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AbstractzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Balanced loads such as antennas normally require baluns when they are measured. For

wide band applications, designing and building a balun complicates the measurement and

introduces errors. A simple model for load impedances was developed, together with a

novel measurement procedure. The procedure enables the measurement of balanced loads

using a network analyzer with no balun. Measured and simulated results are presented.

Stellenbosch University http://scholar.sun.ac.za



OpsommingzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Gebalanseerde laste soos antennas benodig gewoonlik balons om korrek gemeet te word.

Die ontwerp van 'n balon vir wye band toepassings bemoeilik die metings en veroorsaak

foute. 'n Eenvoudige model vir die lasimpedansies is ontwikkel sowel as 'n eenvoudige

meetmetode. Die metode word gebruik om die gebalanseerde laste te meet met 'n netwerk

analiseerder sonder die gebruik van 'n balon. Gemete en gesimuleerde resultate word

getoon.
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Chapter 1

Introduction

1.1 OverviewzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A problem often encountered in measuring balanced loads such as dipole antennas or some

types of microwave amplifiers is that a balun is needed to match the unbalanced line (e.g.

a coaxial cable) to the balanced load (e.g. the antenna). This thesis offers a solution to

such problems by providing a system in which loads can be measured without the use

of a balun. The technique uses the normal two port calibration of the network analyzer,

which is extended by the addition of two short lengths of cable. From the measured data,

a circuit model of the antenna impedances can be found readily, and both the balanced

and unbalanced impedances can be extracted.

1.2 Current performance limitations of baluns

In order to properly measure a balanced load, the balun should provide a suitable match

between the balanced and unbalanced load over the required bandwidth. Specifically, it

must excite the balanced load with a well balanced current. The performance of a balun

is determined by factors such as :zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. The bandwidth.

2. The level of unbalance or common mode current relative to the total balanced

current in the frequency band of interest.

3. The ratio between the impedances of the balanced and unbalanced loads.

Some antennas, e.g. biconical antennas, may operate over a few decades. The higher

the required bandwidth, the greater the difficulty in making a suitable balun. Since

baluns are impedance transformers, it becomes increasingly difficult to match two loads

of different impedance as the bandwidth increases. Subsequently, a balun affects the

accuracy of impedance measurements of the balanced load under test. Currently, a balun

Stellenbosch University http://scholar.sun.ac.za



CHAPTERzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. INTRODUCTION 11zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

that demonstrates a very wide operating bandwidth is the improved CPWCFP-CPS double

Y balun [1]. It has a frequency bandwidth of a few decades.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.3 Research to date in eliminating the need for a balun

The only literature that could be found was a technique using non-standard calibrations

[2] whereby the differential impedance can be obtained. The frequency limitations of the

calibration standards limit the bandwidth over which the technique can be applied.

Stellenbosch University http://scholar.sun.ac.za



12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ChapterzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2

The proposed measurement system

2.1 The proposed impedancezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel of an antenna

In order to accurately model the impedance of an antenna, provision must be made for

a differential and common mode impedance. An ordinary dipole antenna was considered

and the following assumptions regarding the impedances were made:

1. The differential impedance can be modelled by a complex impedance between the

dipole arms.

2. The common mode impedance can be modelled by a complex impedance between

each dipole arm and ground.

The proposed model is shown in fig 2.1. Vd and Vc are the balanced and unbalanced

excitation voltages, nodes A and B are the antenna feed terminals and Za, Zb (normally

Za = Zb) and Zc model the antenna impedances. The impedances, Za and Zb, are

the impedances between each antenna terminal and ground, and Zc is the impedance

between the antenna terminals. The common mode impedance iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZcommon = ZazyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII Zb
and the differential mode input impedance is Zdiff = Ze II (Za + Zb) (see appendix for

derivation). The antenna or balanced load under test, is modelled as a 3 terminal system.

If, for example, a dipole is considered, the one arm of the dipole can be assumed to be

connected to terminal A and the other arm of the dipole on terminal B. The signal ground

in the case of the dipole may be the ground of the transmission lines feeding the dipole

arms. In order to visualize this more clearly, figure 2.2 shows the dipole connected in

a conventional two port network. On the left and right of the figure are the ports of

the network analyzer. Each arm of the dipole is connected to one port of the network

analyzer. The dipole impedances are also shown with the modified connections indicated

by dashed lines.

2.2 The physical model

The proposed physical layout for measuring balanced loads is shown in fig. 2.3. Here a

Stellenbosch University http://scholar.sun.ac.za
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Figure 2.1: Two port impedance model of an antenna and feed.

network analyzer is shown where each port is connected by coaxial cables to one of the

semi-rigid cables. The two semi-rigid cables are soldered together on the outer conductors,

and are used as port extensions to bring the feed points close to the antenna terminals.

2.3 Measurement procedure

The procedure for measuring the antenna is as follows :

1. The network analyzer is calibrated at the connection ports using the manufacturer

supplied standards.

2. The parameters of the two semi-rigid cables are found from a short circuit measure-

ment.

3. The antenna S-parameters are obtained by de-embedding the influence of the semi

rigid cables from the S-parameters measured at the SMA connectors.

4. The antenna impedances are derived from the S-parameters.

2.4 Removing the effect of the semi rigid cables

As an approximation, the semi-rigid cable is modelled as an attenuation,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and a phase

delay, {J. A short to ground is placed on the end of the semi rigid cables and the complex,

Stellenbosch University http://scholar.sun.ac.za
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IlzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2.2: Dipole under measurement using a conventional two port system.

input reflection coefficients of both cables are measured. The phase of the measurement

yields (3l as the measured phase represents twice the electrical length of the cable as well

as a 180 degree phase reversal due to the short placed at the ends.

The attenuation over the length of the line is obtained by dividing the magnitude (in

Nepers) of the reflection coefficient by 2 to yield al. With a and (3 of the two semi-rigid

cables known, their ABCD parameters may each be written as follows [3] :

[ C

A DB 1 __ ( coshto + j(3)l Zo sinh(a + j(3)l )io sinh(a + j(3)l coshto + j(3)l (2.1)

where Zo was taken as unity for the normalised case.

It must be mentioned that the model assumes no reflections from the connections at

the SMA connectors. Since they were typically lower than -20 dB, such reflections were

neglected.

The S-parameters of the full measurement are converted to ABCD- parameters through

[4]. These values are then pre-multiplied bythe inverse matrix of the ABCD-parameters

of the semi rigid cable on port 1 and post-multiplied by the inverse matrix of the ABCD-

parameters of the semi rigid cable on port 2. The extracted ABCD-parameters of the

antenna are then converted to V-parameters. The V-parameters, when de-normalised to

500, yield the required impedances as shown in the appendix.
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dipole antenna __

semi rigid cables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I
I

Figure 2.3: Proposed two port measurement jig using a two port network analyzer.

Port 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SMA
connectors

Port2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Chapter 3

Initial measured and simulated resultszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter results are presented for a spiral antenna and for a dipole.

3.1 The semi-rigid cables

The semi-rigid cables were shorted at the ends by making an electrical connection be-

tween the centre conductors and the outer conductors using aluminum foil. The reflection

coefficients were subsequently measured. Initial measurements revealed that the short

placed at the end of the cables requires special attention in that a short made by using

aluminum foil was not as accurate as using solder. This was particularly evident in the

reflection coefficient. The magnitude of the reflection coefficient was lower for the alu-

minum foil compared to when the electrical connection was established by soldering the

inner and outer conductors together. In addition, using more solder seemed to increase

the magnitude even further. This implied that the short was able to radiate some of the

input power if it was not perfect, in effect behaving like a small, badly matched antenna.

Additional solder was applied until the magnitude of the reflection coefficient stopped

increasing.

Figure 3.1 showszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa for one of the semi-rigid cables. The curve for a displayed periodic

behaviour with respect to frequency. This was probably the result of reflections inside the

semi-rigid cable between the short and the connection with the SMA connector. Using the

HP8510 network analyzer's time gating function, the true value ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa could be found by

eliminating all but the main reflected pulse in the semi-rigid cables. This was necessary

since the model of the semi-rigid cables was a basic representation consisting of only a

loss and phase parameter. The value of f3 remained constant with or without the use of

time-domain gating. Figure 3.2 shows a with time domain gating.

3.2 Spiral antenna

The subject of the first measurement was the spiral antenna shown in figure 3.3 with

parameters as follows:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

16
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4 6zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
frequency [GHz] ,

10

Figure 3.1: a of the semi rigid cables without time gating

4 6

frequency [GHz]
8 102

Figure 3.2: a of the semi rigid cables with time gating

Polarization: right circular;

Number of revolutions: 6.5 ;

Antenna diameter: inner 5 mm, outer 90 mm;

Substrate: 0.55 mm, e, = 3.

The centre conductors of the semi-rigid cables were each connected to one of the arms of

the spiral. A length of approximately 20 cm was preferred for the semi-rigid cables. During

the initial measurement procedure, the magnitude of the measured S-parameters was seen

to change as a result of electrical contact being made between the connectors of the semi-

rigid cables. Figure 3.4 shows a difference of up to 1 dB between the measurements with

and without contact between the connectors. It was postulated that the problem was

due to the common mode currents flowing on the outside of the outer conductors of the

semi-rigid cables.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 3.3: Archimedes Spiral Antenna

-7

-8

-9

iD-lO

:!2.~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ci)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-11

-12

-13

-14
2 2.5

connectors not touching
connectors touching

3.5 4 4.5

frequency [GHz]
5.5

Figure 3.4: Two different measurements of the magnitude of Sl1 of the spiral
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CHAPTERzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. INITIAL MEASURED AND SIMULATED RESULTS

Figure 3.5: Picture of the measurement jig consisting of the semi-rigid cables and the

EMC box.

In order to reduce this effect, an EMC box was added to the measurement apparatus.

This consisted of a ground plane of roughly 50 cmzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 bent in a triangular shape. To allow

the semi-rigid cables to pass through the ground plane, a small hole was drilled in the

centre of the box. Figure 3.5 shows a picture of the semi-rigid cables and the EMC box.

A numerical tool, IE3D [5J, was used to simulate the spiral. The model for the spiral in

IE3D is shown in figure 3.6.

Figure 3.6: Geometry of the spiral in IE3D

A vertical offset was added at the spiral feed point so that a vertically localised port

could be used. The semi-rigid cables were modelled as a single rectangular cylinder,

40 cm long, connected to a ground plane. Due to limitations in IE3D's representation of

three dimensional objects, the exact geometry of the EMC box could not be implemented.

Instead, the structure was modelled as a flat ground plane with the same surface area as

the EMC box.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

19
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CHAPTERzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. INITIAL MEASURED AND SIMULATED RESULTS

With these EMC issues taken into account, the measurements were repeated. When the

connectors of the semi-rigid cables made contact, only a slight difference (approximately

0.05 dB) was measured in the S-parameters. This was deemed a satisfactory reduction in

the common mode current flow on the semi rigid cables.

Fig 3.7 shows how the S-parameters of the antenna compare to those of the full mea-

surement. The curves for the full measurement show the measured S-parameters of the

Figure 3.7: Comparison between the measured S-parameters of the antenna using the

measurement jig, vs. the extracted S-parameters of the antenna alone

antenna including the effects of the semi-rigid cables. The curves for the antenna alone

show the S-parameters of the antenna alone, i.e. where the effect of the semi-rigid cables

has been extracted from the S-parameters of the full measurement. The distinction be-

tween the two sets of measurements demonstrates the effects of the semi-rigid cables and

the necessity to properly extract their effect.
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Figure 3.8 shows the measured and simulated results for the differential input impedance

of the Archimedes spiral antenna supported by a dielectric. Three curves are shown for

250
IE3D with 2 port .
IE3D with 1 port
measured
theoretical•

200 '----------,---,------:-' -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_.-.-
:,:":'-'.-'- ':"':._.-:-: ...... ;.._ ... "-', ......... ~.•-:-.'.:-: _ •.-!""":",'-

_50'--_---'--- _ ___J_ _ __j __ -'--_----'- _ ___J. __ -'----_---'

2 3.5 4 4.5

Frequency [GHz)
5.52.5

Figure 3.8: Measured vs. simulated results for the differential input impedance of the

Archimedes spiral

both the real and imaginary parts of the impedance as well as a curve depicting the

theoretical value. One of the pairs of curves shows the antenna being fed by a two port

in IE3D, approximating the proposed technique for measuring the antenna. Each of the

centre conductors of the semi-rigid cables are connected to their own separate antenna

terminals. Another pair of curves shows the antenna in IE3D being fed differentially by

only one port. (This represents the conventional method whereby the antenna is fed using

a balun). The remaining pair shows the results of the proposed measurement technique.

The measured and simulated results agree well in both form and value. The spiral in

free space has a theoretical value of 188 st due to its self complementary characteristic,

however an average of 150 st has been measured. This difference can be attributed to the

dielectric layer supporting the spiral. An IE3D simulation (using the 1 port method) for

verification with and without the dielectric showed that the dielectric drops the impedance

by an average of 30zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst implying an expected impedance value of 158 st. This is in good

agreement with the measured average of 150 st. See fig.3.9.

The common mode impedance is shown in figure 3.10. Though not certain, the disagree-

ments between the measurements and simulation results are probably due to the absence

of the dielectric layer as was the case with the differential impedance. In addition, differ-

ences in reflections from the flat ground plane in simulation vs. reflections in measurement

from the triangular shaped EMC box can not be disregarded.
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3.5 4 4.5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
frequency [GHz]

5 5.5 62.5 3

Figure 3.9: The input resistance of the spiral according to IE3D: in the presence or absence

of a dielectric
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Figure 3.10: Measured vs. simulated results for the common mode input impedance of

the Archimedes spiralzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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.--- -._ dipole
port 1 port2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

erne box

(a) complete model (b) enlarged view of feed

Figure 3.11: Modeling the dipole, EMC box and semi-rigid cables in FEKO

3.3 Dipole antenna

For the next measurement, a test dipole was constructed by soldering two pieces of brazing

rod, each 152 mm long and 3 mm thick, onto the centre conductors of the semi-rigid cables.

The dipole, the semi-rigid cables and the EMC box were modelled using the numerical

tool, FEKO [6J. The semi-rigid cables were modelled by a thick wire of approximately

the same radius as the two semi-rigid cables combined. The EMC box was modelled as is.

Figure 3.11 shows the full model in FEKO as well as an enlarged view, depicting the feed

of the dipole in the simulated two-port measurement. Fig. 3.12 depicts the measured vs.

simulated results for the input impedance,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZdiff. As with the spiral in fig. 3.8, three curves

are shown. The curve for the one port simulation is nearly indistinguishable from those

of the two port simulations. Also of interest is the common mode input impedance of the

dipole. Fig. 3.13 depicts the real and imaginary parts of the common mode impedance,

Zcommon. For the differential impedance, the agreement at the lower frequencies is good,

but deteriorates somewhat at the higher frequencies. The agreement is not as good in the

case of the common mode impedance as it is for the differential impedance.

3.3.1 Confirmation of the common mode impedance model

In order to validate the antenna impedance model of fig. 2.1 with regards to the common

mode impedance, the dipole antenna was simulated again using only one port. In simu-

lation, the two dipole arms were joined together at the feed point and a delta gap feed

was inserted between the cylinder (representing the semi-rigid cables) and the feed point

(see fig. 3.14). Fig. 3.15 compares the common mode impedance in FEKO using the

two feeding methods. The good agreement between the curves show that both modelling

methods are accurate.
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Figure 3.12: Measured and simulated differential impedance of the dipole
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Figure 3,13: Measured and simulated common mode impedance of the dipole
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Figure 3.14: Enlarged view of the feed section of the dipole in FEKO exciting the antenna

in common mode

Figure 3.15: Comparison of the common mode impedance of the dipole using two feed

methods.
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syzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~. ayzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Xi y ax

i =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2, ... ,n (4.2)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Chapter 4

Sensitivity analysis

In order to identify the cause of the discrepancies between the measurements and the

simulations of chapter 3, a sensitivity analysis was necessary to determine which variables

in the measurement procedure have the greatest influence on the results. The variables

of interest are :

1. The semi-rigid cables

2. The role of the EMC box as a reflecting ground plane

3. The S-parameters of the full measurement

4. Stray inductance at the connection point with the antenna

In this chapter the sensitivity results are presented, but the reader is referred to chapter

5 for their interpretation.

4.1 The sensitivity equation

The sensitivity of some performance measure, y, with respect to an element value, x, is

given by [7] .

(4.1)

If y is a function of several variables [y = f(x1, x2, ... , xn)], then the sensitivity of y with

respect to Xi is

The sensitivity, S, is given as a percentage. The definition given in 4.2 is known as the

differential, first-order, classical, relative, or Bode sensitivity. Since sensitivities with re-

spect to both the magnitude and the phase were necessary for several variables, a complex

sensitivity analysis was performed. Since (4.2) does not provide information on complex

values, the sensitivity equation may readily be derived for a complex network function,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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HzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= IHIel<P, as follows:

x aHzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H ax
~x----:-;-.. [_aIH_1. ej¢>+ jIHlej¢>. _ocp]
IH leJ¢> ax ax
alHI x .oCP
-a-x . -I H-I + J -ax . x
SIHI + J' US¢>

x x (4.3)

where Ust is the unnormalised sensitivity of the phase of H with respect to x.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.2 Obtaining the sensitivity equation for the antenna

impedances in terms of the measured S-parameters.

The sensitivity of the differential and common' mode impedances to errors in the S-

paramaters of the full measurement was determined. In order to confirm the correctness

of the sensitivities, an analysis similar to a Monte Carlo analysis was also performed.

I.e. a 1% error in the S-paramaters of the full measurement was introduced on purpose

to compare the impedances with error to those without error. The sensitivity equation

(4.2) required the expression of the differential and common mode impedances in terms

of the measured S-parameters. The measured S-parameters, Sllall, S21all, S12all, S22all
are known. The differential and common mode impedances, Zdiff and Zcommon, of the

antenna are required. These were derived as follows. Firstly the ABCD-parameters of

the full measurement were found using [4]:

Aall
(1 + Sllall) (1 - S22all) + S12allS21all

(4.4)
2 S21all

Ball
50 (1 + Sllall) (1 + S22all) - S12allS21all

(4.5)
2 S21all

Call
(1 - Sllall) (1 - S22all) - S12allS21all

(4.6)
100 S21all

Dall
(1 - Sllall) (1 + S22all) + S12allS21all

(4.7)
2 S21all

where Aall ,Ball ,Call and Dall are the ABCD-parameters of the full measurement. Next

the ABCD-parameters of the stand-alone antenna were found. These were obtained by

extracting the influence of the semi-rigid cables from the measurement. As stated ear-

lier, this required the pre- and post multiplication of the ABCD-parameters of the full

measurement with the inverse of the ABCD-parameters of the male and female semi-rigid

cable respectively. The ABCD-parameters of the antenna alone were then obtained as :
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Aant (Aal! cosh, 1m - 50 Cal! sinh, 1m)cosh, 1,

- 0.02 (Bal! cosh ,1m - 50Dall sinh ,1m) sinh ,1, (4.8)

Bant - 50 (Aall cosh, 1m - 50 Cal! sinh, 1m)sinh, 1,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ (Ball cosh "'(1m- 50Dall sinh "'(1m)cosh ,1, (4.9)

Cant (-0.02Aall sinh ,1mzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Call cosh ,1m) cosh ,1,

- 0.02 (-0.02Ball sinh ,1m + Dali cosh ,1m) sinh ,1, (4.10)

Dant -50 (-0.02Aall sinh ,1m + Cal! cosh ,1m) sinh ,1,

+ (-0.02Ball sinh ,1m + Dali cosh ,1m) cosh ,1, (4.11)

where ,1m and ,1, represent cx + jf3 (see 2.1) of the male and female semi-rigid cable

respectively. Next, the V-parameters of the antenna were found, also usingzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] :

Y11ant
o.:

(4.12)
Bant

Y12ant
BantCant - AantDant

(4.13)
Bant

Y21ant
-1

(4.14)
Bant

Y22ant
Aant

(4.15)
Bant

Using the V-parameters, the impedances Za,Zb and Ze could be found (see appendix for

derivation) .

Za ant
1

(4.16)
Y11ant + Y21ant

Zb ant
1

(4.17)
Y22ant + Y21ant

Ze ant
-1

(4.18)
Y21ant

where Za ant, Zb ant and Ze ant are the impedances as shown in £ig.2.1. Finally,

impedances Zdiff and Zcommon are given by (as also shown in the appendix) :

Ze (Za + Zb)
(4.19)

Za + Zb + Ze
ZaZb

Za + z,
(4.20)Zeommon

The equations mentioned above are sufficient for expressing the antenna impedances, Zdiff

and Zeommon in terms of the measured S-parameters, thereby enabling the use of equation

4.2.

4.3 Sensitivity analysis of the measured data

In this section the sensitivities for the antennas, semi-rigid cables and general setup in

chapter 3 are determined.

28
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4.3.1 The sensitivity of the dipole antenna impedances in terms

of the measured S-parameters

The sensitivities of the impedances Zdiff and Zcommon were first calculated analytically

using 4.2. These sensitivities were confirmed by the Monte Carlo analysis mentioned

previously. The results of the analytical method were found using symbolic manipulation

by a computer program. Figure 4.1 shows the magnitude sensitivities of Zdiff and Zcommon

with respect to the magnitude of the measured S-parameters Sl1all, S21all, S12all and

S22zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall. Fig. 4.2 shows the angle sensitivities of Zdiff and Zcommon with respect to the

magnitude of the measured S-parameters. Figure 4.3 shows the sensitivities of Zdiff and

Zcommon of the dipole for all the S-parameters. This is obtained by adding the moduli of

the sensitivities for the individual S-parameters. Unfortunately, due to the fact that the

angles of the impedances cross through zero, causing division by zero in the normalization

process, the angle sensitivities could not be expressed in their normalized form.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It must be noted that the results shown in figure 4.3 pertain to the specific set of measured

S-parameters of the dipole and semi-rigid cables combination.

It is clear that the two methods for determining the sensitivities yield virtually the same

results. The slight discrepancy between the two results is a consequence of a first order

approximation in the sensitivity equation (4.2). Higher order derivatives need to be taken

into account to achieve higher accuracy.

4.3.2 The sensitivity of the spiral antenna impedances In terms

of the measured S-parameters

Figure 4.4 shows the sensitivities for the spiral antenna impedances with respect to the

magnitude of all the S-parameters together. Since the accuracy of both methods for

determining the sensitivities has been verified by their good agreement, it was not deemed

necessary to show the curves for both methods.

4.3.3 The sensitivity of the impedances to the semi-rigid cables

The effect of the semi rigid cables on the results was determined by investigating how

sensitive the results were to the semi-rigid cable parameters, a and f3. Figure 4.5 and 4.6

show the results of such a study for the dipole and spiral antenna respectively.

29

Stellenbosch University http://scholar.sun.ac.za



FigurezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.1: Sensitivity of the dipole ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIZdiffl and IZcommon I to IS11I, IS211, IS121 and IS221zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4.2: Sensitivity of the dipole of the angle ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZdiff and the angle of Zcommon to

IS11I, IS211, IS121 and IS221

CHAPTER 4. SENSITIVITY ANALYSIS

(e) angle Zcommon to IS111

(g) angle Zcommon to IS121

31

X 10-3
5 .

I=-=-=-
sensitivity equation
Monte Carlo method

4

(f) angle Zcommon to IS211

(h) angle Zcommon to IS221

Stellenbosch University http://scholar.sun.ac.za



Figure 4.3: Sensitivity ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZdiff and Zcommon of the dipole to all the S-parameters together
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Figure 4.4: Combined sensitivity of Zdiff and Zcommon of the spiral antenna to all the

S-parameters

Stellenbosch University http://scholar.sun.ac.za



Figure 4.5: Sensitivity ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZdiff and Zcommon of the dipole antenna for the semi-rigid cables
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Figure 4.6: Sensitivity of Zdiff and Zcommon of the spiral antenna for the semi-rigid cables
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Figure 4.7: The impedance of the dipole for different heights above the EMC boxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.3.4 Height of the DUT above the EMC box

To reduce reflections, the EMC box was designed at a 45 degree angle with respect to

the antennas under test. An investigation into whether reflections from the EMC box

still significantly influenced the antenna impedances was necessary. FEKO was used to

simulate the effects of various distances between the dipole and EMC box. It was not

deemed necessary to confirm the simulations with measurements since it was satisfactorily

established in chapter 3 that FEKO is well capable of simulating such a structure. In

addition, accurate yalues were not important since it was only necessary to determine

qualitatively whether there was a significant influence. The height of the dipole was

varied between 15 cm lower, and 1 m higher than the initial height. Figure 4.7 shows

curves for the differential and common mode impedance for different heights of the dipole

above the EMC box.
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4.3.5 Stray inductance at the connection point with DUTzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It was often unavoidable that a finite length of the centre conductors remained after

the connections were made. In this section the effect of this finite length of the centre

conductors is investigated.

Usually, when antennas are measured, the effect of a finite piece of the centre conduc-

tor of the cable feeding the length of the antenna can be subtracted from the antenna

impedance as follows: A very rough rule of thumb is that every 1 mm of length causes a

series inductance of 1 nH. The corresponding reactance is then obtained by multiplying

this value by the frequency in radians/sec. This reactance is then simply subtracted from

the input impedance of the antenna. In the case of the measurement system proposed

here, the input impedance is not directly measured and a different procedure has to be

followed. This is due to the manner in which the antenna impedances are obtained - the

impedances are obtained by a combination of the V-parameters of a two-port measure-

ment, as well as the extraction of an unwanted element (the semi-rigid cables). Instead,

the unwanted reactance should be subtracted directly from the extracted V-parameters

(or Z-parameters) of the antenna. Since the frequencies at which the spiral antenna was

measured were higher than those of the dipole, it was reasonable to assume that the ef-

fect of the finite length would be more significant for the spiral than for the dipole. Due

to the finite thickness of the dielectric under the spiral, approximately 1 mm of centre

conductor remained exposed at the connection. To compensate, a reactance ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjw (10-9
)

was subtracted from each of the Z-parameters, Zll, Z21, Z12 and Z22 and the result was

compared to the original values. Only the imaginary part of the common mode impedance

showed a noteworthy variation as shown in figure 4.8. As expected, negligible differences

were seen in the dipole case and are not presented here.

4.4 Sensitivity analysis over a parameter range

This section aims to identify where and how improvements can be made in the measure-

ment system to achieve more accurate results. To facilitate this goal, a sensitivity analysis

was performed whereby the measured S-parameters and parameters for the semi-rigid ca-

bles were varied over arbitrary values. The range of values chosen was limited to practical

and realistic values.

4.4.1 Choosing practical values for the analysis

In choosing the S-parameters, S11, S21, S12, S22, two equations were selected that need to

be satisfied :

ISllalll2 + IS21alll
2 1

or ISllalll2 + IS21alll
2 < 1

(4.21 )

(4.22)

Equation 4.21 is true in all lossless, passive networks. Equation 4.22 is true in networks

where losses are present. In this case, the antenna radiation causes the losses. Note that
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Figure 4.8: Comparison of the common mode impedance of the spiral when the stray

reactance caused by the feeds are subtracted from the measurements

only the parameters Sl1 and S21 are mentioned. Intuitively, S12 and S22 are assumed

to be the same as S21 and Sl1 respectively due to the nature of the antennas under test.

A realistic value was necessary for the right hand side of equation 4.22 and was chosen

by using the measured dipole S-parameters. Figure 4.9 shows the comparison between

the magnitude ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASl1all as measured for the dipole and ISl1alll
2 + IS21a111

2
. In general

the curve for ISl1a1d2 + IS21a1d2 is some 10 percent lower than the curve for ISl1alll.
From this figure the expression on the right hand side of equation 4.22 was chosen to be

0.9IS11alll. When performing the analysis, the following variables and their variations

were considered :

1. The measured S-parameters were varied between well matched and badly matched

values. Specifically Sl1all and S22all were selected to be -1 dB, -6 dB, -20 dB, and

S21all and S12all were calculated using (4.22).

2. The semi-rigid parameters, a and {3, were varied between a tenth and twice their

measured values as determined by the measurements and results in chapter 3.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.4.2 The sensitivities for the S-parameters and the semi-rigid

cables

Figures 4.10 and 4.11 show the sensitivities for the magnitude and angle of Zdiff and

Zcommon for the chosen S-paramaters, Sall. Each subfigure shows the sensitivity for differ-

ent values of the semi-rigid parameters.
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Figure 4.9: Comparison betweenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAISllalll and ISllall12 + IS21a1d2 as measured for the

dipole

Results were presented for the S-parameters chosen using equation 4.22. Although not

shown, the sensitivities for the S-parameters chosen using equation 4.21 were lower than

those shown here. This result is however of no practical importance since it is not phys-

ically meaningful to alter the radiation properties, and hence the S-parameters, of the

antenna in order to achieve lower sensitivity. The analysis using 4.21 was performed

merely for interest.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4.10: Sensitivity ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIZdiffl and IZcommonl for generally chosen S-parameters using

the measurement jigzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Chapter 5

Interpretation of sensitivities and

improvements

InzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis chapter the sensitivity analysis performed in chapter 4 is interpreted to deter-

mine whether improvements in the measurement system can be made to achieve greater

accuracy.

5.1 Interpretation of the sensitivity analysis of the mea-

sured data

The first subject of study was the sensitivities of the antennas, semi-rigid cables and

general setup in chapter 3.

5.1.1 The sensitivity of the dipole antenna impedances in terms

of the measured S-parameters

When figure 4.3 and the figures for the differential (fig.3.12) and common mode impedance

(fig.3.13) of the dipole are compared, it can clearly be seen that where the discrepancies

between measurement and simulation are the greatest, the sensitivities are the greatest

as well. In general, it is seen that high sensitivities are correlated with high antenna

impedances. Although the angle sensitivities are not expressed in their normalized form

(as a percentage), one can assume that due to their very low values, the influence of the

angle changes on the antenna impedances are negligible.

5.1.2 The sensitivity of the spiral antenna impedances in terms

of the measured S-parameters

As with the dipole, there was a direct correlation between the impedance value and the

sensitivity. (The periodic behaviour of the curves will be dealt with later). Again it
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can be seen that high sensitivities are associated with high antenna impedances. This

is advantageous for antenna measurements since it is usually only necessary to make

very accurate measurements in the operating band of the antenna where the antenna

impedance is sufficiently low.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.1.3 The sensitivity of the impedances to the semi-rigid cables

From, for example, figure 4.6((a)) it is seen that the antenna impedances are not sensitive

to the losses in the semi-rigid cables. The sensitivity to the length of the cable is .very high

(see, for example, figure (e)). Looking at the magnitude of the impedances, there is again

a correlation with the sensitivity curves as was the case with the measured 8-parameters

shown in the previous section. The sensitivity curves for the spiral antenna are again

somewhat periodic and will be the subject of discussion further on.

5.1.4 Height of the DUT above the EMC boxzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It is seen from fig. 4.7 that the differential impedance is not very sensitive to reflections

from the EMC box. Rather, it is the common mode impedance that is most strongly

influenced by the separation between the dipole and the EMC box. This was to be

expected due to the flow of common mode current on the outside of the outer conductors

of the semi-rigid cables.

5.2 Interpretation of the sensitivity analysis over a pa-

rameter range

In this section the results of the general sensitivity analysis are interpreted.

5.2.1 Sensitivities for the S-parameters and the semi-rigid cables

From figures 4.10 and 4.11 it is seen that the sensitivity of the differential impedance is

lower when the DUT (the antenna plus the semi-rigid cables combination) is well matched

(811 = -20 dB). This is not the case for the common mode impedance, where the opposite

is true, although not as pronounced as in the case of the differential impedance. When

these graphs are compared for the different parameters of the semi-rigid cables, it is seen

that dropping cxand (3, lowers the sensitivity. In most cases, dropping cxand (3 to a tenth

of their original values (figures (d) and (h)) drops the sensitivity significantly.

5.2.2 The periodicity of the sensitivities

It was seen earlier that the impedance of the spiral antenna demonstrated periodic be-

haviour. This was also seen in the previous section where the generalized sensitivities
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were shown. From Figures 4.10 and 4.11 it is seen that the number of peaks in the

curves are correlated with the multiplication factor of a andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{J. That is, the number of

peaks increase when a and {J are increased, and they decrease vice versa. Since the input

S-parameters, Sail, were chosen to be constant for all frequencies, it was reasonable to

investigate whether there was a resonance effect present due to the fixed physical length

of the semi-rigid cables.

The physical lengths of the semi-rigid cables were 44 cm. Due to the fact that the

propagation velocity in the coaxial cable is a third lower than in free space, its effective

length was assumed to be 66 cm. The frequency corresponding to this wavelength in the

semi-rigid cables is 454 MHz. The input impedance of the spiral, fig. 3.8, indeed showed

maxima and minima at increments of 234 MHz respectively, or every ~ of the semi-rigid

cables. This was also evident in the case of the generalized sensitivity analysis.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.3 Conclusions

The sensitivity analysis performed in this chapter has proved to be advantageous in that

it has shown the following:

• Use of short semi-rigid cables can reduce the overall sensitivity, specially to the

parameters of the semi-rigid cables as well as minimize or eliminate periodicities in

the extracted impedances due to resonances in the semi-rigid cables

• Although the use of an EMC box provides better control over the common mode

current flow, it reflects the radiated waves back to the antenna causing discrepancies

in the antenna impedance, specially in the common mode impedance

• When characterising the semi-rigid cables, it is very important to minimize errors

in measurement of the electrical length of the semi-rigid cables

• It is not necessary to use expensive low loss semi-rigid cables due to the very low

sensitivity of the results for the loss in the semi-rigid cables

• Very accurate measurements of the S-parameters of the full measurement are not

necessary unless high accuracy is also required outside the operating band of the

antenna (where the input impedances are high)

• The stray inductance often present at the antenna connection points can be ignored

for frequencies of at least up to 7 GHz.

With the focus on the differential input impedance and based on the above findings,

changes were made in the measurement system in order to obtain more accurate measure-

ments: The EMC box was no longer used and the semi-rigid cables were made as short

as possible.

In the following chapter, final results are presented where the above changes were imple-

mented.
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Chapter 6

Final resultszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this chapter final results are presented for the spiral and dipole antennas where the im-

proved measurement jig was used. Measurements of a bow tie antenna are also presented.

6.1 Simulation in FEKO

It was deemed necessary to simulate the changed system used in the measurements.

Specifically, the absence of the EMC box necessitated the simulation. FEKO was used for

both the spiral and dipole antenna due to FEKO's ability to load segments with arbitrary

impedances.

Since an infinitely long cable can not be simulated in FEKO, a truncated wire was used

to model the coaxial cables used in the measurements. To prevent standing waves on

the wire in FEKO, it was required to stop or, at least, suppress the flow of the common

mode currents on the wire. A realistic manner of doing this was to stop the current only

nearer to the end of the wire, furthest from the antenna as to accurately model the actual

measurement layout. For this purpose the Wu-King resistive loading profile [8],[9] was

used to stop the common mode current flow on the semi-rigid cables.

6.2 The Wu-King profilezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Zi(Z)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60'lj;
h -Izl

(6.1)

The Wu-King profile is a continuous impedance profile which results in a pure outward-

traveling wave of current (no reflections) on a finite length of wire. The impedance profile

is a function of the axial coordinate, z, and is given by

where h is the length of one antenna arm, 'lj; is the complex expansion parameter and z

the axial coordinate.

This profile is generally used in impedance loaded antennas and results in a wide-band

antenna, typically of low efficiency.
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Figure 6.1: Resistance required along the semi-rigid cable to stop the current in FEKOzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6.3 The dipole antenna

The dipole antenna was simulated using a very long and thick wire representing the semi-

rigid and coaxial cables. The segments of the wire nearer to the antenna were left unloaded

while the segments near the end of the wire were loaded using the Wu-King profile. The

wire was 7 mm thick and 1 m long. Figure 6.1 shows the resistances that the Wu-King

profile (6.1) produced. The figure shows the resistances for the normalized length of the

loaded section of the wire.

Initially, standard coaxial cables of 1 m length were used as well as for the measurements

shown in chapter 3 (besides the short semi-rigid cables already mentioned). It was

found during measurement that when the position of the coaxial cables was changed, the

measurements also changed. For example, two sets of measurements were taken where

only the orientation of the cables was changed. The resulting differential and common

mode impedances of the dipole are shown in figure 6.2. It is seen that the differences,

even in the differential mode impedance, are highly unsatisfactory. The discrepancies were

very likely due to the common mode current flow. It is also possible that the transfer

impedance of the coaxial cables were not sufficiently high.

A different pair of coaxial cables, approximately 3 m long, was then used. Unlike the

first set of coaxial cables, these cables were equipped with armoured shielding. The

measurements were repeated and fig. 6.3 shows the new comparisons. It is seen that the

differential impedance remained satisfactorily stable, but as expected the common mode

impedance is a function of how the cables are routed.

To confirm the accuracy of the measurements, the dipole was also measured in the con-

ventional manner where a ground plane and the method of images is used. Fig. 6.4 shows

the simulated vs. measured results. It is seen that the two measurements compare very

well in form and value. The FEKO simulation shows only a slight shift in frequency -

a common occurrence when numerical tools are used to model antennas. The common'

mode impedance of the dipole did not compare satisfactorily to that of the simulation
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Figure 6.2: Comparison of the differential and common mode impedance of the dipole as

measured with a short, standard pair of coaxial cables where only the orientations of the

cables were changed .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CHAPTERzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. FINAL RESULTS
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Figure 6.3: Comparison of the differential and common mode impedance of the dipole as

measured with a longer pair of coaxial cables where only the orientations of the cables

were changed.
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Figure 6.4: Comparison of the differential input impedance of the dipole as measured

using two methods and simulated in FEKO.

and is not shown.

The results for the dipole highlighted the influence and difficulties arising from the com-

mon mode current flow. By removing the EMC box from the measurements, increased

difficulty in accurately modeling the whole measurement layout was experienced- imple-

menting the Wu-King Profile did not prove successful in that the common mode current

flow could not be accurately modelled.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6.4 The spiral antenna

The spiral was remeasured using the longer pair of coaxial cables. Figure 6.5 shows the

measured result as well as the simulated result of chapter 3 where only 1 port was used

in the simulation.

Compared to the previous measurement (fig. 3.8), improvement is evident by observing

the following :

• The periodic behaviour of the curves are less pronounced.

• The real part of the input impedance is more comparable in form to the curve of

the simulation

• The imaginary part also shows better agreement in value, specially at the top of the

band.

As was seen in chapter 3 in fig. 3.8, the measurement as well as the 2 port simulation

showed a rising imaginary part. This was thought to be due to the manner in which the

spiral was fed - in the measurement and the 2 port simulation the connections were not
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Figure 6.5: Measured vs. simulated result using the short semi-rigid cables and the coaxial

cables with higher transfer impedance.

made in the middle between the spiral arms, whereas in the 1 port simulation the single

feed point was centered. Nevertheless, the new measurement showed improvement in that

the increase in the imaginary part with frequency was less pronounced.

6.5 A bow tie antenna

A bow tie antenna was manufactured and measured as a final example. This was deemed

useful to further show the reliability of the proposed method since the bow tie can also

be measured in the conventional manner where a ground plane and the method of images

is used.

The geometry of the bow tie antenna is shown in fig. 6.6. The flare angle was 90 degrees

and the hypotenuses were of equal length.

The bow tie antenna was measured using the two methods. The first was the conventional

method where the method of images is used - only one "wing" of the bow tie is used with a

ground plane to provide the mirror image of the "wing". The measured input impedance

is then multiplied by 2 to find the differential input impedance. The 2nd method was the

proposed two port measurement. Fig. 6.7 shows the two methods. Figure 6.8 shows the

measured curves for the differential input impedance. The first curve is the measured input

impedance using the 2 port jig. The other curve is the measured input impedance using

the conventional method. The two measured curves are in very good agreement proving

again the reliability and accuracy of the proposed two port method. No deterioration in

accuracy with rising frequency is visible.
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+- semi rigids

lOOmm

Figure 6.6: The bow tie antenna

ground plane

(a) 2 port jig (b) conventional

Figure 6.7: The two methods used to measure the bow tie antenna
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Figure 6.8: Differential input impedance of the bow tie antenna using different measuring
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6.6 Sensitivities using the modified jig

In this section the sensitivities using the modified jig (the short semi-rigid cables and the

long coaxial cables) will be presented.

6.6.1 Sensitivities for the measured S-parameters and semi-rigid

cables

Fig. 6.9 shows the sensitivities for the measured S-paramaters. It is seen that although

the sensitivities are unchanged in general, they are satisfactorily low. Fig. 6.10 shows

the sensitivities for Cl! and f3 of the new semi-rigid cables. As seen, the sensitivities are

lower by 10 to 50 times in general compared to the original jig used for measurements in

chapter 3. They are also less periodic with frequency.

6.6.2 Stray inductance at the connection point with the DUT

It was re-investigated whether the influence of the stray inductance caused by the exposed

centre conductors remained negligible as in the case of the old measurement jig.

The spiral antenna's measurements were repeated, and the reactance caused by the centre

conductors was subtracted as explained in chapter 4.

It was found that the effect was indeed negligible. Fig. 6.11 shows the effect for the

common mode impedance of the spiral. The two curves for the differential impedance were

indistinguishable from each other to such an extent that they were deemed unnecessary

to display here.
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Figure 6.9: Sensitivity ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIZdiffl andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZcommon I of the spiral for the measured S-parameters

using the modified jig
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Figure 6.10: Sensitivity ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZdiff and Zcommon of the spiral for a and f3 of the new semi-rigid

cables

CHAPTER 6. FINAL RESULTS

(a) IZdiffl for ctzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~~~~~~3~~~~~4~~~~~==~~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
frequency [GHz)

(c) IZcommonl for ct

-'0

-40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI~
-50~2~======~3~------~4~--------~------_j6

frequency [GHz]

(e) IZdiffl for {3

- 'OO2~--------~--------~4--------~--------~

frequency [GHz1

(g) IZcommonl for (3

53

i
~-O.5

t -,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-1.5

(b) angle Zdiff for ct

-1.5

-~L_--------~--------~4--------~--------~
frequency [GHz)

(d) angle Zcommon for ct

(f) angle Zdiff for {3

... LI === g_~_W__j1

-0.5

- '2~--------~--------~4--------~~------~

frequency [GHz]

(h) angle Zcommon for {3

Stellenbosch University http://scholar.sun.ac.za



CHAPTERzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. FINAL RESULTS

EzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q.
~
c
as
"0

~ -50

.S

o

-150'----'----'---'------'----'----'---'----'
2 2.5 3 3.5 4 4.5 5 5.5 6

frequency [GHz]

Figure 6.11: Measured spiral common mode input impedance compared to that from

which the stray inductance at the feed was subtracted
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Chapter 7

Conclusions

This thesis was motivated by the need for an easier and quicker method to determine

whether balanced loads such as antennas have been correctly designed and manufactured

to operate in the required frequency band.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It was shown that the proposed method offered several advantages over earlier methods :

• No balun is required to measure the impedance of the antenna or balanced load.

Using a balun causes uncertainty in that when a balanced load is measured, any

discrepancies between the impedance that was required and that which was mea-

sured could be due to either the balun or the antenna performing incorrectly. By

using this method, the uncertainty surrounding a balun can be eliminated.

• The method is not sensitive to the measurement equipment used. Standard calibra-

tion kits and semi-rigid cables can be used. A certain percentage error made in the

measurements or the characterization of the semi-rigid cables will cause an error of

similar magnitude in the results in most cases. In general, though, the resulting

error will be reduced.

• No EMC box to shield common mode current flow is necessary if the common mode

impedance is not required. In chapter 5, it was shown that a long pair of cables was

necessary to make accurate measurements. It is possible that currents induced on

the outside of the coaxial cables were sufficiently attenuated at the point where the

cables connected to the network analyzer, thereby minimizing any unwanted signals

entering the network analyzer and causing discrepancies in the results. Although

not confirmed, it is also possible that the longer pair of cables had a higher transfer

impedance as it had an armoured shield to improve its ruggedness.

• The method is simple in that the semi-rigid cables that are used need only be

characterized once. Thereafter, a simple computer program is stored for future use.

Measured S-parameters can simply be substituted into the program to yield the

antenna impedance.

• Although only shown here to be accurate up to 7 GHz, it is assumed that the method

can be applied with similar accuracy at higher frequencies.
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• Although it was initially deemed necessary to use time-domain gating when mea-

suring the semi-rigid cables to achieve higher accuracy, it was found that the results

were not sensitive to errors in' a of the semi-rigid cables.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn addition, the value ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf3
remained the same whether or not time-domain gating was used.

The model for the antenna impedances assumed in the beginning was proven through

measurement and simulation to be sufficient for obtaining the antenna differential input

impedance without the use of a balun. The common mode impedance was clearly shown

to be a function of the common mode current flow on the cables. Initially, in chapter

3, an EMC box was not used, The initial measurements as shown in fig.3.4 showed that

its addition was beneficial. Although successful in restricting the common mode current

flow, using an EMC box caused difficulty in that the antenna had to be positioned far

enough from the EMC box to prevent reflections. In the process, the longer semi-rigid

cables caused periodic behaviour in the results.

The use of a short pair of semi-rigid cables was shown to reduce results with periodicities

and was sufficient and accurate where the differential impedance was concerned.

Limitations of the methodzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It was not investigated whether the reflections at the joining point between the semi-rigid

cables and the SMA connectors caused errors of significant magnitude. The semi-rigid

cables used for measurement had at least a -20 dB or lower reflection coefficient at the

joining point. This was assumed to be negligible. It is not known what the effect will be

at much higher frequencies.

The method only provides information on the antenna impedance. It can not provide any

information on other parameters such as the antenna radiation pattern, gain, axial ratio,

etc.
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Similarly, to find Y22 sourcezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVI is short circuited:

Y22zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= hl 1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V2 Vl=O = z, II Ze

(4)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Appendix

Derivation of the common mode and differential mode

impedance as seen by a two port network analyzer.

Figure 1: Circuit model for a complex antenna load when both ports of the network

analyzer are connected.

From fig. land using Y-parameters it is seen that

t, = Yll VI + Y12V2

t, = Y21 VI + Y22V2

To find Yll source V2 is short circuited:

(1)

(2)

Yll

(3):::} Yll
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VI V2=O = Ze
-1

Y21
(5)::::}Ze

Substitute (5) into (3) and solve for Za :

1
Za =

Y22 + Y21

Similarly, to find Zb, substitute (5) into (4) and solve for Zb yielding

Zb = 1
Yll + Y21

From fig. lit is seen that when the load or antenna is driven differentially, i.e. Vc = 0,

the input impedance is Zdiff = Ze II (Za + Zb).

The common mode impedance of the antenna, i.e. Vd = 0, is obtained as follows:

With Vd = 0, the circuit in fig.1 simplifies to the source Vc driving the impedances Za

and Zb in parallel. Therefore

Zeommon = Za II Zb.
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