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ABSTRACT 

Simple and computationally attractive lower and upper bounds are 
presented for the call congestion such as those representing multi-server 
loss or delay stations. Numerical computations indicate a potential useful
ness of the bounds for quick engineering purposes. The bounds correspond 
to product-form modifications and are intuitively appealing. A formal 
proof of the bounds and related mono tonicity results will be presented. 
The technique of this proof, which is based on Markov reward theory, is 
of interest in itself and seems promising for further application. The exten
sion to the non-exponential case is discussed. For multi-server loss sta
tions the bounds are argued to be insensitive. 

Keywords 

Tandem queues, product form, call congestion, bounds, monotonicity results, Markov 
chains. 

1) Free University, Department of Economics, Postbox 7161,1007 MC Amsterdam. 
2) Eindhoven University of Technology. Department of Mathematics and Computing Science, 

Postbox 513, 5600 MB Eindhoven. 



1. Introduction 

It is well-known that tandem queues with restricted accommodation do not exhibit the 
celebrated product form, see e.g. Bhat [3] and Lipper and Sengupta [11]. Therefore both 
numerical and approximate methods have been widely studied. These however may be 
computational expensive and the accuracy of the approximations is not guaranteed. 
Sometimes one may just be interested in conservative but secured bounds which are easy 
to obtain to get a fast impression of the system performance. 

This paper further explores the methodology introduced in Van Dijk and Lamond [6] to 
obtain computationally attractive bounds for finite single-server exponential tandem 
queues. Here the results will be extended to general service capacities to allow for multi 
server-loss and delay stations. We obtain simple bounds for the call congestion or the 
throughput of finite tandem queues. These bounds correspond to product-form 
modifications of the original tandem queue for which it is intuitively clear that they yield 
an upper and a lower bound. 

We provide a formal proof of these bounds based on Markov reward theory which is of 
interest in itself. 

Numerical calculations are given and indicate a practical usefulness as reasonable first 
indicator of the performance. 

The bounds can be seen as monotonicity properties of queueing networks. This topic 
currently receives considerable attention. 

Basically there seem to be four approaches to establish monotonicity results. An analytic 
one based on comparison of one-step transition operators (cf. e.g. Stoyan [15]. Whitt [19] 
and Hordijk and Ridder [10]). A second approach is to study the equilibrium distribution 
itself, e.g. in the product-form case (cf. Robertazzi and Lazar [12], Suri [16] and Yao 
[21]). The third technique is a probabilistic one using coupling and sample path com
parison and makes it possible to treat other than exponential or phase type distributions. 
This seems to be the most powerful approach although the method failed at unexpected 
moments. See e.g. Adan and Van der Wal [1,2] Van Dijk, Tsoucas and Walrand [7], 
Shanthikumar and Yao [13,14] and Tsoucas and Walrand [17]. The fourth method is the 
one used in this paper based on Markov reward theory, cf. Van Dijk [4,5] and Van Dijk 
and Lamond [6] and Van der Wal [18]. 

The paper is organized as follows. In section 2 we present the model and formulate the 
bounds. Preliminary results needed to prove the bounds are given in section 3. The 
details of the formal proofs for the lower and upper bound are given in sections 4 and 5. 
Section 6 contains some numerical results. Section 7 discusses some extensions, in par
ticular to the non-exponential case. 
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2. Model and bounds 

The original model. 

Jobs arrive at a two node (stage) tandem queue according to a Poisson process with 
parameter A.. At each node there is a constraint on the number of jobs which can be 
allowed at a time, say M at node 1 and N at node 2. Let m and n denote the number of 
jobs at nodes 1 and 2 respectively. An arriving job is rejected (and lost) if node 1 is 
saturated (Le., if m = M). A job which completes a service at node 1 while node 2 is 
saturated (Le., while n =N) is not accepted at node 2 and has to restart a complete new 
service at node 1. Otherwise an arriving job is accepted at node 1 (respectively node 2) at 
which it requests an amount of service. The total service capacity (that is, the rate at 
which jobs are being served) at node 1 is given by ¢>(m) and at node 2 by 'P(n). The 
natural assumption is made that ¢>(m) and 'P(n) are non-decreasing in m and n while 
¢>(O) = 'P(O) = O. Further, all service requirements including the repetitions at node I, are 
assumed to be independent and exponentially distributed with means Jl-1 at node 1 and 
v-I at node 2. The description above includes service stations such as: 

a) multi-server loss stations with M and N available servers as by ¢>(m) = m, 'P(n) = n 

for all m, n; 

b) multi-server delay (e.g. FCFS-) stations with r < M and s < N servers by ¢>(m) = m 

for m:S r, ¢>(m) = ¢>(r) for r < m:S M and 'P(n) = n for n:S s, 'P(n) = 'P(s) for 
s < n:S N; 

c) single-server processor sharing stations by ¢>(m) = I, 'P(n) = 1 for all m, n. 

Furthennore, due to the memoryless property of exponential services the repeating proto
col at node 1 can also be interpreted as if node 1 stops serving as long as node 2 is 
saturated, which is the standard protocol in communication systems. 

We will now consider two modifications of the original model. These modifications, 
called "lower bound" and "upper bound" model, differ from the original model only in 
their blocking protocol in the way described below. 

The lower bound model. 

An arriving job is rejected (and lost) only if the total number of jobs m + n already 
present is equal to M + N. A job which completes its service at node 1 is always instantly 
accepted at node 2. Either node can accommodate M + N jobs. The service capacities 
¢>(m) and 'P(n) are equal to that of the original model for m :S M and n :S N but can be 
chosen to be any non-decreasing function for M :S m :S M + N and N :S n :S M + N. 
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The upper bound model. 

An arriving job is rejected (and lost) not only if the first node is saturated (m = M) but 
also when the second node is saturated (n = N). Furthennore, a job, which completes its 
service at node 1 (respectively 2) while the other node is saturated, has to restart a com
plete new service at that node. The service capacity <I>(m) and 'P(n) correspond to that of 
the original model for any m S; M and n S; N. 

Intuitively, in the lower bound model the total number M + N of available places is used 
more efficiently since these can be allocated to either node in a dynamic manner wher
ever needed. We may thus expect a less frequent rejection of arriving jobs. Conversely, 
upon arrival of a job the upper bound model is seen fully congested also if node 2 is 
saturated. On top of that, the service repetitions at node 2 cause a higher congestion at 
both nodes. We may thus expect a more frequent rejection of arriving jobs. 

The corresponding state spaces of the lower bound (L), original (0) and upper bound (U) 
model become 

RL = {(m, n) I m + n S; M + N} , 

Ro = {(m, n) I m S; M, n S; N} and 

Ru = {em, n) 1m S; M, n S; N, m + n *M +N} 

and the blockings for the different models are summarized in Table 1 below. 

Model Arrival Transition Departure State space 
(L, 0, U) at node 1 from node 1 to 2 at node 2 

Lowe{ m+n=M+N -- -- RL 
O."\r.i\i'f:l\. m=M n=N -- Ro J 

UP'r/J m =M6rn =N n=N m=M Ru 

Table 1 

Let 1CL(n 1, n2) and 1Cu(n 1, n2) be the steady state probability of state (m, n) for the lower 
and upper bound model respectively. Then from Hordijk and Van Dijk [8], as based upon 
a so-called notion of "centre-local-balance", we can conclude that with cL and Cu nor-

o 0 
malizing constants and II <I>(k) = II 'P(k) = 1, 

t=l k=1 



'1tL(m, n) = CL( 1:.)m( 1:. t[n <l>(k)r1 U] 'P(k)r1 ,(m, n) E RL 
11 v k=l k=l 

1tU(m, n)=cu(1:.)m(1:.)nnl. <l>(k)r1Ul 'P(k)r1 ,(m, n) E Ru 
11 V k=l k=l 

(2.1) 

It may be noted that the stationarity of these probabilities can also be verified easily by 
substitution in the global balance equations. However, it has essentially been this notion 
of "centre-local-balance" which has led to the above product-form modifications as 
potential candidates in the first place. 

Let B denote the call congestion of the original model that is 

B = the steady state probability that an arriving job is rejected , 

and define BL and Bu similarly for the lower and upper bound model. By virtue of the 
"Poisson arrivals see time averages" - theorem (cf. Wolff [20]), BL and Bu can thus be 
calculated by PA~IA 

BL = '1tL(m + n =M +N), Bu =1tu(m =M or n =N) . 

The probabilities BLand B u are easily obtained from (2.1). 

Hence, by proving that 

(2.2) 

(2.3) 

we will thus have established computationally attractive bounds for the call congestion B 
as well as the throughput T, via the relation T = A,(l - B). 

The inequalities (2.3) will be formally established in sections 3, 4 and 5. 

3. Preliminary results 

We now describe some preliminary results for Markov reward theory in order to prove 
inequality (2.3). For convenience. we introduce the notation 

l1(m) = 11<l>(m), v(n) = v'P(n) . 

We use the subindex a to indicate the a-model, that is the lower bound (a=L), original 
(a = 0) and upper bound (a = U) model. 

We first note that due to the exponentiality assumptions, the underlying queueing process 
of the a-model constitutes an irreducible finite Markov jump process (or continuous-time 



Markov chain), say with jumprate (or infinitesimal generator) matrix Ga. Without res
triction of generality assume that A + J.L(M + N) + v(M + N) S; 1, which can always be 
achieved by scaling the time scale. The discrete time Markov chain with one-step transi
tion matrix defined by P a = (I + G a), then has exactly the same stationary probability 
(row-) vector 1ta as the above Markov jump process, which for either case is uniquely 
determined, up to normalization, by 1taG a = O. For analyzing the call congestion we may 
thus restrict the attention to the discrete-time Markov chain with transition matrix P a' 

With the a.-model we thus associate a discrete-time Markov chain with one-step transi
tion probabilities P a (m, n; m'. n') for a transition from state (m, n) into state (m', n') 

given by: 

and 

Pa(m, n;m + 1, n) = AB~(m, n) 

Pa(m, n; m -I, n + 1) = Jl(m) o~(m. n) 

Pa(m, n;m, n -l)=v(n)o~(m, n) 

Pa(m, n;m, n)= l-AB~(m, n)-J.L(m)o~(m, n)-v(n)B~(m, n) 

where o~(m, n) is equal to 1 if that transition is possible for the a.-model and equal to 0 
otherwise, i = I, 2, 3. (e.g., ohco. n) = 1 if n < N but 0 if n =N). 

All other transition probabilities are equal to O. 

Along with this chain, we include a one-step reward r a(m, n) in state (m, n) as defined 
by 

(

v(n) 

r a(m, n) = Pa(m, n ;m, n - 1) = Yen) 

yen) l{m<M} 

Here lA denotes the indicator of the event A. 

,if a. =L 
,if a.=O 

.if a.=U 

Thus, r a(m, n) denotes the probability that a job leaves the system. Now let us denote 
the expected total reward over k-periods for initial state (m, n) by V~ (m, n). Then, by 
virtue of the Markov property, for any (m, n) ERa and k ~ 1 we obtain: 

V~(m. n)=ra(m. n)+:Em'.n'Pa(m, n;m',n')V~-l(m',n') , (3.1) 

with ~ (m, n) = O. From the definition of r a it is clear that V~ is just the expected 
number of departures form the system within the first k periods. 
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From the above interpretation of v~ (or a standard tauberian theorem), we may therefore 
conclude that for arbitrary (m, n) ERa: 

A(1 - B a) = limk-+oo ! v~ (m, n) . (3.2) 

As a result, in order to prove BL ~ Bo it thus suffices to show that for some 
(m, n) E RL (1 Ro =Ro: 

Vi(m, n):2 V~ (m, n) for all k:2 0 , (3.3) 

and in order to prove Bo ~ Bu that for some (m, n) E Ro (1 Ru = Ru: 

V~ (m, n):2 Vt(m, n) for all k:2 0 . (3.4) 

When comparing an a- and j3-model with Rae R ~, we obtain for 
(m, n) ERa (1 R ~ = R a, from the recursion (3.1): 

V~ (m, n) - V~ (m, n) = 

rjl(m, n) - ra(m, n) + km',n,pa,(m, n;m', n') [V~-l (m', n') - V~-l (m', n')] 

+ km',n' [P ~(m, n; m', n') - P a(m, n; m', n')] V~-l (m', n') . 

By induction to k and using that vg (. ) = ~ (. ) = 0, we can conclude that for any 
(m, n) ERa, (1 R jl = R a: 

v~ (m, n):2 V~ (m, n) (3.5) 

if for all k:2 0 and (m, n) ERa: 

r~(m, n) - r a(m, n) + km',n'[P l3(m, n; m', n')] V~ (m', n'):2 0 . (3.6) 

This will be applied in sections 4 and 5 in order to verify (3.3) and (3.4). 

4. Proof of lower bound 

In view of the discussion in section 3 we need to prove (3.3) in order to establish that 
BL < Bo. To this end, substitute a= 0 and ~ =L in (3.5) and (3.6) where it is noted that 
Ro CRL. Since also rL =ro, it thus suffices to verify that for any (m, n) E Ro and 
k:2 0: 

km',n'[PL(m, n;m',n')-po(m, n;m',n')] Vi(m',n')= 
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A, 1 {m:::M,n<N}[VICM + 1, n) - VICM, n)] 

+ J.l(m) l{n=N} [VI(m - 1, N + 1) - VI(m, N)J ~ 0 . 

This is the essence of the proof since it transforms the comparison of two different 

models into monotonicity properties for one of them. 

It turns out that in order to prove these properties some monotonicity results are needed 

which are given in the following lemma. The lemma states the intuitive result that the 
total number of departures from the system upto period k increases, but by at most 1, if 

initially there is one more job in one of the queues or if a job is moved from queue 1 to 
queue 2. It is clear that the lower bounds in (4.1) and (4.3) ensure the above inequality 
and thus complete the proof of BL S; Bo. 

Lemma 4.1. For all k and within RL : 

os; VI(m + 1, n) - VI(m, n)S; 1 

OS; Vf(m, n + 1) - Vf(m, n)S; 1 

OS; ViCm -1, n + 1) - vi(m, n) S; 1 

(4.1) 

(4.2) 

(4.3) 

Proof. The proof will be given by induction on k. Since VIC· ) = 0, clearly (4.1)-(4.3) 
hold for k = O. Suppose they hold for k = I. Then we need to establish them for k = 1 + 1. 
In the rest of the proof we suppress the subindex L. 

(i) (4.1) for k = 1 + 1. 

From the recursion (3.1) we derive for m + n < M + N: 

Vl+l(m, n)=v(n)+A,V1Cm + 1, n)+ J.l(m) Vl(m -1, n + 1) 

+v(n) Vl(m, n -1) + [1- A,- J.l(m) -v(n)] Vl(m, n) (4.4) 

and 

Vl+l(m + 1, n) =v(n) + A, 1 {m+n+l<M+N} V1Cm + 2, n) 

+ J.l(m + 1) Vl(m, n + 1) +v(n) Vl(m + 1, n -1) 

+ [1- A, 1 {m+n+l<M+N} - J.l(m + 1) - v(n)] Vl(m + 1, n) (4.5) 

The following expressions are now to be substituted. On the right side of (4.4) the second 
term can be written as 

A, 1 {m+n+l<M+N} Vl(m + 1, n) + A, 1 {m+n+l=M+N} Vl(m + 1, n) , 
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and the last tenn as 

[1- A, -1J.(m + 1) - yen)] V'(m, n) + [1J.(m + 1) -1J.(m») V'(m, n) . 

Also, on the right side of (4.5) the third tenn can be written as 

lJ.(m) Vl(m, n + 1) + [1J.(m + 1) -1J.(m)] V'(m, n + 1) 

and the last tenn as 

[1- A, -1J.(m + 1) - yen)] Vl(m + 1, n) + A, 1 {m+n+l=N+N} V'(m + 1, n) . 

Then by substracting (4.4) from (4.5) and collecting tenns with the same coefficients, we 
find that 

Vl+l(m + 1, n) - V1+1(m, n) = A, 1 {m+n+l<M+N} [Vl(m + 2, n) - V'(m + I, n)] 

+ A, 1 {m+n+l=M+N) [Vl(m + 1, n) - Vl(m + 1, n)] + lJ.(m)[V'(m, n + 1) - Vl(m - 1, n + 1)] 

+ [1J.(m + 1) -1J.(m)][V1(m, n + 1) - V'(m, n)] + v(n)[V'(m + I, n - 1) - Vl(m, n - 1)] 

+ [1- A,-IJ.(m + 1) -v(n)][V1(m + 1, n) - Vl(m, n)] . (4.6) 

Note that the second tenn on the right in (4.6) equals 0, and that coefficients are nonnega
tive and sum up to 1. So the induction hypotheses (4.1) and (4.2) for k = 1 directly imply 
(4.1) fork =1 + 1. 

(4.2)fork=I+1. 

Similarly to (4.6) one can derive for M + n < M + N: 

V
'
+1(m, n + 1) - Vl+l(m, n) 

= [yen + 1) -yen)] + A, 1 {m+n+l<M+N} [Vl(m + I, n + 1) - Vl(m + 1, n)] 

+ A, 1 {m+n+l=M+N} [V'(m, n + 1) - Vl(m + I, n)] 

+ lJ.(m)[V1(m - 1, n + 2) - Vl(m - 1, n + 1)] +v(n)[Vl(m, n) - Vl(m, n - 1)] 

+ [yen + 1) -v(n)][V1(m, n) - V'(m, n)] 

+ [1- A,-IJ.(m) - v(n + 1)][V1(m, n + 1) - Vl(m, n)] 

We easily see that the induction hypotheses (4.2) and (4.3) for k = 1 imply (4.2) for 
k=l+1. 
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The most complicated case is (4.3). It is for this case that we need the right hand inequal
ities in (4.1)-(4.3). 

(4.3) fork =1+ 1. 

As before it can be proven that for m ~ 1: 

Vl+l(m -1, n + 1) - V 1+1(m, n) 

= [v(n + 1) -v(n)] + A 1 {m+n+l<M+N} [Vl(m, n + 1) - Vl(m + I, n)] 

+ J.l(m - 1) [Vl(m - 2, n + 2) - Vl(m - 1, n + 1) 

+ [J.l(m) - J.l(m - 1)][Vl(m - I, n + 1) - Vl(m - 1, n + 1)] 

+ v(n)[V'(m - 1, n) - V1(m, n - 1)] + [v(n + 1) - v(n)] [Vl(m - 1, n) - V1(m, n)] 

+ [1- A l{m+n+l<M+N} - J.l(m) - v(n + 1)][Vl(m - I, n + 1) - Vl(m, n)] 

Note that the one but last term is non-positive. This term has to be combined with the 
immediate reward v(n + 1) -v(n). Together with the induction assumption for k = I this 
yields (4.3) for k = I + 1. 

5. Proof of the upper bound 

According to section 3 again, we need to prove (3.4) in order to establish that Bo ~ Bu. 

To this end, substitute ex, = U and ~ = 0 in (3.5) and (3.6) where it is noted that Ru c Ro. 
Then it suffices to show that for any (m, n) E Ru and all k ~ 0: 

To(m, n)-ru(m, n)+!.m'.n'[Po(m, n;m', n')-pu(m, n;m', n')] V~(m', n') 

=v(n) l{m=M} + A l(m<M,n=N}[V~(m + I, n) - V~(m, n)] 

+ v(n) 1 {m=M,n>O} [V~(m, n - 1) - V~(m, n)] ~ 0 . 

The lower estimate from (5.1) and the upper estimate from (5.2) in lemma 5.1 below 
ensure the latter inequality and thus complete the proof of Bo ~ Bu. 

Lemma 5.1. For all k and within R 0: 

O~ V~(m + 1, n) - V~(m, n)~ 1 (5.1) 

O~ V~(m, n + 1)- V~(m, n)~ 1 (5.2) 

Proof: Again the proof will follow by induction on k. Since ~ (. ) = 0, clearly (5.1) and 
(5.2) hold for k = O. Suppose that they hold for k = 1. Then we will establish them for 
k = I + 1. In the rest of the proof we suppress the subindex O. 
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(5.l)fork=1+1 

Similarly to the derivation of (4.6), we derive 

Vl+l(m + 1, n) - V 1+1(m, n) = A l{m+ldf} [Vl(m + 2, n) - Vl(m + 1, n)] 

+ Al {m+l=M} [Vi (M, n) - Vl(M, n)] + J.L(m) 1 {n <N} [VI (m, n + 1) - Vl(m - 1, n + 1)] 

+ [J.L(m + 1) - J.L(m)] l{n<N} [Vl(m, n + 1) - Vl(m, n)] 

+ v(n)[V1(m + 1, n - 1) - Vl(m, n -1)] 

+ [1- A- J.L(m + 1) l{n<N} -v(n)][V1(m + 1, n) - VI(m. n)] 

Since all coefficients are nonnegative and sum up to 1, the induction hypotheses (5.1) and 
(5.2) for k = I directly imply (5.1) for k = I + 1. 

(5.2) for k = 1 + 1 

As before we find 

V 1+1(m, n + 1) - Vl+l(m, n) 

= Even + 1) - v(n)] + A l{mdf} [Vl(m + 1, n + 1) - Vl(m + 1, n)] 

+ J.l(m) l{n + 1<N} [Vl(m - 1, n + 2) - Vl(m - 1, n + 1)] 

+ [J.L(m)] l{n + 1=N} [Vl(m, n + 1) - Vl(m - 1, n + 1)] 

+ v(n)[V1(m, n) - Vl(m, n - 1)] + [yen + 1) -v(n)][V1(m, n) - Vl(m. n)] 

+ [1- A l{m<M} - J.l(m) -yen + 1)][V1(m, n + 1) - Vl(m, n)] 

From this one easily verifies (5.2) for k = I + 1. 

Remark 5.1. In Stoyan [15] general monotonicity results have been established based on 
the condition that the one step transition mechanism is monotone. Unfortunately, there 
results could not be applied for proving the Lemmas 4.1 and 5.1 since this condition fails 
for the present system. More precisely, with the one-step expectation operator TL defined 
upon functions g (. " ) by: 

(TLg)(m, n)='L(m',n')PL(m. n;m',n')g(m',n') 

one can find functions g (. " ) such that (cf. Lemma 4.1) 

g (m + I, n) - g (m, n) ~ 0 , 

g (m, n + 1) - g (m, n) ~ 0 • and 
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g(m-1,n+1)-g«m,n)~0 , 

while these inequalities dono longer hold with g replaced by (TLg). That is, TL does not 
preserve monotonicity in the required directions. For example, with M = N = 1 and 
g (0, 0) = 0 and g (m. n) = 1 if (m. n) :F- (0, 0). these inequalities are satisfied. But with 
A = J.l(m) = v(n)=; for all m, n > 0, we obtain (TLg)(O, 1) - (TLg)(1, 0) = -! . 

6. Numerical results 

In order to get an idea of the quality of the bounds, a number of examples has been calcu
lated for a wide range of parameter values. The results are displayed in Tables 2, 3 and 4. 
Here in p = All! and a = Alv, r and s denote the number of servers at node 1 and 2 and M 
and N denote the total capacities in nodes 1 and 2 as before. For the calculation of the 
lower bound we have used <P(m) = <P(M) for m > M and 'P(n) = 'P(N) for n > N. 

p a r s M N BL Bu 

1 1 1 1 1 1 .500 .667 
1 1 1 1 2 2 .333 .500 
1 1 1 1 3 3 .250 .400 
1 1 1 1 5 5 .167 .286 
1 1 1 1 10 10 .091 .167 
1 1 1 1 40 20 .032 .070 

.5 .5 1 1 10 5 .000 .016 
10 2 1 1 10 5 .906 .947 
10 10 1 1 10 5 .900 .909 
2 .5 1 1 10 5 .500 .504 

Table 2 Single-server case (r = s = 1) 
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p a r s M N BL Bu 

1 1 2 2 2 2 .133 .333 
1 1 3 3 3 3 .018 .118 
1 1 4 4 4 4 .001 .030 

15 15 5 5 5 5 .727 .819 
10 10 4 4 4 4 .683 .785 
10 10 6 6 6 6 .511 .653 
10 10 10 10 10 10 .199 .353 
10 10 13 13 13 13 .051 .156 
10 10 15 15 15 15 .012 .070 
10 10 20 20 20 20 .000 .004 

Table 3 Multi-server loss case (r = M, S = N) 

p a r S M N BL Bu 

1 1 2 2 3 3 .044 .167 
1 1 2 2 4 4 .014 .083 
1 1 2 2 5 5 .004 .042 
1 1 3 3 4 4 .003 .040 
1 1 3 3 6 6 .000 .004 

10 10 2 2 4 4 .826 .889 
10 10 3 3 4 4 .747 .830 
10 10 4 4 6 6 .646 .755 
10 10 6 6 10 10 .446 .581 
10 10 10 10 15 15 .102 .188 
10 10 15 15 20 20 .000 .009 

Table 4 Multi-server delay case (1 < r < M, 1 < S < N) 

Throughout the bounds turn out to be fairly accurate when the call congestion is large 
and to provide reasonable indicators when the call congestion is low, as is the more real
istic case. The last two examples in Table 2 show that in some non symmetric cases the 
bounds are excellent. 

In particular the bounds are useful to get a rough but fast impression of the performance. 
For instance, in the single server case they instantly show that in the case p = 0= 1 hav
ing 2 waiting places instead of 1 the congestion drops from at least .5 to at most .5, and 
for 5 waiting places B drops to at most .286. Or, for the multi server loss case with 
p = a = 1 the congestion B drops from at least .133 to at most .118 if the number of 
servers per station is increased from 2 to 3. And in Table 4, rows 2, 3 and 4, we see that 
the effect of adding a server and adding a waiting place somtimes is the same. 
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7. Extensions 

7.1. Non-exponential case 

Among other references it can be concluded from Hordijk and Van Dijk [9], that "job
local-balance" guarantees that the lower and upper bound model are "insensitive", That 
is, for special service disciplines (such as a multi-server loss, processor sharing or last
come-first-served preemptive disciplin) the steady state distribution given in section 2 for 
the exponential case remains valid for non-exponential services with means 1l-1 and v-I, 
The call congestions of the lower and upper bound model under any of these disciplines 
are thus equal to the call congestions BL and Bu as calculated for the exponential case in 
section 2, regardless of the distributional forms of the services. Shortly that is, BLand B u 
are "insensitive call congestions", Intuitively therefore, although the original model is not 
insensitive, one might expect that the values BL and Bu are bounds for the call conges
tion of the original model under such disciplines, regardless of the distributional forms of 
the services. Shortly, that BL and Bu are "insensitive bounds". Counterintuitively, how
ever, this is not generally true, as will be illustrated and discussed below. 

Counterintuitive example with LCFS. 

Let M = N = 1, A. = 2, Il = 100 and v = 1. The service time distribution is exponential at 
node 1 but Erlang-2 at node 2. Assume that the service discipline at both nodes is last
come first-served preemptive with a single server. (This assumption is irrelevant for the 
original model but does playa role for the lower bound model in which 2 jobs at a node 
are allowed). Then by standard calculus and with rounding in the fourth decimal, one 
finds 

B = .5595 and BL = .5723 . 

Roughly, this counterintuitive result can be accounted for by the fact that in a last-come 
first-served preemptive discipline the residual service time of a job present can be 
replaced by a total service time of a new job. As a consequence, when comparing two 
systems, where in one a job is rejected (original) while in the other accepted (lower 
bound model), the accepted job in the latter model will lead to a larger mean time up to a 
next completion if the mean service time exceeds the mean residual service time of a job 
(such as for Erlang or deterministic services). The acceptation of an extra job may thus 
lead to a longer saturation period and therefore extra rejections later on. A similar feature 
will occur with processor-sharing disciplines. 
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Multi-server loss case (insensitive bounds). 

When once accepted jobs. can never be interrupted in their service by other jobs, the 
counterintuitive conflict discussed above seems to be avoided. The following conjecture 
therefore comes up. 

"For finite tandem queues with multi-server loss stations (that is, with M and N 
representing servers), the values BL and Bu as computed by (2.1) and (2.2) with 
<l>(m) = m, '¥(n) = n for all m and n, are insensitive bounds for the call congestion of 
any original model with mean service times J,l-l and V-I at node 1 and 2 respec
tively." 

For the case of non-exponential services at only the second node, this conjecture is for
mally proven in Van Dijk [5] by the same technique as applied in this paper. This proof, 
however, is notationally much more complex and therefore restricted to only one non
exponential node. For the general case essentially the same proof can be expected. Note 
that the results in Table 3 are thus claimed (and partially proved) to be valid for general 
service distributions with means J,l-I and v-I. 

Another conjecture is: 

For finite tandem queues with general service time distributions and FCFS disciplin 
the models L and U provide lower and upper bounds for the call congestion. 

The proof for this result will have to be given by means of a sample path approach. Note 
however that the blocking probabilities BL and Bu are as hard to obtain as the one for the 
original model. 

7.2. Other performance measures 

By taking other appropriate one step rewards one might hope to establish other perfor
mance quantities such as the average number of jobs in the system. In this case one 
should use r (m. n) = m + n. The proof however will be hard since the obvious upper 
bound of 1 in the Lemmas 4.1 and 5.1 has to be replaced by another one which will be a 
complicated function of J,l(m) and v(n). 
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7.3. Tandem queues with breakdowns 

By combining the results from this paper with those from Van Dijk [4], simple lower and 
upper bounds can also be provided when the nodes can independently have a breakdown. 

Evaluation 

A bounding methodology is investigated for finite exponential tandem queues with gen
eral service capacities. This methodology is based upon product-form modifications 
which guarantee computationally attractive expressions. Simple and intuitively appealing 
bounds have so been proposed for the call congestion. Numerical support indicated a 
potential usefulness for quick engineering purposes. In particular, for multi-seIVer loss 

stations the bounds are claimed to be insensitive to seIVice distributional forms, i.e., to 
depend on the services only through their means. 

A formal proof of the bounds is presented. The technique of this proof is based on Mar
kov reward theory and monotonicity results. This technique is of interest in itself and 
seems a useful addition to standard techniques for proving monotonicity results in queue
ing networks. 

Both the methodology and technique of the proof seem promising for further exploita
tion. 
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