
Simple Black-box Adversarial Attacks

Chuan Guo 1 Jacob R. Gardner 2 Yurong You 1 Andrew Gordon Wilson 1 Kilian Q. Weinberger 1

Abstract

We propose an intriguingly simple method for

the construction of adversarial images in the

black-box setting. In constrast to the white-box

scenario, constructing black-box adversarial im-

ages has the additional constraint on query bud-

get, and efficient attacks remain an open prob-

lem to date. With only the mild assumption of

continuous-valued confidence scores, our highly

query-efficient algorithm utilizes the following

simple iterative principle: we randomly sample a

vector from a predefined orthonormal basis and

either add or subtract it to the target image. De-

spite its simplicity, the proposed method can be

used for both untargeted and targeted attacks –

resulting in previously unprecedented query effi-

ciency in both settings. We demonstrate the effi-

cacy and efficiency of our algorithm on several

real world settings including the Google Cloud

Vision API. We argue that our proposed algorithm

should serve as a strong baseline for future black-

box attacks, in particular because it is extremely

fast and its implementation requires less than 20

lines of PyTorch code.

1. Introduction

As machine learning systems become prevalent in numerous

application domains, the security of these systems in the

presence of malicious adversaries becomes an important

area of research. Many recent studies have shown that de-

cisions output by machine learning models can be altered

arbitrarily with imperceptible changes to the input (Carlini

& Wagner, 2017b; Szegedy et al., 2014). These attacks

on machine learning models can be categorized by the ca-

pabilities of the adversary. White-box attacks require the

adversary to have complete knowledge of the target model,
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whereas black-box attacks require only queries to the target

model that may return complete or partial information.

Seemingly all models for classification of natural images

are susceptible to white-box attacks (Athalye et al., 2018),

which indicates that natural images tend to be close to de-

cision boundaries learned by machine learning classifiers.

Although often misunderstood as a property of neural net-

works (Szegedy et al., 2014), the vulnerability towards ad-

versarial examples is likely an inevitability of classifiers in

high-dimensional spaces with most data distributions (Fawzi

et al., 2018; Shafahi et al., 2018).

If adversarial examples (almost) always exist, attacking a

classifier turns into a search problem within a small volume

around a target image. In the white-box scenario, this search

can be guided effectively with gradient descent (Szegedy

et al., 2014; Carlini & Wagner, 2017b; Madry et al., 2017).

However, the black-box threat model is more applicable in

many scenarios. Here, queries to the model may incur a

significant cost of both time and money, and the number

of black-box queries made to the model therefore serves as

an important metric of efficiency for the attack algorithm.

Attacks that are too costly, or are easily defeated by query

limiting, pose less of a security risk than efficient attacks.

To date, the average number of queries performed by the

best known black-box attacks remains high despite a large

amount of recent work in this area (Chen et al., 2017; Bren-

del et al., 2017; Cheng et al., 2018; Guo et al., 2018; Tu

et al., 2018; Ilyas et al., 2018a). The most efficient and

complex attacks still typically require upwards of tens or

hundreds of thousands of queries. A method for query effi-

cient black-box attacks has remained an open problem.

Machine learning services such as Clarifai or Google Cloud

Vision only allow API calls to access the model’s predic-

tions and fall therefore in the black-box category. These

services do not release any internal details such as train-

ing data and model parameters; however, their predictions

return continuous-valued confidence scores. In this paper

we propose a simple, yet highly efficient black-box attack

that exploits these confidence scores using a very simple

intuition: if the distance to a decision boundary is small, we

don’t have to be too careful about the exact direction along

which we traverse towards it. Concretely, we repeatedly

pick a random direction among a pre-specified set of orthog-
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onal search directions, use the confidence scores to check if

it is pointing towards or away from the decision boundary,

and perturb the image by adding or subtracting the vector

from the image. Each update moves the image further away

from the original image and towards the decision boundary.

We provide some theoretical insight on the efficacy of our

approach and evaluate various orthogonal search subspaces.

Similar to Guo et al. (2018), we observe that restricting the

search towards the low frequency end of the discrete cosine

transform (DCT) basis is particularly query efficient. Fur-

ther, we demonstrate empirically that our approach achieves

a similar success rate to state-of-the-art black-box attack

algorithms, however with an unprecedented low number

of black-box queries. Due to its simplicity — it can be

implemented in PyTorch in under 20 lines of code1 — we

consider our method a new and perhaps surprisingly strong

baseline for adversarial image attacks, and we refer to it as

Simple Black-box Attack (SimBA).

2. Background

The study of adversarial examples concerns with the robust-

ness of a machine learning model to small changes in the

input. The task of image classification is defined as success-

fully predicting what a human sees in an image. Naturally,

changes to the image that are so tiny that they are impercepti-

ble to humans should not affect the label and prediction. We

can formalize such a robustness property as follows: given

a model h and some input-label pair (x, y) on which the

model correctly classifies h(x) = y, h is said to be ρ-robust

with respect to perceptibility metric d(·, ·) if

h(x′) = y ∀x′ ∈ {x′ | d(x′,x) ≤ ρ }.

The metric d is often approximated by the L0, L2 and L∞

distances to measure the degree of visual dissimilarity be-

tween the clean input x and the perturbed input x′. Fol-

lowing (Moosavi-Dezfooli et al., 2016; Moosavi-Dezfooli

et al., 2017), for the remainder of this paper we will use

d(x,x′) = ‖x − x′‖2 as the perceptibility metric unless

specified otherwise. Geometrically, the region of impercep-

tible changes is therefore defined to be a small hypersphere

with radius ρ, centered around the input image x.

Recently, many studies have shown that learned models

admit directions of non-robustness even for very small val-

ues of ρ (Moosavi-Dezfooli et al., 2016; Carlini & Wagner,

2017b). Fawzi et al. (2018); Shafahi et al. (2018) verified

this claim theoretically by showing that adversarial exam-

ples are inherent in high-dimensional spaces. These findings

motivate the problem of finding adversarial directions δ that

alter the model’s decision for a perturbed input x′ = x+ δ.

1https://github.com/cg563/

simple-blackbox-attack

Targeted and untargeted attacks. The simplest success

condition for the adversary is to change the original correct

prediction of the model to an arbitrary class, i.e., h(x′) 6= y.

This is known as an untargeted attack. In contrast, a targeted

attack aims to construct x′ such that h(x′) = y′ for some

chosen target class y′. For the sake of brevity, we will focus

on untargeted attacks in our discussion, but all arguments in

our paper are also applicable to targeted attacks. We include

experimental results for both attack types in section 4.

Loss minimization. Since the model outputs discrete de-

cisions, finding adversarial perturbations to change the

model’s prediction is, at first, a discrete optimization prob-

lem. However, it is often useful to define a surrogate loss

ℓy(·) that measures the degree of certainty that the model h
classifies the input as class y. The adversarial perturbation

problem can therefore be formulated as the following con-

strained continuous optimization problem of minimizing the

model’s classification certainty:

min
δ

ℓy(x+ δ) subject to ‖δ‖2 < ρ.

When the model h outputs probabilities ph(· | x) associ-

ated with each class, one commonly used adversarial loss

is the probability of class y: ℓy(x
′) = ph(y | x′), essen-

tially minimizing the probability of a correct classification.

For targeted attacks towards label y′ a common choice is

ℓy′(x′) = −ph(y
′ | x′), essentially maximizing the proba-

bility of a misclassification as class y′.

White-box threat model. Depending on the application

domain, the attacker may have various degrees of knowl-

edge about the target model h. Under the white-box threat

model, the classifier h is provided to the adversary. In this

scenario, a powerful attack strategy is to perform gradient

descent on the adversarial loss ℓy(·), or an approximation

thereof. To ensure that the changees remain imperceptible,

one can control the perturbation norm, ‖δ‖2, by early stop-

ping (Goodfellow et al., 2015; Kurakin et al., 2016) or by

including the norm directly as a regularizer or constraint

into the loss optimization (Carlini & Wagner, 2017b).

Black-box threat model. Arguably, for many real-world

settings the white-box assumptions may be unrealistic. For

instance, the model h may be exposed to the public as an

API, allowing only queries on inputs. Such scenarios are

common when attacking machine learning cloud services

such as Google Cloud Vision and Clarifai. This black-box

threat model is much more challenging for the adversary,

since gradient information may not be used to guide the

finding of the adversarial direction δ, and each query to the

model incurs a time and monetary cost. Thus, the adver-

sary is tasked with an additional goal of minimizing the

number of black-box queries to h while succeeding in con-

structing an imperceptible adversarial perturbation. With a

slight abuse of notation this poses a modified constrained

https://github.com/cg563/simple-blackbox-attack
https://github.com/cg563/simple-blackbox-attack
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Algorithm 1 SimBA in Pseudocode

1: procedure SIMBA(x, y,Q, ǫ)
2: δ = 0

3: p = ph(y | x)
4: while py = maxy′ py′ do

5: Pick randomly without replacement: q ∈ Q
6: for α ∈ {ǫ,−ǫ} do

7: p′ = ph(y | x+ δ + αq)
8: if p′

y < py then

9: δ = δ + αq
10: p = p′

11: break
return δ

optimization problem:

min
δ

ℓy(x+ δ) subject to: ‖δ‖2 < ρ, queries ≤ B

where B is some fixed budget for the number of queries

allowed during the optimization. For iterative methods that

query, the budget B constrains the number of iterations the

algorithm may take, hence requiring that the attack algo-

rithm converges to a solution very quickly.

3. A Simple Black-box Attack

We assume we have some image x which a black-box neural

network, h, classifies h(x) = y with predicted confidence or

output probability ph(y | x). Our goal is to find a small per-

turbation δ such that the prediction h(x+ δ) 6= y. Although

gradient information is absent in the black-box setting, we

argue that the presence of output probabilities can serve as

a strong proxy to guide the search for adversarial images.

Algorithm. The intuition behind our method is simple (see

pseudo-code in Algorithm 1): for any direction q and some

step size ǫ, one of x + ǫq or x − ǫq is likely to decrease

ph(y | x). We therefore repeatedly pick random directions

q and either add or subtract them. To minimize the number

of queries to h(·) we always first try adding ǫq. If this de-

creases the probability ph(y | x) we take the step, otherwise

we try subtracting ǫq. This procedure requires between 1.4

and 1.5 queries per update on average (depending on the

data set and target model). Our proposed method – Simple

Black-box Attack (SimBA) – takes as input the target image

label pair (x, y), a set of orthonormal candidate vectors Q
and a step-size ǫ > 0. For simplicity we pick q ∈ Q uni-

formly at random. To guarantee maximum query efficiency,

we ensure that no two directions cancel each other out and

diminish progress, or amplify each other and increase the

norm of δ disproportionately. For this reason we pick q

without replacement and restrict all vectors in Q to be or-

thonormal. As we show later, this results in a guaranteed

perturbation norm of ‖δ‖2 =
√
Tǫ after T updates. The

only hyper-parameters of SimBA are the set of orthogonal

search vectors Q and the step size ǫ.

Cartesian basis. A natural first choice for the set of or-

thogonal search directions Q is the standard basis Q = I ,

which corresponds to performing our algorithm directly in

pixel space. Essentially each iteration we are increasing

or decreasing one color of a single randomly chosen pixel.

Attacking in this basis corresponds to an L0-attack, where

the adversary aims to change as few pixels as possible.

Discrete cosine basis. Recent work has discovered that

random noise in low frequency space is more likely to be

adversarial (Guo et al., 2018). To exploit this fact, we fol-

low Guo et al. (2018) and propose to exploit the discrete

cosine transform (DCT). The discrete cosine transform is

an orthonormal transformation that maps signals in a 2D

image space R
d×d to frequency coefficients corresponding

to magnitudes of cosine wave functions. In what follows,

we will refer to the set of orthonormal frequencies extracted

by the DCT as QDCT. While the full set of directions QDCT

contains d× d frequencies, we keep only a fraction r of the

lowest frequency directions in order to make the adversarial

perturbation in the low frequency space.

General basis. In general, we believe that our attack can

be used with any orthonormal basis, provided that the basis

vectors can be sampled efficiently. This is especially chal-

lenging for high resolution datasets such as ImageNet since

each orthonormal basis vector has dimensionality d × d.

Iterative sampling methods such as Gram-Schmidt process

cannot be used due to linear memory cost in the number of

sampled vectors. Thus, we choose to evaluate our attack

using only the standard basis vectors and DCT basis vectors

for their efficiency and natural suitability to images.

Learning rate ǫ. Given any set of search directions Q, some

directions may decrease ph(y | x) more than others. Further,

it is possible for the output probability ph(y | x + ǫq) to

be non-monotonic in ǫ. In Figure 1, we plot the relative de-

crease in probability as a function of ǫ for randomly sampled

search directions in both pixel space and the DCT space.

The probabilities correspond to prediction on an ImageNet

validation sample by a ResNet-50 model. This figure high-

lights an illuminating result: the probability ph(y | x± ǫq)
decreases monotonically in ǫ with surprising consistency

(across random images and vectors q)! Although some di-

rections eventually increase the true class probability, the

expected change in this probability is negative with a rel-

atively steep slope. This means that our algorithm is not

overly sensitive to the choice of ǫ and the iterates will de-

crease the true class probability quickly. The figure also

shows that search in the DCT space tends to lead to steeper

descent directions than pixel space. As we show in the

next section, we can tightly bound the final L2-norm of the

perturbation given a choice of ǫ and maximum number of
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Figure 1. Plot of the change in predicted class probability when a randomly picked basis direction q is added or subtracted (whichever

decreases the loss more) with step size ǫ. The left plot shows pixel space and the right plot shows low frequency DCT space. The average

change (purple line) is almost linear in ǫ with the slope being steeper when the direction is sampled in DCT space. Further, 98% of the

directions sampled in DCT space have either −q or q descending, while only 73% are descending in pixel space.

steps T , so the choice of ǫ depends primarily on budget

considerations with respect to ‖δ‖2.

Budget considerations. By exploiting the orthonormality

of the basis Q we can bound the norm of δ tightly. Each

iteration a basis vector is either added, subtracted, or dis-

carded (if neither direction yields a reduction of the output

probability.) Let αi ∈ {−ǫ, 0, ǫ} denote the sign of the

search direction chosen at step t, so

δt+1 = δt + αtqt.

We can recursively expand δt+1 = δt + αtqt. In general,

the final perturbation δT after T steps can be written as a

sum of these individual search directions:

δT =

T
∑

t=1

αtqt.

Since the directions qt are orthogonal, q⊤
t qt′ = 0 for any

t 6= t′. We can therefore compute the L2-norm of the

adversarial perturbation:

‖δT ‖22 =

∥

∥

∥

∥

∥

T
∑

t=1

αtqt

∥

∥

∥

∥

∥

2

2

=

T
∑

t=1

‖αiqt‖22 =

T
∑

t=1

α2
t ‖qt‖22

≤ Tǫ2.

Here, the second equality follows from the orthogonality of

qt and qt′ , and the last inequality is tight if all queries result

in a step of either ǫ or −ǫ. Thus the adversarial perturbation

has L2-norm at most
√
Tǫ after T iterations. This result

holds for any orthonormal basis (e.g. QDCT).

Our analysis highlights an important trade-off: for query-

limited scenarios, we may reduce the number of iterations

by setting ǫ higher, incurring higher perturbation L2-norm.

If a low norm solution is more desirable, reducing ǫ will

allow quadratically more queries at the same L2-norm. A

more thorough theoretical analysis of this trade-off could

improve query efficiency.

4. Experimental Evaluation

In this section, we evaluate our attack against a compre-

hensive list of competitive black-box attack algorithms: the

Boundary Attack (Brendel et al., 2017), Opt attack (Cheng

et al., 2018), Low Frequency Boundary Attack (LFBA) (Guo

et al., 2018), AutoZOOM (Tu et al., 2018), the QL attack

(Ilyas et al., 2018a), and the Bandits-TD attack (Ilyas et al.,

2018b). There are three dimensions to evaluate black-box

adversarial attacks on: how often the optimization problem

finds a feasible point (success rate), how many queries were

required (B), and the resulting perturbation norms (ρ).

4.1. Setup

We first evaluate our method on ImageNet. We sample a set

of 1000 images from the ImageNet validation set that are

initially classified correctly to avoid artificially inflating the

success rate. Since the predicted probability is available for

every class, we minimize the probability of the correct class

as adversarial loss in untargeted attacks, and maximize the

probability of the target class in targeted attacks. We sample

a target class uniformly at random for all targeted attacks.

Next, we evaluate SimBA in the real-world setting of at-

tacking the Google Cloud Vision API. Due to the extreme

budget required by baselines that might cost up to $150 per

image2, here we only compare to LFBA, which we found to

be the most query efficient baseline.

2The Google API charges $1.50 for 1000 image queries.
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Figure 2. Comparison of success rate and average L2-norm versus number of model queries for untargeted (left) and targeted (right)

attacks. Horizontal axis shows number of model queries. The increase in success rate for SimBA and SimBA-DCT are dramatically faster

than that of QL-attack in both untargeted and targeted scenarios. Both methods also achieve lower average L2-norm than QL-attack. Note

that although SimBA-DCT has faster initial convergence, its final success rate is lower than SimBA.

In our experiments, we limit SimBA and SimBA-DCT to

at most T = 10, 000 iterations for untargeted attacks and

to T = 30, 000 for targeted attacks. For SimBA-DCT, we

keep the first 1/8th of all frequencies, and add an additional

1/32nd of the frequencies whenever we exhaust available

frequencies without succeeding. For both methods, we use

a fixed step size of ǫ = 0.2.

4.2. ImageNet results

Success rate comparison (Figure 2). We demonstrate the

query efficiency of our method in comparison to the QL at-

tack – arguably the state-of-the-art black-box attack method

to date – by plotting the average success rate against the

number of queries. Figure 2 shows the comparison for

both untargeted and targeted attacks. The dotted lines show

progression of average L2-norm throughout optimization.

Both SimBA and SimBA-DCT achieve dramatically faster

increase in success rate in both untargeted and targeted sce-

narios. The average L2-norm for both methods are also

significantly lower.

Query distributions (Figure 3). In Figure 3 we plot the his-

togram of model queries made by both SimBA and SimBA-

DCT over 1000 random images. Notice that the distribu-

tions are highly right skewed so the median query count is a

much more representative aggregate statistic than average

query count. These median counts for SimBA and SimBA-

DCT are only 944 and 582, respectively. In the targeted

case, SimBA-DCT can construct an adversarial perturbation

within only 4, 854 median queries but failed to do so after

60, 000 queries for approximately 2.5% of the images. In

contrast, SimBA achieves a success rate of 100% with a

median query count of 7, 038.

This result shows a fundamental trade-off when selecting the

orthonormal basis Q. Restricting to only the low frequency

DCT basis vectors for SimBA-DCT results in faster average

rate of descent for most images, but may fail to admit an

adversarial perturbation for some images. This phenomenon

has been observed by Guo et al. (2018) for optimization-

based white-box attacks as well. Finding the right spectrum

to operate in on a per-image basis may be key to further

improving the query efficiency and success rate of black-

box attack algorithms. We leave this promising direction for

future work.

Aggregate statistics (Table 1). Table 1 computes aggregate

statistics of model queries, success rate, and perturbation L2-

norm across different attack algorithms. We reproduce the

result for LFBA, QL-attack and Bandits-TD using default

hyperparameters, and present numbers reported by the orig-

inal authors’ papers for Boundary Attack3, Opt-attack, and

AutoZOOM. The target model is a pretrained ResNet-50

(He et al., 2016) network, with the exception of AutoZOOM,

which used an Inception v3 (Szegedy et al., 2016) network.

Some of the attacks operate under the harder label-only set-

ting (i.e., only the predicted label is observed), which may

impact their query efficiency due to observation of partial

information. Nevertheless, we include these methods in the

table for completeness.

The three columns in the table show all the relevant metrics

for evaluating a black-box attack. Ideally, an attack should

succeed often, construct perturbation with low L2 norm, and

do so within very few queries. It is possible to artificially

reduce the number of model queries by lowering success

rate and/or increasing perturbation norm. To ensure fair

comparison, we enforce our methods achieve close to 100%
success rate and compare the other two metrics. Note that

the success rate for boundary attack and LFBA are always

100% since both methods begin with very large perturba-

3Result reproduced by Cheng et al. (2018)
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Figure 3. Histogram of number of queries required until a successful attack (over 1000 target images). SimBA-DCT is highly right

skewed, suggesting that only a handful of images require more than a small number of queries. The median number of queries required by

SimBA-DCT for untargeted attack is only 582. However, limiting to the low frequency basis results in SimBA-DCT failing to find a

successful adversarial image after 60, 000 queries, whereas SimBA can achieve 100% success rate consistently.

Untargeted
Attack Average queries Average L2 Success rate

Label-only

Boundary attack 123,407 5.98 100%
Opt-attack 71,100 6.98 100%

LFBA 30,000 6.34 100%
Score-based

QL-attack 28,174 8.27 85.4%
Bandits-TD 5,251 5.00 80.5%

SimBA 1,665 3.98 98.6%
SimBA-DCT 1,283 3.06 97.8%

Targeted
Attack Average queries Average L2 Success rate

Score-based

QL-attack 20,614 11.39 98.7%
AutoZOOM 13,525 26.74 100%

SimBA 7,899 9.53 100%
SimBA-DCT 8,824 7.04 96.5%

Table 1. Average query count for untargeted (left) and targeted (right) attacks on ImageNet. Methods are evaluated on three different

metrics: average number of queries until success (lower is better), average perturbation L2-norm (lower is better), and success rate

(higher is better). Both SimBA and SimBA-DCT achieve close to 100% success rate, similar to other methods in comparison, but require

significantly fewer model queries while achieving lower average L2 distortion.

tions to guarantee misclassification and gradually reduce

the perturbation norm.

Both SimBA and SimBA-DCT have significantly lower

average L2-norm than all baseline methods. For untargeted

attack, our methods require 3-4x fewer queries (at 1, 665
and 1, 232, respectively) compared to the strongest baseline

method – Bandits-TD – which only achieves a 80% success

rate. For targeted attack (right table), the evaluated methods

are much more comparable, but both SimBA and SimBA-

DCT still require significantly fewer queries than QL-attack

and AutoZOOM.

Evaluating different networks (Figure 4). To verify that

our attack is robust against different model architectures,

we evaluate SimBA and SimBA-DCT additionally against

DenseNet-121 (Huang et al., 2017a) and Inception v3

(Szegedy et al., 2016) networks. Figure 4 shows success rate

across the number of model queries for an untargeted attack

against the three different network architectures. ResNet-50

and DenseNet-121 exhibit a similar degree of vulnerability

against our attacks. However, Inception v3 is noticeably

more difficult to attack, requiring more than 10, 000 queries

to successfully attack with some images. Nevertheless, both

methods can successfully construct adversarial perturbations

against all models with high probability.

Qualitative results (Figure 5). For qualitative evaluation

of our method, we present several randomly selected im-

ages before and after adversarial perturbation by untargeted

attack. For comparison, we attack the same set of images

using QL attack. Figure 5 shows the clean and perturbed

images along with the perturbation L2-norm and number of

queries. While all attacks are highly successful at changing

the label, the norms of adversarial perturbations constructed

by SimBA and SimBA-DCT are much smaller than that of

QL attack. Both methods requires consistently fewer queries

than QL attack for almost all images. In fact, SimBA-DCT

was able to find an adversarial image in as few as 36 model

queries! Notice that the perturbation produced by SimBA

contains sparse but sharp differences, constituting a low

L0-norm attack. SimBA-DCT produces perturbations that

are sparse in frequency space, and the resulting change in
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Figure 4. Comparison of success rate versus number of model

queries across different network architectures for untargeted

SimBA (solid line) and SimBA-DCT (dashed line) attacks. Both

methods can successfully construct adversarial perturbations

within 20, 000 queries with high probability. DenseNet is the

most vulnerable against both attacks, admitting a success rate of

almost 100% after only 6,000 queries for SimBA and 4000 queries

for SimBA-DCT. Inception v3 is much more difficult to attack for

both methods.
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Figure 5. Randomly selected images before and after adversarial

perturbation by SimBA, SimBA-DCT and QL attack. The con-

structed perturbation is imperceptible for all three methods, but the

perturbation L2-norms for SimBA and SimBA-DCT are signifi-

cantly lower than that of QL attack across all images. Our methods

are capable of constructing an adversarial example in comparable

or fewer queries than QL attack – as few as 36 queries in some

cases! Zoom in for detail.

Figure 6. Plot of success rate across number of model queries for

Google Cloud Vision attack. SimBA is able to achieve close to

70% success rate after only 5000 queries, while the success rate

for LFBA has only reached 25%.

pixel space is spread out across all pixels.

4.3. Google Cloud Vision attack

To demonstrate the efficacy of our attack against real world

systems, we attack the Google Cloud Vision API, an online

machine learning service that provides labels for arbitrary

input images. For a given image, the API returns a list of top

concepts contained in the image and their associated prob-

abilities. Since the full list of probabilities associated with

every label is unavailable, we define an untargeted attack

that aims to remove the top 3 concepts in the original. We

use the maximum of the original top 3 concepts’ returned

probabilities as the adversarial loss and use SimBA to mini-

mize this loss. Figure 7 shows a sample image before and

after the attack. The original image (left) contains concepts

related to camera instruments. SimBA successfully replaced

the top concepts with weapon-related objects with imper-

ceptible change to the original image. Additional samples

are included in the supplementary material.

Since our attack can be executed efficiently, we evaluate its

effectiveness over an aggregate of 50 random images. For

the LFBA baseline, we define an attack as successful if the

produced perturbation has an L2-norm of at most the highest

L2-norm in a successful run of our attack. Figure 6 shows

the average success rate of both attacks across number of

queries. SimBA achieves a final success rate of 70% after

only 5000 API calls, while LFBA is able to succeed only

25% of the time under the same query budge. To the best of

our knowledge, this is the first adversarial attack result on

Google Cloud Vision that has a high reported success rate

within very limited number of queries.

5. Related Work

Many recent studies have shown that both white-box and

black-box attacks can be applied to a diverse set of tasks.
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Figure 7. Screenshot of Google Cloud Vision labeling results on a sample image before and after adversarial perturbation. The original

image contains a set of camera instruments. The adversarial image successfully replaced the top concepts with guns and weapons. See

supplementary material for additional samples.

Computer vision models for image segmentation and object

detection have also been shown to be vulnerable against

adversarial perturbations (Cisse et al., 2017a; Xie et al.,

2017). Carlini & Wagner (2018) performed a systematic

study of speech recognition attacks and showed that robust

adversarial examples that alter the transcription model to

output arbitrary target phrases can be constructed. Attacks

on neural network policies (Huang et al., 2017b; Behzadan

& Munir, 2017) have also been shown to be permissible.

As these attacks become prevalent, many recent works have

focused on designing defenses against adversarial examples.

One common class of defenses applies an image transfor-

mation prior to classification, which aims to remove the

adversarial perturbation without changing the image content

(Xu et al., 2017; Dziugaite et al., 2016; Guo et al., 2017).

Instead of requiring the model to correctly classify all ad-

versarial images, another strategy is to detect the attack

and output an adversarial class when certain statistics of

the input appear abnormal (Li & Li, 2017; Metzen et al.,

2017; Meng & Chen, 2017; Lu et al., 2017). The training

procedure can also be strengthened by including the adver-

sarial loss as an implicit or explicit regularizer to promote

robustness against adversarial perturbations (Tramèr et al.,

2017; Madry et al., 2017; Cisse et al., 2017b). While these

defenses have shown great success against a passive adver-

sary, almost all of them can be easily defeated by modifying

the attack strategy (Carlini & Wagner, 2017a; Athalye &

Carlini, 2018; Athalye et al., 2018).

Relative to defenses against white-box attacks, few stud-

ies have focused on defending against adversaries that may

only access the model via black-box queries. While transfer

attacks can be effectively mitigated by methods such as en-

semble adversarial training (Tramèr et al., 2017) and image

transformation (Guo et al., 2017), it is unknown whether

existing defense strategies can be applied to adaptive ad-

versaries that may access the model via queries. Guo et al.

(2018) have shown that the boundary attack is susceptible

to image transformations that quantize the decision bound-

ary, but employing the attack in low frequency space can

successfully circumvent these transformation defenses.

6. Discussion and Conclusion

We proposed SimBA, a simple black-box adversarial at-

tack that takes small steps iteratively guided by continuous-

valued model output. The unprecedented query efficiency of

our method establishes a strong baseline for future research

on black-box adversarial examples. Given its real world

applicability, we hope that more effort can be dedicated

towards defending against malicious adversaries under this

more realistic threat model.

While we intentionally avoid more sophisticated techniques

to improve SimBA in favor of simplicity, we believe that

additional modifications can still dramatically decrease the

number of model queries. One possible extension could

be to further investigate the selection of different sets of

orthonormal bases, which could be crucial to the efficiency

of our method by increasing the probability of finding a

direction of large change. Another area for improvement is

the adaptive selection of the step size ǫ to optimally consume

the distance and query budgets.

Given that our method has very few requirements, it is con-

ceptually suitable for applications to any task for which the

target model returns a continuous score for the prediction.

For instance, speech recognition systems are trained to max-

imize the probability of the correct transcription (Amodei

et al., 2016), and policy networks (Mnih et al., 2015) are

trained to maximize some reward function over the set of

actions conditioned on the current environment. A simple

iterative algorithm that modifies the input at random may

prove to be effective in these scenarios. We leave these

directions for future work.
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