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Abstract

Deep neural networks are powerful and popular learning

models that achieve state-of-the-art pattern recognition per-

formance on many computer vision, speech, and language

processing tasks. However, these networks have also been

shown susceptible to crafted adversarial perturbations which

force misclassification of the inputs. Adversarial examples

enable adversaries to subvert the expected system behavior

leading to undesired consequences and could pose a security

risk when these systems are deployed in the real world.

In this work, we focus on deep convolutional neural net-

works and demonstrate that adversaries can easily craft

adversarial examples even without any internal knowledge

of the target network. Our attacks treat the network as an

oracle (black-box) and only assume that the output of the

network can be observed on the probed inputs. Our attacks

utilize a novel local-search based technique to construct

numerical approximation to the network gradient, which

is then carefully used to construct a small set of pixels in

an image to perturb. We demonstrate how this underlying

idea can be adapted to achieve several strong notions of

misclassification. The simplicity and effectiveness of our

proposed schemes mean that they could serve as a litmus

test for designing robust networks.

1. Introduction

Convolutional neural networks (CNNs) are among the

most popular techniques employed for computer vision tasks,

including but not limited to image recognition, localiza-

tion, video tracking, and image and video segmentation [8].

Though these deep networks have exhibited good perfor-

mances for these tasks, they have recently been shown to be

particularly susceptible to adversarial perturbations to the

input images [26, 9, 18, 21, 20, 13, 10, 29]. Vulnerability of

these networks to adversarial attacks can lead to undesirable

consequences in many practical applications utilizing these

networks. For example, adversarial attacks can be used to

subvert fraud detection, malware detection, or mislead au-

tonomous navigation systems [21, 10] and poses a serious

security risk (e.g., consider an adversary that can fool an

autonomous driving system into not following posted traffic

signs). Further strengthening these results is a recent ob-

servation by [13] who showed that a significant fraction of

adversarial images crafted using the original network are mis-

classified even when fed to the classifier through a physical

world system (such as a camera).

(a) (b) (c) (d)

Table 1: The top row shows the original images and the bot-

tom row shows the perturbed images. The misclassification

is as follows: (a) a stingray misclassified as a sea lion, (b) an

ostrich misclassified as a goose, (c) a jay misclassified as a

junco, and (d) a water ouzel misclassified as a redshank.

In this paper, we investigate the robustness of state-of-the-

art convolutional neural networks (CNNs) with images as

inputs to simple black-box adversarial attacks. The rough

goal of adversarial attacks in this setting is as follows: Given

an image I that is correctly classified by a convolutional neu-

ral network, construct a transformation of I (say, by adding

a small perturbation to some or all the pixels) that now leads

to incorrect classification by the network. The nature of the

incorrectness is based on the adversarial objective. More

often than not, in these attacks, the modification done to the

image is so subtle that the changes are imperceptible to a

human eye. Our proposed attacks also share this property, in

addition to being practical and simplistic, thus highlighting

a worrying aspect about lack of robustness prevalent in these

modern deep learning based vision techniques.
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There are two main research directions in the literature on

adversarial attacks based on different assumptions about the

adversarial knowledge of the target network. The first and

the most common line of work assumes that the adversary

has detailed knowledge of the network architecture and the

parameters resulting from training (or access to the labeled

training set) [26, 9, 18, 21]. Using this information, an ad-

versary constructs a perturbation for a given image. The

most effective methods are gradient-based: a small pertur-

bation is constructed based on the gradient of the network

loss function w.r.t. the input image. Often, adding this small

perturbation to the original image leads to a misclassification.

In the second line of work an adversary has restricted knowl-

edge about the network from being able to only observe the

network’s output on some probed inputs [20, 16]. Our work

falls into this category. While this black-box model is a much

more realistic and applicable threat model, it is also more

challenging because it considers weak adversaries without

knowledge of the network architecture, parameters, or train-

ing data. Surprisingly, our results suggest that this level

of access and a small number of queries provide sufficient

information to construct an adversarial image.

Papernot et al. [20] were the first to discuss a black-box

attack against deep learning systems. Their attack crucially

relies on the observation that there is a transferability (gener-

alization) property in adversarial examples, i.e., adversarial

examples from one model transfers to another. Our proposed

attacks on the other hand is much more simple and direct,

does not require this transferability property, and hence is

more effective in constructing adversarial images, in addi-

tion to having some other computational advantages. We

demonstrate that our method is capable of constructing ad-

versarial images for several network architectures trained on

different datasets. In particular in this paper, we consider

the CIFAR10, MNIST, SVHN, STL10, and ImageNet1000

datasets, and two popular network architectures, Network-

in-Network [15] and VGG [25]. In Table 1, we show four

images from the ImageNet1000 dataset. The original images

are in the upper row. The bottom row shows the correspond-

ing perturbed images produced by our algorithm which are

misclassified by a VGG CNN-S network [4].

Our Contributions. In this work, we demonstrate the ease

of generating adversarial images for modern deep CNNs

without knowledge of either the network architecture or its

parameters. Our attack strategy is based the idea of greedy

local search, an iterative search procedure, where in each

round a local neighborhood is used to refine the current

image and in process optimizing some objective function

that depends on the network output. As we operate in a

black-box setting, it is not possible to obtain the true gradient

of the network loss function, hence we rely on numerical

approximations of the gradient. In each round, the local

search procedure generates an implicit approximation to the

gradient of the network loss function w.r.t. the current image

by observing changes in output by changing a few pixels

in the current image. This approximate gradient provides a

partial understanding of the influential pixels in the current

image for the output, which is then used to update this image.

We adapt this general strategy to achieve various notions

of misclassification with quite small perturbations. With the

simplest notion of misclassification, the goal is to alter the

input such that the network output is now different from the

true class label of the input (e.g., given an image of a cat,

alter the image such that the network now fails to identify

it as cat). While this is the most commonly used notion of

misclassification in the literature [26, 9], many modern com-

puter vision systems (e.g., ImageNet competition entrants)

are routinely evaluated based on their top-k predictions. This

motivates us to consider a stronger notion of misclassifica-

tion, that we refer to as k-misclassification (Definition 1),

where the goal is to alter the input such that the network

fails to identify the true label even when relying on top-k
predictions (e.g., given an image of a cat, alter the image

such that even the top-k predictions of the network does not

capture it as cat). We also consider the notion of targeted

misclassification, where the goal is to take an input and alter

it so as to have the network classify it as any chosen target

class label that is distinct from the true class label (e.g., given

an image of a cat and target class as dog, alter the image

such that the network now identifies it as dog).

We perform extensive experimental evaluations on mul-

tiple image datasets, and show that our local-search based

approach reliably generates adversarial images with little per-

turbation (even when compared to a recent elegant white-box

adversarial attack proposed by Goodfellow et al. [9] which

needs perfect knowledge of the network). Another feature

of our attack is that, by design, our approach only perturbs a

very small fraction of the pixels during the adversarial image

generation process (e.g., on ImageNet1000 we on average

perturb only about 0.5% of the pixels per image). Most

previous attacks [26, 9, 18] require the ability to perturb all

the pixels in the image. Therefore, interestingly, our results

also demonstrate that altering a small fraction of carefully

selected pixels suffices to generate adversarial images.

2. Related Work

Starting with the seminal paper by Szegedy et al. [26],

which showed that the state-of-the-art neural networks are

vulnerable to adversarial attacks, there has been significant

attention focused on this problem. The research has led

to investigation of different adversarial threat models and

scenarios [21, 20, 10, 13, 7], computationally efficient at-

tacks [9], perturbation efficient attacks [18], etc.

Szegedy et al. [26] used a box-constrained L-BFGS tech-

nique to generate adversarial examples. They also showed

a transferability (or generalization) property for adversarial
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examples, in that adversarial examples generated for one

network might also be misclassified by a related network

with possibly different hyper-parameters (number of layers,

initial weights, etc.). However, the need for a solving a series

of costly penalized optimization problems make this tech-

nique computationally expensive for generating adversarial

examples. This issue was fixed by [9] who motivated by

the underlying linearity of the components used to build a

network proposed an elegant scheme based on adding per-

turbation proportional to sign of the network’s cost function

gradient. Recently, Moosavi et al. [18] used an iterative lin-

earization procedure to generate adversarial examples with

lesser perturbation. Papernot et al. [21] used a notion of

adversarial saliency maps (based on the saliency maps intro-

duced by [24]) to select the most sensitive input components

for perturbation. This attack has been adapted by Grosse et

al. [10] for generating adversarial samples for neural net-

works used as malware classifiers. However, all these above

described attacks require perfect knowledge of the target

network’s architecture and parameters which limits their ap-

plicability to strong adversaries with the capability of gaining

insider knowledge of the target system.

Our focus in this paper is the setting of black-box attacks,

where we assume that an adversary has only the ability to use

the network as an oracle. The adversary can obtain output

from supplied inputs, and use the observed input-output

relationship to craft adversarial images.1 In the context of

deep neural networks, a black-box attack was first proposed

by Papernot et al. [20] with the motivation of constructing an

attack on a remotely hosted system.2 Their general idea is to

first approximate the target network by querying it for output

labels, which is used to train a substitute network, which

is then used to craft adversarial examples for the original

network. The success of the attack crucially depends on

the transferability property to hold between the original and

the substitute network. While empirical evidence exists

for the transferability assumption, it usually results in a

degradation in the effectiveness of the attacks, and in some

cases this degradation can be upwards of 30% [20]. A very

recent result by Liu et al. [16] has also highlighted that this

assumption should be treated carefully. Our black-box attack

is more direct, and completely avoids the transferability

assumption, making it far more applicable. We also avoid the

overhead of gathering data and training a substitute network.

A complementary line of work has focused on building

defenses against adversarial attacks. Although designing

defenses is beyond scope of this paper, it is possible that

adapting the previous suggested defense solutions such as

Jacobian-based regularization [11] and distillation [22] can

1These kind of attacks are also known as differential attacks motivated

by the use of the term in differential cryptanalysis [3].
2Papernot et al. [19] have recently extended this attack beyond deep

neural networks to other classes of machine learning techniques.

reduce the efficacy of our proposed attacks. Moreover, the

recently proposed technique of differentially private train-

ing [1] can also prove beneficial here.

The study of adversarial instability have led to devel-

opment of solutions that seeks to improve training to in

return increase the robustness and classification performance

of the network. In some case, adding adversarial exam-

ples to the training (adversarial training) set can act like

a regularizer [26, 9, 18]. The phenomenon of adversarial

instability has also been theoretically investigated for certain

families of classifiers under various models of (semi) random

noise [6, 7]. However, due to peculiar nature of adversarial

images generated by our approaches, a simple adversarial

training is only mildly effective in preventing future similar

adversarial attacks. The security of machine learning in set-

tings distinct from deep neural networks is also an area of

active research with various known attacks under different

threat models [27, 19]. We refer the reader to a recent survey

by McDaniel et al. [17] for a review of developments there.

3. Preliminaries

Notation and Normalization. We denote by [n] the set

{1, . . . , n}. The dataset of images is partitioned into train

and test (or validation) subsets. An element of a dataset is a

pair (I, c(I)) for an image I and a ground truth label c(I) of

this image. We assume that the class labels are drawn from

the set {1, . . . , C}, i.e., we have a set of C ∈ N possible

labels. We assume that images have ℓ channels (in exper-

iments we use the RGB format) and are of width w ∈ N

and height h ∈ N. We say that (b, x, y) is a coordinate of

an image for channel b and location (x, y), and (⋆, x, y) is a

pixel of an image where (⋆, x, y) represents all the ℓ coordi-

nates corresponding to different channels at location (x, y).
I(b, x, y) ∈ R is the value of I at the (b, x, y) coordinate,

and similarly I(⋆, x, y) ∈ R
ℓ represents the vector of values

of I at the (⋆, x, y) pixel.

It is a common practice to normalize the image before

passing it to the network. Note that a normalized image have

the same dimensions as the original image, but differs in the

coordinate values. Since the normalization procedures are

generally standard, we assume that the adversary can also

carry them out. As we always work with normalized images,

in the following, a reference to image means a normalized

input image. We denote by LB and UB two constants such

that all the coordinates of all the normalized images fall

in the range [LB,UB]. Generally, LB < 0 and UB > 0.

We denote by I ⊂ R
ℓ×w×h the space of all (valid) images

which satisfy the following property: for every I ∈ I, for all

coordinates (b, x, y) ∈ [ℓ]× [w]× [h], I(b, x, y) ∈ [LB,UB].

Network Input and Output. We denote by NN a trained

convolutional neural network (trained on some set of training

images). NN takes an image I as an input and outputs a
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vector NN(I) = (o1, . . . , oC), where oj denotes the prob-

ability as determined by NN that image I belongs to class

j. The top prediction of NN on I is the class label with

the largest probability score in NN(I). Similarly, the top-k
(for k ∈ [C]) predictions are obtained by taking the top-

k class labels by decreasing probability scores (with ties

broken arbitrarily). We denote π(NN(I), k) a function that

returns a set of top-k class labels. For example, if NN(I) =
(0.25, 0.1, 0.2, 0.45), then π(NN(I), 1) = {4} (correspond-

ing to the location of the entry 0.45), π(NN(I), 2) = {4, 1},

etc. Our adversarial approaches do not require access to

the complete probability vector (NN(I)), but just access to

the probability score for the class label of interest (which

depends on the notion of mis-classification used) and the π
vector (used for early stopping). This is slightly different

from the adversary presented in [20] that requires access to

the class label assigned by the network.

Misclassification Notions. First, we define misclassifica-

tion for a NN. We use two different notions of misclassifica-

tion [21]. The first one, referred to as k-misclassification for

k ∈ [C], is defined as follows.

Definition 1 (k-misclassification) A neural network NN k-

misclassifies an image I with true label c(I) iff the output

NN(I) of the network satisfies c(I) /∈ π(NN(I), k).

In other words, k-misclassification means that the net-

work ranks the true label below at least k other labels. Tra-

ditionally the literature on adversarial attacks have only

considered the case where k = 1. Note that an adver-

sary that achieves a k-misclassification for k > 1 is a

stronger adversary than one achieving an 1-misclassification

(k-misclassification implies k′-misclassification for all 1 ≤
k′ ≤ k). To the best of our knowledge, ours is the first result

about adversarial attacks on deep neural networks achieving

k-misclassification for k > 1.

We also provide adversarial attacks for a related but dis-

tinct notion of targeted misclassification that was first con-

sidered in the context of deep neural networks by Papernot et

al. [21]. Given a target class label T , we say that a neural

network targeted misclassifies an image I with true label

c(I) 6= T iff the output T ∈ π(NN(I), 1). Note that in gen-

eral, the targeted and k-misclassification (for k > 1) notions

are irreducible to one other, so one of them is not necessar-

ily stronger than the other. The flexibility of our approach

allows us to achieve either notion based on the requirements.

Adversarial Goal. In our setting, an adversary ADV is a

function that takes in image I as input and whose output is

another image ADV(I) (with same number of coordinates

as I). We define an adversarial image as one that fools

a network into misclassification (under one of the above

notions). The goal of adversarial attacks is to design this

function ADV that succeeds in fooling the network for a

large set of images. Ideally, we would like to achieve this

misclassification3 by adding only some small perturbation

(under some distance metric) to the image.

4. Adversarial Image Generation

In this section, we present an overview of our general

adversarial attack strategy that is based on performing a

greedy local search over the image space. Note that unlike

some of the previous adversarial attacks [26, 9, 18, 21, 10],

our threat model does not assume access to the true network

gradient factors, making any gradient (or Jacobian based)

methods not directly applicable. Instead, our attacks use a

local search technique to construct an implicit approximation

to the network gradient which is then used to guide the

generation of the perturbed image.

Local search procedure, is an incomplete search proce-

dure that is widely used for solving combinatorial prob-

lems appearing in diverse domains such as graph clustering,

scheduling, logistics, and verification [14]. For a general

optimization problem it works as follows. Consider an objec-

tive function f(z) : Rn → R where the goal is to minimize

f(z). The local-search procedure works in rounds, where

each round consists of two steps. Let zi−1 be the solution

iterate after round i − 1. Consider round i. The first step

is to select a small subset of points Z = {ẑ1, . . . , ẑn}, a

so called local neighborhood, and evaluate f(ẑj) for every

ẑj ∈ Z. Usually, the set Z consist of points that are close to

current zi−1 for some measure of distance which is domain

specific. The second step selects a new solution zi taking

into account the previous solution zi−1 and the points in

Z. Hence, zi = g(f(zi−1), f(ẑ1), . . . , f(ẑn)), where g is

some pre-defined transformation function.

Now an image I can be perturbed in multiple ways. In

this paper, we utilize a simple class of sign-preserving per-

turbation functions defined as follows.4 Let PERT(I, p, x, y)
be a function that takes as input an image I , a perturbation

parameter p ∈ R, and a location (x, y) in the image, and

outputs an image I
(x,y)
p ∈ R

ℓ×w×h, defined as:

I(x,y)p (b, u, v)
defn
=

{

(I(b, u, v) if x 6= u or y 6= v

p× sign(I(b, u, v)) otherwise
(1)

In other words, the image I
(x,y)
p = PERT(I, p, x, y) has

same values as image I at all pixels except the pixel (⋆, x, y).
We first describe our local-search based attack for achiev-

ing k-misclassification (Definition 1) where an adversarial

attack ensures that the true label does not appear in the top-k
predictions of the network. The attack for achieving targeted

misclassification is quite similar and we discuss that later.

3Note that the misclassification is at test time, once the trained network

has been deployed.
4The use of this specific perturbation function is not very important for

our attack scheme and we use it for its simplicity.
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Adversarial Attack for k-misclassification. We set up a

local search procedure as follows. Our optimization problem

will try to minimize the probability that the network deter-

mines an perturbed image has the class label of the original

image, and by using a local-search procedure we generate

perturbed images which differ from the original image in

only few pixels. Intuitively, in each round, our local-search

procedure computes an implicit approximation to the gradi-

ent of the current image by understanding the influence of a

few pixels on the output, which is used to update this image.

First, we need to define the cost function f . Let I be

the image (with true label c(I)) whose adversarial image

we want to generate for a target neural network NN. For

some input image Î , we use the objective function fc(I)(Î)
which equals the probability assigned by the network NN

that Î belongs to class c(I). More formally, fc(I)(Î) =

oc(I) where NN(Î) = (o1, . . . , oC), with oj denoting the

probability as determined by NN that image Î belongs to

class j. Our local search aims to minimize this function.

Second, we consider how to form a neighborhood set of

images. As mentioned above, the local-search procedure

operates in rounds. Let Îi−1 be the image after round i− 1.

Our neighborhood will consist of images that are different

in one pixel from the image Îi−1. In other words, if we

measure the distance between Îi−1 and any image in the

neighborhood as the number of perturbed pixels, then this

distance is the same (equal to one) for all of them. There-

fore, we can define the neighborhood in terms of a set of

pixel locations. Let (PX , PY )i be a set of pixel locations.

For the first round (PX , PY )0 is randomly generated. At

each subsequent round, it is formed based on a set of pixel

locations which were perturbed in the previoqus round. Let

(P ∗
X , P ∗

Y )i−1 denote the pixel locations that were perturbed

in round i− 1 (formally defined below). Then

(PX , PY )i =
⋃

{(a,b)∈(P∗

X
,P∗

Y
)i−1}

⋃

{x∈[a−d,a+d],
y∈[b−d,b+d]}

(x, y),

where d is a parameter. In other words, we consider pixels

that were perturbed in the previous round, and for each

such pixel we consider all pixels in a small square with

the side length 2d centered at that pixel. This defines the

neighborhood considered in round i.
Third, we describe the transformation function g of a set

of pixel locations. The function g takes as input an image Î ,

a set of pixel locations (PX , PY ), a parameter t that defines

how many pixels will be perturbed by g, and two pertur-

bation parameters p and r. In round i of the local-search

procedure, I =
⋃

(x,y)∈(PX ,PY )i−1
{PERT(Îi−1, p, (x, y))},

where PERT is the perturbation function defined through (1).

Then it computes the score of each image in I as ∀Ĩ ∈
I : score(Ĩ) = fc(I)(Ĩ), and it sorts (in decreasing

order) images in I based on the above score function to

construct sorted(I). Pixels whose perturbation lead to a

larger decrease of f are more likely useful in constructing

an adversarial candidate. From sorted(I), it records a set

of pixel locations (P ∗
X , P ∗

Y )i based on the first t elements of

sorted(I), where the parameter t regulates the number of

pixels perturbed in each round. Formally, (P ∗
X , P ∗

Y )i =

{(x, y) : PERT(Îi−1, p, (x, y)) ∈ sorted(I)[1 : t]},

where sorted(I)[1 : t] represents the first t sorted images

in sorted(I). Finally, Îi is constructed from Îi−1 by per-

turbing each pixel in location (x, y) ∈ (P ∗
X , P ∗

Y )i with a

perturbation value r. The perturbation is performed using

a simple cyclic rounding procedure (CYCLIC) so that we

make sure that all coordinate values in Îi are within the valid

bounds of LB and UB. The cyclic rounding provides pixel

values that are closer (in absolute sense) to their original

values than a simple rounding scheme. Note that at the end

of every round i, Îi is a valid image from the original image

space I.

We want to point out that the function g uses two perturba-

tion parameters, p and r. The value of r is kept small in the

range [0, 2]. On the other hand, we do not put any explicit

restrictions on the value of p. The best choice of p will be

one that facilitates the identification of the “best” pixels to

perturb in each round. In our experiments, we adjust the

value of p automatically during the search. We defer this

discussion to the experimental section.

Algorithm LOCSEARCHADV presents the complete pseu-

docode of our local-search procedure. At a high level, the

algorithm takes an image as input, and in each round, finds

some pixel locations to perturb using the above defined ob-

jective function and then applies the above defined transfor-

mation function to these selected pixels to construct a new

(perturbed) image. It terminates if it succeeds to push the

true label below the kth place in the confidence score vector

at any round. Otherwise, it proceeds to the next round (for

a maximum of R rounds). Note that the number of pixels

in an image perturbed by Algorithm LOCSEARCHADV is

at most t×R and in practice (see Tables 2, 3, and 4 in Sec-

tion 5) it is much less. This is in stark contrast with most

existing adversarial attack schemes [26, 9, 18] that operate

by applying the same perturbation on each individual pixel.

In Section 5, we demonstrate the efficacy of Algo-

rithm LOCSEARCHADV in constructing adversarial images.

Adversarial Attack for Targeted Misclassification. It is

straightforward to change Algorithm LOCSEARCHADV to

achieve targeted misclassification, where we want a network

to (incorrectly) have its top prediction as a given target label

T ∈ [C] and T 6= c(I). In fact, we only need to change the

cost function in LOCSEARCHADV, so that we maximize the

probability that an image I belongs to target class. Namely,

we define a cost function fc(I)(Ĩ) = oT with NN(Ĩ) =
(o1, . . . , oC) and we now sort the generated scores in an
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Algorithm 1 CYCLIC (r, b, x, y)

Assumptions: Perturbation parameter r ∈ [0, 2] and LB ≤ 0 ≤ UB
Output: Perturbed image value at the coordinate (b, x, y) are in

[LB,UB]

1: if rI(b, x, y) < LB then

2: return rI(b, x, y) + (UB− LB)
3: else if rI(b, x, y) > UB then

4: return rI(b, x, y)− (UB− LB)
5: else

6: return rI(b, x, y)
7: end if

Algorithm 2 LOCSEARCHADV (NN)

Input: Image I with true label c(I) ∈ {1, . . . , C}, two perturbation

parameters p ∈ R and r ∈ [0, 2], and four other parameters: the

half side length of the neighborhood square d ∈ N, the number of

pixels perturbed at each round t ∈ N, the threshold k ∈ N for k-

misclassification, and an upper bound on the number of rounds R ∈ N.

Output: Success/Failure depending on whether the algorithm finds an

adversarial image or not

1: Î0 = I , i = 1
2: Pick 10% of pixel locations from I at random to form (PX , PY )0
3: while i ≤ R do

{Computing the function g using the neighborhood}

4: I ←
⋃

(x,y)∈(PX ,PY )i−1
{PERT(Îi−1, p, x, y)}

5: Compute score(Ĩ) = fc(I)(Ĩ) for each Ĩ ∈ I
6: sorted(I)← images in I sorted by descending order of score

7: (P ∗
X
, P ∗

Y
)i ← {(x, y) : PERT(Îi−1, p, x, y) ∈ sorted(I)[1 :

t]} (with ties broken arbitrarily)

{Generation of the perturbed image Îi}
8: for (x, y) ∈ (P ∗

X
, P ∗

Y
)i and each channel b do

9: Îi(b, x, y)← CYCLIC (r, b, x, y)
10: end for

{Check whether the perturbed image Îi is an adversarial image}

11: if c(I) /∈ π(NN(Îi), k) then

12: return Success

13: end if

{Update a neighborhood of pixel locations for the next round}
14: (PX , PY )i ←

⋃
{(a,b)∈(P∗

X
,P∗

Y
)i−1}

⋃
{x∈[a−d,a+d],
y∈[b−d,b+d]}

(x, y)

15: i← i+ 1
16: end while

17: return Failure

increasing order. The remaining pieces of the local search

procedure remains as in Algorithm LOCSEARCHADV.

5. Experimental Evaluation

We start by describing our experimental setup. We used

Caffe and Torch machine learning frameworks to train the

networks. All algorithms to generate adversarial images

were implemented in Lua within Torch 7. All experiments

were performed on a cluster of GPUs using a single GPU

for each run. We use 5 popular datasets: MNIST, CIFAR10,

SVHN, STL10, and ImageNet1000. We trained Network-

in-Network [15] and VGG [25] for MNIST, CIFAR, SVHN,

STL10, with minor adjustments for the corresponding image

sizes. Network-in-Network is a building block of the com-

monly used GoogLeNet architecture that has demonstrated

very good performance on medium size datasets, e.g. CI-

FAR10 [28]. VGG is another powerful network that proved

to be useful in many applications beyond image classifica-

tion, like object localization [23]. We trained each model

in two variants: with and without batch normalization [12].

Batch normalization was placed before a ReLU layer in

all networks. For the ImageNet1000 dataset, we used pre-

trained VGG models from [5]. All Caffe VGG models were

converted to Torch models using the loadcaffe package [30].

We use the standard top-k error metric for evaluating the

classification performance of a network. Tables 2 and 3 (the

second column ERRTOP-1) show the top-1 (base) error for

all datasets and models that we considered. The results are

comparable with the known state-of-the-art results on these

datasets [2].

Related Techniques. There are quite a few approaches for

generating adversarial images (as discussed in Section 2).

Most of these approaches require access to the network ar-

chitecture and its parameter values [26, 9, 18, 21], making

them not entirely suitable for a direct comparison with our

black-box approach. The general idea behind these previous

white-box attacks is based on the evaluating the network’s

sensitivity to the input components in order to determine a

perturbation that achieves the adversarial misclassification

goal. Among these approaches, the white-box attack ap-

proach (known as the “fast-gradient sign method”, FGSM

for short) suggested by [9] stands out for being able to ef-

ficiently generate adversarial images. Here we compare

the performance of our proposed black-box attack against

FGSM. Without general guidelines for setting ǫ for FGSM,

we experimented with several values of ǫ starting from 0.07
and increasing this number. We found that the value ǫ = 0.25

was the smallest value where the fast-gradient sign method

started to yield competitive performance compared to our

algorithm. Smaller values of ǫ leads to generation of fewer

adversarial images, e.g., at ǫ = 0.1, the percentage of gener-

ated adversarial images is reduced by around 10% as com-

pared to the value at ǫ = 0.2 for CIFAR10 on the NinN

model (similar on other datatsets). Larger values of ǫ tends

to generate more adversarial images, but this comes at the

cost of an increase in the perturbation.

Implementing Algorithm LOCSEARCHADV. For each

image I , we ran Algorithm LOCSEARCHADV (LSA, for

short) for at most 150 rounds, perturbing 5 pixels at each

round, and use squares of side length 10 to form the neigh-

borhood (i.e., R = 150, t = 5, d = 5). With this setting

of parameters, we perturb a maximum of t × R = 750
pixels in an image. The perturbation parameter p was adap-

tively adjusted during the search. Though not critical, do-

ing so helps in faster determination of the most helpful

pixels in generating the adversarial image. Let I be the

original image. For some round i of the algorithm, de-

fine ōc(I) = avg(x,y){oc(I) : (x, y) ∈ (P ∗
X , P ∗

Y )i−1},

where oc(I) is the probability assigned to class label c(I)

5For the ImageNet1000 dataset, we set ǫ differently as discussed later.

11



Dataset E
R

R
T

O
P
-1

E
R

R
T

O
P
-1

(A
d
v
)

C
O

N
F

P
T

B

#
P

T
B

P
IX

E
L

S

(%
)

T
IM

E
(i

n
se

c)

T
ec

h
n
iq

u
e

N
et

w
o
rk

NNs trained with batch normalization

CIFAR10
11.65

97.63 0.47 0.04 3.75 0.68 LSA (Ours) NinN

CIFAR10 70.69 0.55 0.20 100.00 0.01 FGSM [9] NinN

CIFAR10
11.62

97.51 0.74 0.04 3.16 0.78 LSA (Ours) VGG

CIFAR10 11.62 – – – – FGSM [9] VGG

STL10
29.81

58.17 0.42 0.02 1.20 7.15 LSA (Ours) NinN

STL10 54.85 0.53 0.20 100.00 0.03 FGSM [9] NinN

STL10
26.50

65.76 0.47 0.02 1.11 13.90 LSA (Ours) VGG

STL10 26.50 – – – – FGSM [9] VGG

SVHN
9.71

97.06 0.47 0.05 4.51 1.02 LSA (Ours) NinN

SVHN 48.62 0.49 0.20 100.00 0.02 FGSM [9] NinN

SVHN
4.77

81.10 0.66 0.07 5.43 2.15 LSA (Ours) VGG

SVHN 4.77 – – – – FGSM [9] VGG

MNIST
0.33

91.42 0.54 0.20 2.24 0.64 LSA (Ours) NinN

MNIST 1.65 0.58 0.20 100.00 0.02 FGSM [9] NinN

MNIST
0.44

93.48 0.63 0.21 2.20 0.64 LSA (Ours) VGG

MNIST 0.44 – – – – FGSM [9] VGG

NNs trained without batch normalization

CIFAR10
16.54

97.89 0.72 0.04 3.24 0.58 LSA (Ours) NinN

CIFAR10 93.67 0.93 0.20 100.00 0.02 FGSM [9] NinN

CIFAR10
19.79

97.98 0.77 0.04 2.99 0.72 LSA (Ours) VGG

CIFAR10 90.93 0.90 0.20 100.00 0.04 FGSM [9] VGG

STL10
35.47

52.65 0.56 0.02 1.17 6.42 LSA (Ours) NinN

STL10 87.16 0.94 0.20 100.00 0.04 FGSM [9] NinN

STL10
43.91

59.38 0.52 0.01 1.09 19.65 LSA (Ours) VGG

STL10 91.36 0.93 0.20 100.00 0.10 FGSM [9] VGG

SVHN
6.15

92.31 0.68 0.05 4.34 1.06 LSA (Ours) NinN

SVHN 73.97 0.84 0.20 100.00 0.01 FGSM [9] NinN

SVHN
7.31

88.34 0.68 0.05 4.09 1.00 LSA (Ours) VGG

SVHN 76.78 0.89 0.20 100.00 0.04 FGSM [9] VGG

Table 2: Results for four datasets: CIFAR10, STL10, SVHN,

and MNIST. The entries denote by denoted by “– ” are the

cases where FGSM fails to produce any adversarial image

in our experimental setup.

in NN(PERT(Îi−1, p, x, y)) (here ōc(I) provides an approx-

imation of the average confidence of the network NN in

predicting the true label over perturbed images). At each

round, we increase the value of p if ōc(I) is close to one and

decrease p if ōc(I) is low, e.g., below 0.3. To avoid perturb-

ing the most sensitive pixels frequently, we make sure that

if a pixel is perturbed in a round then we exclude it from

consideration for the next 30 rounds.

Results for 1-misclassification. For ease of comparison

with FGSM [9], we set k = 1 and focus on achieving 1-

misclassification.Tables 2 and 3 show the results of our ex-

periments on the test sets. The first column shows the dataset

name. The second column (ERRTOP-1) presents the top-1
misclassification rate on the corresponding test dataset with-

out any perturbation (base error). ERRTOP-1 (ADV) is the

top-1 misclassification rate where each original image in the

test set was replaced with an generated perturbed image (us-

ing either our approach or the fast-gradient sign method [9]

which is denoted as FGSM).6

In the following, we say an adversarial generation tech-

6Note that by explicitly constraining the number of pixels that can be

perturbed, as we do in our approach, it might be impossible to get to a 100%

misclassification rate on some datasets. Similarly, FGSM fails to achieve a

100% misclassification rate even with larger values of ǫ [18].

nique ADV, given an input image I , succeeds in gener-

ating an adversarial image ADV(I) for a network NN iff

c(I) ∈ π(NN(I), 1) and c(I) /∈ π(NN(ADV(I)), 1). The

CONF column shows the average confidence over all success-

ful adversarial images for the corresponding technique. The

PTB represents the mean absolute error between the image

and its adversarial counterpart averaged over successful ad-

versarial images. More formally, let T denote the test set

and TAdv ⊆ T denote the set of images in T on which ADV

is successful. Then, PTB is defined as:

1

|TAdv|

∑

I∈TAdv

1

ℓ · w · h

∑

b,x,y

|I(b, x, y)− ADV(I)(b, x, y)|,

where I ∈ R
ℓ×w×h is the original image and ADV(I) ∈

R
ℓ×w×h is the corresponding adversarial image. Note that

the inner summation is measuring the mean absolute error

between I and ADV(I). The #PTBPIXELS column shows

the average percentage of perturbed pixels in the successful

adversarial images. For Algorithm LOCSEARCHADV the

number of pixels perturbed also provides a bound on the

average number of network evaluations (oracle queries) used.

Similarly, TIME column shows the average time (in seconds)

to generate a successful adversarial image. The last column

indicates the type of network architecture.

As is quite evident from these results, Algorithm LOC-

SEARCHADV is more effective than the fast-gradient sign

method in generating adversarial images, even without hav-

ing access to the network architecture and its parameter val-

ues. The difference is quite prominent for networks trained

with batch normalization as here we noticed that the fast-

gradient sign method has difficulties producing adversarial

images. In general, we observed that models trained with

batch normalization are somewhat more resilient to adver-

sarial perturbations probably because of the regularization

properties of batch normalization [12]. We are not aware of

any previous results in the adversarial image generation liter-

ature that have factored in the effects of batch normalization.

Another advantage with our approach is that it modifies

a very tiny fraction of pixels as compared to all the pixels

perturbed by FGSM, and also in many cases with far less

average perturbation. Putting these points together demon-

strates that Algorithm LOCSEARCHADV is successful in

generating more adversarial images than FGSM, while mod-

ifying far fewer pixels and adding less noise per image. On

the other side, FGSM takes lesser time in the generation

process and generally seems to produce higher confidence

scores for the adversarial (misclassified) images.

Table 3 shows the results for several variants of VGG

network trained on the ImageNet1000 dataset. These net-

works do not have batch normalization layers [5, 30]. We

set ǫ = 1 for the fast-gradient sign method as a different

pre-processing technique was used for this network (we

converted these networks from pre-trained Caffe models).
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58.27
93.59 0.29 0.29 0.43 12.72 LSA (Ours) VGG CNN-S (Caffe)

85.51 0.49 1.00 100.00 4.74 FGSM [9] VGG CNN-S (Caffe)

58.96
91.36 0.28 0.29 0.40 10.01 LSA (Ours) VGG CNN-M (Caffe)

87.85 0.48 1.00 100.00 4.36 FGSM [9] VGG CNN-M (Caffe)

58.80
92.82 0.29 0.30 0.41 11.09 LSA (Ours) VGG CNN-M 2048 (Caffe)

88.43 0.52 1.00 100.00 4.42 FGSM [9] VGG CNN-M 2048 (Caffe)

46.40
72.07 0.30 0.54 0.55 73.64 LSA (Ours) VGG ILSVRC 19 (Caffe)

85.05 0.52 1.00 100.00 23.94 FGSM [9] VGG ILSVRC 19 (Caffe)

Table 3: Results for the ImageNet1000 dataset using a center

crop of size 224× 224 for each image.

k ERRTOP-k
ERRTOP-k

(Adv)
CONF PTB

#PTBPIXELS

(%)

TIME

(in sec)
Network

1 16.54 97.89 0.72 0.04 3.24 0.58 NinN

2 6.88 80.81 0.89 0.07 6.27 1.51 NinN

3 3.58 70.23 0.90 0.08 6.78 1.72 NinN

4 1.84 60.00 0.90 0.08 7.27 1.92 NinN

Table 4: Results for k-misclassification using Algo-

rithm LOCSEARCHADV for CIFAR10.

Target
Target Classif.

(ADV) %
CONF PTB

#PTBPIXELS

(%)

TIME

(in sec)
Network

airplane 70.78 0.67 0.06 6.32 0.33 NinN

automobile 60.56 0.66 0.08 6.70 0.31 NinN

bird 71.60 0.70 0.06 6.14 0.34 NinN

cat 36.60 0.74 0.06 4.84 0.16 NinN

deer 29.48 0.73 0.05 4.86 0.14 NinN

dog 30.11 0.78 0.02 2.57 0.10 NinN

frog 20.91 0.77 0.06 4.62 0.09 NinN

horse 27.40 0.74 0.05 4.32 0.11 NinN

ship 23.34 0.78 0.06 4.09 0.08 NinN

truck 32.61 0.75 0.08 5.39 0.14 NinN

Table 5: Results for targeted misclassification using lusing

Algorithm LOCSEARCHADV for CIFAR10.

Results are similar to that observed on the smaller datasets.

In most cases, our proposed local-search based approach is

more successful in generating adversarial images while on

average perturbing less than 0.55% of the pixels.

Results for k-misclassification (k > 1). We now con-

sider achieving k-misclassification for k > 1 using LOC-

SEARCHADV. Table 4 shows the results as we change the

goal from 1-misclassification to 4-misclassification on CI-

FAR10. We use the same parameters as before for LOC-

SEARCHADV. As one would expect, as we increase the

value of k, the effectiveness of the attack decreases, perturba-

tion and time needed increases. But overall our local-search

procedure is still able to generate a large fraction of adver-

sarial images at even k = 4 with a small perturbation and

computation time, meaning that these images will fool even

a system that is evaluated on a top-4 classification criteria.

We are not aware of a straightforward extension of the fast-

gradient sign method [9] to achieve k-misclassification.

Results for Targeted Misclassification. Table 5 shows the

results for achieving targeted misclassification using LOC-

SEARCHADV on CIFAR10. We choose each of the 10 labels

(first column) as individual targets, and the second column

shows the percentage7 of images in the dataset that when

altered subsequently leads the network to classify it as the

target label. The results show that for each target class a

large number of images can be perturbed with little noise

to get targeted misclassification, and some classes (such as

’airplane’) are particularly amenable to these attacks.

Even Weaker Adversarial Models. We also consider a

weaker model where the adversary does not even have a

black-box (oracle) access to the network (NN) of interest,

and has to rely on a black-box access to somewhat of a

“similar” (proxy) network as NN. For example, the adversary

might want to evade a spam filter A, but might have to

develop adversarial images by utilizing the output of a spam

filter B, which might share properties similar to A.

We trained several modifications of NinN model for

CIFAR10, varying the initial value of the learning rate,

the size of filters, and the number of layers in the net-

work. We observed that between 25% to 43% of adver-

sarial 1-misclassified images generated by Algorithm LOC-

SEARCHADV using the original network were also 1-

misclassified by these modified networks. This observation

demonstrates the wider applicability of our attack scheme.

6. Conclusion

We investigate the inherent vulnerabilities in modern

CNNs to practical black-box adversarial attacks. We present

approaches that can efficiently locate a small set of pixels,

without knowing any parameter information about the net-

work, which when perturbed lead to misclassification by a

deep neural network. Our extensive experimental results,

somewhat surprisingly, demonstrates the effectiveness of our

simple approaches in generating adversarial examples.

Defenses against these attacks is an interesting research

direction. However, we note that here that by limiting the

perturbation to some pixels (being localized) the adversarial

images generated by our local-search based approach do not

represent the distribution of the original data. This means for

these adversarial images, the use of adversarial training, a

technique of training (or fine-tuning) networks on adversarial

images to build more robust classifiers, is not very effective.

In fact, even with adversarial training we noticed that the

networks ability to resist new local-search based adversarial

attack improves only marginally (on average between 1-2%).

On the other hand, we suspect that one possible counter-

measure to these localized adversarial attacks could be based

on performing a careful analysis of the oracle queries to

thwart the attempts to generate an adversarial image.

Finally, we believe that our local-search approach can also

be used for attacks against other machine learning systems

and can serve as an useful tool in measuring the robustness

of these systems.

7CIFAR10 is a balanced dataset with each class occupying 10% of the

test set. We only consider images that are not already in the target class.
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