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Frequency fluctuations of lasers cause a broadening of their line shapes. Although the relation between

the frequency noise spectrum and the laser line shape has been studied extensively, no simple expression

exists to evaluate the laser linewidth for frequency noise spectra that does not follow a power law. We

present a simple approach to this relation with an approximate formula for evaluation of the laser line-

width that can be applied to arbitrary noise spectral densities.

OCIS codes: 140.3425, 140.3430, 140.3460, 120.0120.

1. Introduction

Lasers with a high spectral purity currently find
important applications in frequency metrology, high-
resolution spectroscopy, coherent optical commu-
nications, and atomic physics, to name a few uses.
Advances in investigation and narrowing of laser
linewidth have experienced a remarkable evolution,
yielding techniques that give us unprecedented con-
trol over the optical phase/frequency [1–9]. The spec-
tral properties of such lasers can be conveniently
described either in terms of their optical line shape
and associated linewidth or in terms of the power
spectral density of their frequency noise. Both ap-
proaches are complementary, but the knowledge of
the frequency noise spectral density provides much
more information on the laser noise. A measurement
of the laser linewidth (obtained by heterodyning
with a reference laser source or by self-homodyne/
heterodyne interferometry using a long optical delay
line) is often sufficient in many applications (e.g., in
high-resolution spectroscopy or coherent optical com-
munications). Some experiments, though, require
more complete knowledge of the Fourier distribution
of the laser frequency fluctuations. Knowledge of the
frequency noise spectral density enables one to re-
trieve the laser line shape and, thus, the linewidth

(while the reverse process, i.e., determining the noise
spectral density from the line shape, is not possible),
but this operation is most often not straightforward.

The relation between frequency noise spectral den-
sity and laser linewidth has already been addressed
in many papers dealing with general theoretical con-
siderations or with more or less particular cases. In
one of the earliest papers on this topic, Elliott and
co-workers [10] derived theoretical formulas linking
the frequency noise spectral density to the laser line
shape. They also discussed the different line shapes
obtained in the case of a rectangular noise spectrum
of finite bandwidth in the two extreme conditions
where the ratio of the frequency deviation to the
noise bandwidth is either large (leading to a Gaus-
sian line shape) or small (resulting in a Lorentzian
line shape). Their work was supported by experimen-
tal results showing the transformation of the laser
spectrum from Lorentzian to Gaussian for decreas-
ing noise bandwidth. The ideal case of a pure white
frequency noise spectrum has been extensively re-
ported for a long time (see, for example, [11]), as
it can be fully solved analytically leading to the
well-known Lorentzian line shape described by the
Schawlow–Townes–Henry linewidth [12,13]. How-
ever, the real noise spectrum of a laser is much more
complicated and leads to a nonanalytical line shape
that can be determined only numerically. Lasers are
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generally affected by flicker noise at low frequency,
and this type of noise has been widely studied in
the literature [14–17]. The major feature of this type
of noise is to produce spectral broadening of the la-
ser linewidth compared to the Schawlow–Townes–
Henry limit, but an exact expression of the line shape
cannot be obtained, and different approximations
have been proposed to describe this situation. For ex-
ample, Tourrenc [15] numerically showed the diver-
gence of the linewidth with increasing observation
time in the presence of 1=f -type noise, while Mercer
[16] gave an analytical approximation for this diver-
ging Gaussian linewidth. Stéphan et al. [14] gave a
different approximation of the 1=f -induced Gaussian
contribution to the line shape, with a linewidth that
does not contain any dependency on the observation
time, and Godone et al. [18,19] gave the rf spectra cor-
responding to phase noise spectral densities of arbi-
trary slopes. Finally, some publications also stated
that the combined contribution of white noise
Lorentzian line shape and 1=f -noise Gaussian line
shape resulted in a Voigt profile for the optical line
shape [14,16,20].

In this paper, we present a simple geometric
approach to determine the linewidth of a laser from
its frequency noise spectral density. Our approach
makes use of a simple approximate formula to deter-
mine the linewidth corresponding to an arbitrary
noise spectrum. Starting with the ideal case of a
low-pass filtered white noise of varying cutoff fre-
quency, we show how differently the low- and high-
frequency noise components affect the line shape
and how the linewidth changes with respect to the
noise cutoff frequency. Then, we demonstrate in
which limit conditions the Lorentzian and Gaussian
line shapes generally discussed in former publica-
tions are retrieved. We introduce our simple approx-
imation of the linewidth by showing how the noise
spectrum can be geometrically separated in two
areas with a fully different influence on the line
shape. Only one of these spectral areas contributes
to the linewidth, the remaining part of the spectrum
influencing only the wings of the line shape. The
main benefit of our work is to make a simple link be-
tween the frequency noise spectrum of a laser and its
linewidth, without any assumption on the noise spec-
tral distribution. By showing how some spectral com-
ponents of the noise determine the linewidth while
others affect only the wings of the line shape, we pro-
vide a simple geometric criterion to determine those
spectral components that contribute to the linewidth.
As a result, a simple formula is reported to calculate
the linewidth of a laser for an arbitrary frequency
noise spectrum, i.e., this expression is applicable to
any type of frequency noise and is thus not restricted
to the ideal cases of white noise and flicker noise
usually considered.

Before introducing our approach, we give a brief
reminder of the important theoretical steps enabling
the linking of the frequency noise spectrum of a laser
and its line shape. A detailed theoretical description

can be found in [10,15,16]. Given the frequency noise
spectral density Sδνðf Þ (we consider single-sided
spectral densities throughout this article) of the laser
light field EðtÞ ¼ E0 exp½ið2πν0tþ ϕðtÞÞ� (complex re-
presentation), one can calculate the autocorrelation
function ΓEðτÞ ¼

�E�ðtÞEðtþ τÞ as follows:

ΓEðτÞ ¼ E2

0
ei2πν0τe

−2

R

∞

0
Sδνðf Þ

sin2ðπf τÞ

f2
df
; ð1Þ

where δν ¼ ν − ν0 is the laser frequency deviation
around its average value ν0. According to the
Wiener–Khintchine theorem, the laser line shape
is given by the Fourier transform of the autocorrela-
tion function

SEðνÞ ¼ 2

Z

∞

−∞

e−i2πντΓEðτÞdτ: ð2Þ

Unfortunately, this general formula most often can-
not be analytically integrated, except for the trivial
case of white frequency noise Sδνðf Þ ¼ h0 (with h0

given in Hz2=Hz) that leads to the well-known
Lorentzian line shape with a full width at half-
maximum FWHM ¼ πh0 [10,15,16].

In the following, we will start by studying the case
of a low-pass filtered white frequency noise. This will
lead us to establish a simple approximate formula of
the linewidth of a real laser from its frequency noise
spectrum. Finally, we will apply this formula to
different situations that are of practical interest to
experimentalists and in which frequency noise is
important.

2. Laser Spectrum in the Case of a Low-Pass Filtered

White Frequency Noise

As an introduction to the derivation of our approxi-
mate expression of the laser linewidth, let us first
consider a frequency noise spectral density that
has a constant level h0ðHz2=HzÞ below a cutoff fre-
quency f c and that drops to zero above this threshold:

Sδνðf Þ ¼

�

h0 if f ≤ f c
0 if f > f c

: ð3Þ

In this simple case, it is possible to evaluate analy-
tically the integral in Eq. (1) and obtain the following
expression for the autocorrelation function:

ΓEðτÞ ¼ E2

0
ei2πν0τe2

h0
f c
ðsin2ðπf cτÞ−πf cτSið2πf cτÞÞ; ð4Þ

where SiðxÞ ¼
R

x
0
sinðtÞ=tdt is the sine integral func-

tion. On the other hand, most often, it is not possible
to obtain an analytical expression for the Fourier
transform in Eq. (2), and, therefore, the laser line
shape must be evaluated numerically. An analytical
expression of the line shape is, however, calculable
in the two extreme conditions in which f c → ∞ and
f c → 0:
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• When f c → ∞:

SEðνÞ ¼ E2

0

h0

ðν − ν0Þ
2 þ ðπh0=2Þ

2
; ð5Þ

and the line shape is Lorentzian with a width
FWHM ¼ πh0 (this corresponds to the white noise
previously mentioned).

• When f c → 0:

SEðνÞ ¼ E2

0

�

2

πh0f c

�

1=2

e
−
ðν−ν0Þ

2

2h0 f c ; ð6Þ

and the line shape is Gaussian with a width
FWHM ¼ ð8 lnð2Þh0f cÞ

1=2 that depends on the cutoff
frequency f c.

For a fixed frequency noise level h0, it is interesting
to numerically study the evolution of the laser line
shape as a function of the cutoff frequency f c between
these two extreme cases. The result is shown in Fig. 1
for h0 ¼ 1Hz2=Hz. According to Eqs. (5) and (6), one
observes that when f c ≪ h0, the line shape is Gaus-
sian and the linewidth increases with f c. However,
when f c ≫ h0, the line shape becomes Lorentzian
and the linewidth stops to increase (it will be shown
later that the noise at high Fourier frequencies con-
tributes only to the wings of the line shape). In order
to explore the transition between these two regimes,
we numerically calculated the linewidth as a func-
tion of the cutoff frequency f c, and the results are pre-
sented in Fig. 2. We found that a good approximation
valid for any f c is given by the following expression:

FWHM ¼ h0

ð8 lnð2Þf c=h0Þ
1=2

�

1þ

�

8 lnð2Þ

π2
f c
h0

�

2
�

1=4
; ð7Þ

with a relative error smaller than 4% over the entire
range of the cutoff frequency f c, as shown in the lower

graph of Fig. 2. The corner frequency corresponding
to the transition between the two regimes is situated
at the intersection of the two asymptotes shown in
the upper graph of Fig. 2 and is given by

f �c ¼
π2

8 lnð2Þ
h0 ≈ 1:78h0: ð8Þ

3. Simple Formula to Estimate the Laser Linewidth

The example of the low-pass filtered white noise
shows that the frequency noise spectrum can be se-
parated into two regions that affect the line shape in
a radically different way. In the first region, defined
by Sδνðf Þ > 8 lnð2Þf =π2, the noise contributes to the
central part of the line shape, which is Gaussian,
and thus to the laser linewidth. In the second region,
defined by Sδνðf Þ < 8 lnð2Þf =π2, the noise contributes
mainly to the wings of the line shape but does not
affect the linewidth. The striking difference between
the noise effects in these two regions can be under-
stood in terms of frequency modulation theory. In
the first region, the noise level is high compared to
its Fourier frequency, therefore it produces a slow fre-
quency modulation with a high modulation index
[21] β > 1. Conversely, in the second region, the noise
level is small compared to its Fourier frequency, and,
accordingly, the modulation index β is small, which
means that the modulation is too fast to have a sig-
nificant effect on the laser linewidth. In the rest of
this article, the line separating these two regions will

Fig. 1. (Color online) Numerical calculation of the laser line

shape SEðδνÞ for a fixed frequency noise level h0 ¼ 1Hz2=Hz and

different values of the cutoff frequency: a, f c ¼ 0:03Hz; b,

f c ¼ 0:3Hz; c, f c ¼ 3Hz; and d, f c ¼ 30Hz. The line shapes are nor-

malized to help the comparison of their full width at half-

maximum (FWHM). The line shape evolves from a Gaussian when

f c ≪ h0 and to a Lorentzian when f c ≫ h0.

Fig. 2. (Color online) Upper graph: Numerical computation show-

ing the evolution of the linewidth (FWHM) with the cutoff fre-

quency f c in the case of low-pass filtered white noise. The dots

have been calculated by numerical integration of the exact rela-

tions Eqs. (1) and (2). The continuous line is given by our approx-

imate formula Eq. (7). Both horizontal and vertical scales have

been normalized to the noise level h0. The behavior at low and high

cutoff frequencies is indicated by the asymptotic response (red

dashed lines). Lower graph: Relative error between the exact

and approximate values.
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be called the β-separation line. These observations
are summarized in Fig. 3, where a typical laser fre-
quency noise spectral density is represented. A care-
ful inspection of Eqs. (1) and (2) shows that the low
frequency approximation given in Eq. (6) can be ex-
tended to arbitrary noise spectra. Indeed, noise com-
ponents in the high modulation index area with a
spectral density higher than their Fourier frequency
(Sδνðf Þ > f ) give rise to Gaussian autocorrelation
functions, which are multiplied together and then
Fourier transformed to give the laser line shape. As
a result, the line shape is a Gaussian function whose
variance is the sum of the contributions of all high
modulation index noise components. Therefore, one
can obtain a good approximation of the laser line-
width by the following simple expression:

FWHM ¼ ð8 lnð2ÞAÞ1=2; ð9Þ

where A is the surface of the high modulation index
area, i.e., the overall surface under the portions of
Sδνðf Þ that exceed the β-separation line (see Fig. 3)

A ¼

Z

∞

1=To

HðSδνðf Þ − 8 lnð2Þf =π2ÞSδνðf Þdf ; ð10Þ

with HðxÞ being the Heaviside unit step function
(HðxÞ ¼ 1 if x ≥ 0 and HðxÞ ¼ 0 if x < 0) and To being
the measurement time that prevents the observation
of low frequencies below 1=To. This low frequency
limit can be set to zero when the area in Eq. (10) does
not show low frequency divergence. However, this is
not the case in the presence of flicker noise, for which
the measurement time plays an important role, as
will be shown in the next section.

4. Application 1: Laser Spectrum in the Case of

Flicker Frequency Noise

As a first application of our approach, let us consider
the case of a laser suffering from pure flicker noise,
i.e., Sδνðf Þ ¼ af −α, with 1 ≤ α ≤ 2. For the sake of
clarity, let us write the parameter a in terms of the
frequency fm at which Sδν intersects the β-separation
line, i.e., a ¼ 8 lnð2Þf αþ1

m =π2. This allows a dimension-
less representation of the flicker noise model

Sδνðf Þ

fm
¼

8 lnð2Þ

π2

�

f

fm

�

−α

; ð11Þ

as illustrated in Fig. 4. As mentioned in the previous
section, the linewidth is a function of the observation
time To, and one can evaluate this dependence using
the approximate formulas, Eqs. (9) and (10). After
integrating Eq. (10), one obtains for α ¼ 1

FWHM ¼ fm
8 lnð2Þ

π
½lnðfmToÞ�

1=2; ð12Þ

and for α > 1,

FWHM ¼ fm
8 lnð2Þ

π

�

ðfmToÞ
α−1

− 1

α − 1

�

1=2

: ð13Þ

In order to check the validity of these approximate
formulas, we integrated numerically the exact rela-
tion given by Eqs. (1) and (2) to obtain the line shape
for different values of the exponent α of the flicker
noise (α ¼ 1, 1.2, 1.5, 1.7, and 2.0), from which we
calculated the linewidth (FWHM). The numerical re-
sults superposed to the approximate values given by
Eqs. (12) and (13) are presented in Fig. 5. They show
a good agreement, the error being smaller than 10%
as long as Tofm > 5. Note that the discrepancy ap-
pears when the lower bound 1=To approaches fm.
This behavior was expected because the transition
between high and low modulation index areas is pro-
gressive and thus can lead to deviations from the ap-
proximations given in Eqs. (9) and (10). More details
on this intermediate regime will be given in the next

Fig. 3. (Color online) A typical laser frequency noise spectral den-

sity composed of flicker noise at low frequencies and white noise at

high frequencies. The dashed line given by Sδνðf Þ ¼ 8 lnð2Þf =π2 se-
parates the spectrum into two regions whose contributions to the

laser line shape is very different: the high modulation index area

contributes to the linewidth, whereas the low modulation index

area contributes only to the wings of the line shape (see the text

for details).

Fig. 4. (Color online) Pure flicker frequency noise model of

Eq. (11) with α ¼ 1, 1.2, 1.5, 1.7, and 2.0. The axes are normalized

with respect to the frequency fm, at which Sδν intersects the

β-separation line.
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section. As a final remark, let us discuss the rele-
vance of this pure flicker noise model. Although this
case may seem far from the frequency noise spectrum
of a real laser, which has a white noise background at
high Fourier frequencies, we should stress that the
frequency noise below the β-separation line does
not contribute to the linewidth but only to the wings
of the line shape. As a consequence, our pure flicker
noise model applies to any laser having flicker noise
above the β-separation line, whatever the noise in
the low modulation index area is.

5. Application 2: Laser Linewidth Reduction

In this section, we discuss the process of laser line-
width reduction by applying our approach to a sim-
plifed laser frequency noise model that still keeps
the main features of the problem. In this model, a
free-running laser with a constant frequency noise le-
vel hb (Hz2=Hz) is considered, andwe assume that the
frequency noise is reduced to another constant level
ha with a servo loop of bandwidth f b. The resulting
frequency noise spectral density is given by Sδνðf Þ ¼
ha if f < f b and Sδνðf Þ ¼ hb if f ≥ f b, as illustrated in
Fig. 6. Notice that this simplified noise model may
also result from a laser showing initial flicker noise
in free-running mode if the servo loop contains an in-
tegral part that reduces the flicker noise at low
frequencies. With this model, it is interesting to cal-
culate the evolution of the laser line shape and
linewidth with the servo-loop bandwidth. One can
evaluateEq. (1) to obtain the autocorrelation function

ΓEðτÞ ¼ E2

0
ei2πν0τe

−hbπ
2jτj−

ha−hb
f b

�

ωbτSiðωbτÞ−2 sin
2

�

ωbτ

2

��

;

ð14Þ

where ωb ¼ 2πf b, and SiðxÞ is the sine integral func-
tion. Because the Fourier transform of this autocorre-
lation function is difficult to solve analytically, we
evaluated the laser line shape numerically and then
deduced the linewidth (FWHM). The results are pre-

sented in Figs. 7 and 8.We observe that the laser line-
width tends toward πhb when the bandwidth f b tends
toward zero.This canbeunderstoodbecause thenoise
spectrum tends toward a white-type noise of spectral
density hb, leading to a Lorentzian profile of width
πhb. On the other hand, the linewidth drops down
to πha when the bandwidth f b tends toward infinity,
since in this case, the noise spectrum approaches a
white-type noise of spectral density ha. In Fig. 7, we
reported with a dashed line the linewidth obtained
with our approximate formula Eqs. (9) and (10),
and the agreement with the results of the numerical
integration is good, exceptwhen the value of the servo
bandwidth is between ha and hb. In order to under-
stand the origin of this discrepancy, we reported in
Fig. 8 the laser line shape for four particular values
of the bandwidth. We observe that the line shape
changes considerably in this range: the servo loop

Fig. 5. (Color online) Evolution of the laser linewidth with re-

spect to the measurement time in the case of a frequency noise

spectrum composed of flicker noise as shown in Fig. 4. The dots

have been obtained by numerical integration of the exact relation

between the frequency noise and the line shape given by Eqs. (1)

and (2). The red lines are the values given by the approximate

formulas Eqs. (12) and (13).

Fig. 6. (Color online) Frequency noise model used to study laser

linewidth reduction using a servo loop. We assume that the free-

running laser noise level hb ¼ 1000Hz2=Hz is reduced to ha ¼
100Hz2=Hz with a servo loop having a bandwidth f b of a,

100Hz; b, 300Hz; c, 500Hz; and d, 1500Hz. The dashed line re-

presents the β-separation line. The minimum servo-loop band-

width necessary to efficiently reduce the laser linewidth is

fmin
b ¼ π2hb=ð8 lnð2ÞÞ.

Fig. 7. (Color online) Evolution of the laser linewidth (FWHM)

with the servo-loop bandwidth f b for the frequency noise model

presented in Fig. 6. Special values of the servo bandwidth, for

which the line shape is represented in Fig. 8, are indicated by

the following points: a, f b ¼ 100Hz; b, f b ¼ 300Hz; c, f b ¼ 500Hz;

and d, f b ¼ 1500Hz. The continuous line has been obtained by nu-

merical integration of the exact relation Eqs. (1) and (2), and the

dashed line has been obtained with our approximate formula Eqs.

(9) and (10).
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repels the frequency noise from the center, and, as a
consequence, two sidebands appear outside of the ser-
vo bandwidth, i.e., at δν > f b, while the central part
strongly narrows and becomes Lorentzian. Because
of this radical change of line shape, the different line-
widths at half-maximumare not similar in this range,
and comparison with the Gaussian linewidth approx-
imation Eqs. (9) and (10) loses its significance, which
explains the observed discrepancy. Nevertheless, our
approximate formula is able to predict the minimum
servo-loop bandwidth necessary to efficiently reduce

the laser linewidth, which is given by fmin
b ¼ π2hb=

ð8 lnð2ÞÞ. It depends on the free-running laser noise
level hb and corresponds to the situation in which
the noise level hb is entirely below the β-separation
line for frequencies outside of the servo bandwidth

(see Fig. 6). As a consequence, when f b > fmin
b , only

the low frequency part with noise level ha is above
the β-separation line and contributes to the laser line-
width, which is given by πha. Note that the final laser
linewidth depends on the noise level ha, and thus on
the servo-loop gain at low frequency, but is indepen-

dent of the servo bandwidth, provided that f b > fmin
b .

6. Conclusion

The study of a low-pass filteredwhite frequency noise
has led us to the establishment of a new and simple
approximation of the relation between frequency
noise and laser linewidth, which is valid for arbitrary
noise spectra.Wehave shownhowthe frequencynoise
spectrum is separated into twoareas corresponding to
highand lowmodulation indexregimes (i.e.,β > 1and
β < 1) by a simple line that we called the β-separation
line. Then, we explainedwhy only those spectral com-
ponents for which the frequency noise is higher than
the β-separation line (thehighmodulation indexarea)
contribute to the linewidth. An approximate value of
the linewidth is simply obtained from the geometrical
surface of the high modulation index area. The appli-
cation of this approach to the case of flicker noise
provides an approximate formula for the linewidth,
showing its dependence to the observation time.

Finally, the use of this approach to the reduction of
the laser linewidth emphasizes some important as-
pects of this problem, such as the minimal required
servo-loop bandwidth and the achievable laser line-
width. Moreover, this last example showed that the
limitations of this simplified approach appear only
when the laser line shape is too complex to be charac-
terized by a mere linewidth.
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