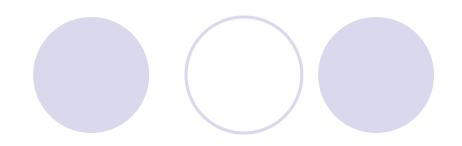
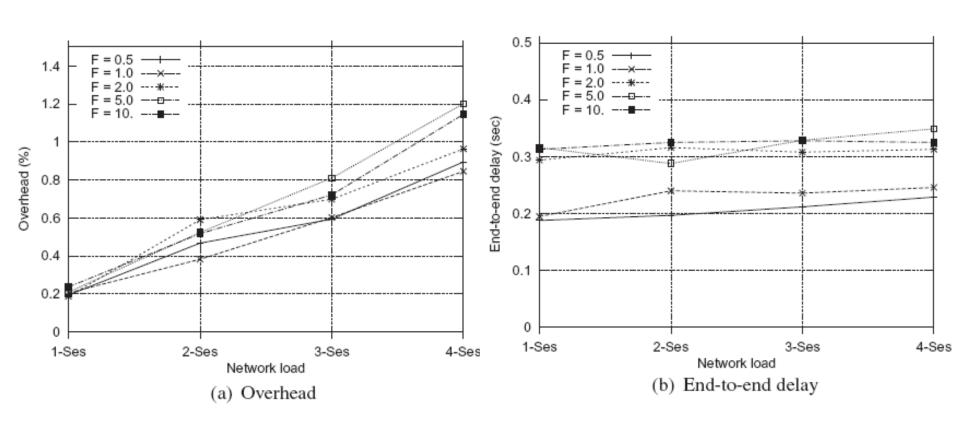


Fig. 4. Route repair procedure.

- Setup
 - The simulations were implemented on NS2
 - Transmission range 100 m
 - Transmission rate 2Mbps
 - 1000 m * 1000 m for 104 nodes
 - Simulation time 60 s

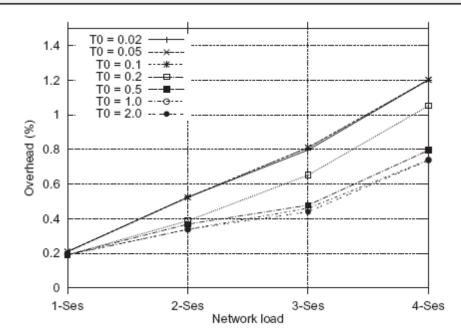

Table 2 SARA's reference values.

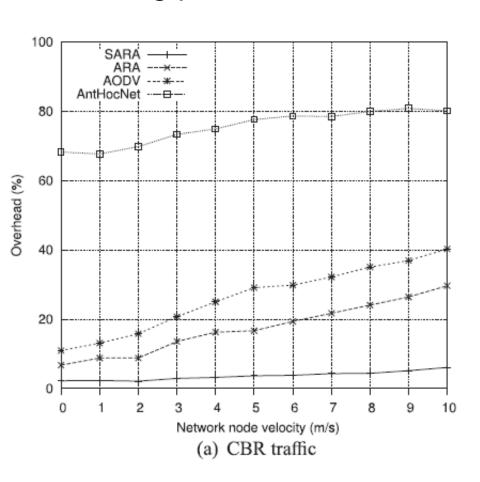

Parameter	Reference value		
F	5		
TO	100 ms		
T1	100 ms		
RRT	100 ms		
τ	1 s		
δ	1.0		
MAX_Tx	5		

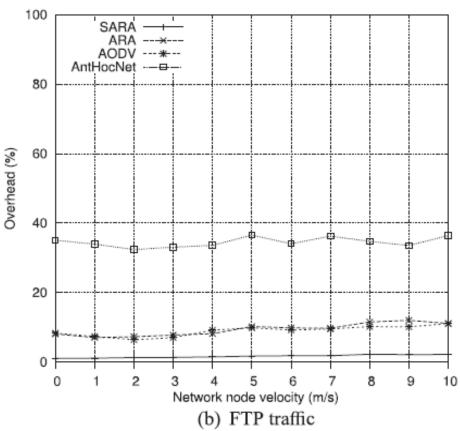
- Convergence factor F
 - It is used by SARA to converge the traffic into one route or to balance the load among multiple routes

Convergence factor (F): number of used routes.

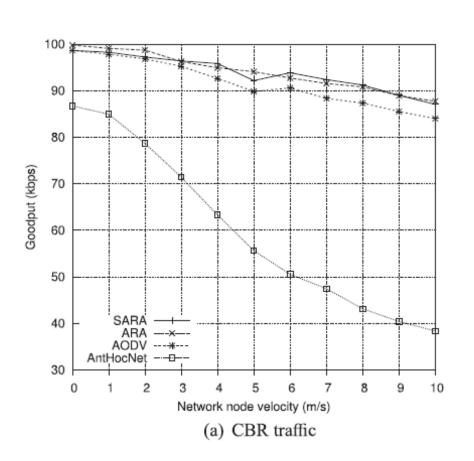
N. sessions	F						
	0.5	1.0	2.0	5.0	10.0		
1	65	32	8	3	2		
2	81	45	21	11	11		
3	134	62	35	18	15		
4	143	80	39	24	24		

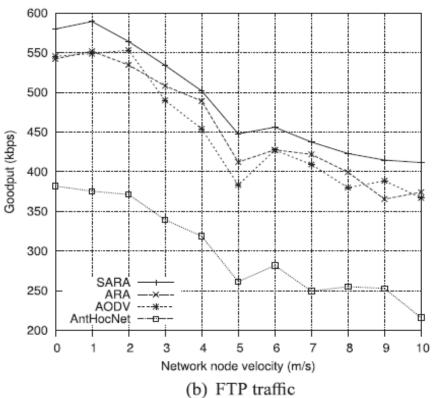





FANT generation rate: number of used routes.

N.sessions	FANT TX rate (T ₀)						
	0.1	0.2	0.5	1	2	5	
1	3	2	2	2	2	2	
2	11	11	11	11	11	11	
3	19	17	16	17	17	16	
4	23	22	21	21	22	23	




Routing protocol overhead

Goodput

Conclusions

- This paper presents an improved version of the ACO framework, that aims at reducing the overhead by using a new route discovery technique (CNB)
- The results show that small values of F are adequate for heavy loaded networks because of more routes enables load balancing and reduces overhead and collisions
- The future work is to develop an algorithm that can dynamically adapt the convergence factor according to network traffic conditions