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It is pointed out that the BRS gauge-fixing·procedure has wide applicability beyond what it is as 
the usual gauge-fixing method. The examples we discuss are the equivalence theorem, generalized 
field transformations and a natural derivation of the gaugeon formalism. We also propose a direct 
way of BRS gauge-fixing for open gauge theories. 

§ 1. Introduction 

The simple BRS gauge-fixing procedure l
) is an elegant way of introducing 

gauge-fixing and FP ghost terms in a Lagrangian. It is widely used in order to 
perform Lagrangian gauge-fixing of gauge-invariant systems (with closed gauge 
algebras). However, it seems not fully recognized that the BRS procedure itself 
possesses much larger applicability beyond what it is as the usual gauge-fixing 
method. 

In this paper, we point out that the BRS procedure provides a generic and useful 
framework for introducing new fields into a Lagrangian which are absent at the 
beginning, without altering the dynamical content of the system. We mention such 
examples as the equivalence theorem,2) generalized field transformations including 
spectrum-changing ones,S) and a natural derivation of the gaugeon formalism.4

) We 
also propose a direct way of BRS gauge-fixing for general gauge theories. It enables 
us to perform simple BRS gauge-fixing of open (and/or reducible) gauge theories. 
We deal with the·Siegel superpoint particle5

) for definiteness, which we take as one of 
the simplest systems with open gauge algebras. 

§ 2. Equivalence theorem 

For simplicity, let us adopt a Lagrangian (in n-dimensional spacetime) 

(1) 

where ¢ is a real bosonic field. (Extensions to cases including a number of bosonic 
and/or fermionic fields are straightforward.) We can realize a local point transforma­
tion*) ¢=/(¢') in the Lagrangian as follows: We first introduce a new field ¢' and 
regard the original Lagrangian (1) as a function of the two fields ¢ and ¢' but actually 
independent of the latter. Then (1) is trivially invariant under an arbitrary deforma­
tion of the field ¢', namely, ¢' is a gauge degree of freedom. Hence we are led to 
introduce a BRS transformation 

*) In the quantum-mechanical case, the notion of' operator-ordering should be properly taken into 
account.6

) 
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760 K.-J. Izawa 

oc/J=O; oc/J'=c, oc=ib, (2) 

and perform BRS gauge-fixing by adding 

.£B= - io[ c{c/J- j(c/J')}]=b{c/J- j(c/J')}- ic :;, c 

to the Lagrangian (1). Integrating out the fields band c/J successively, we are left with 
the desired Lagrangian 

(3) 

endowed with the reduced BRS transformation 

oc/J'=c, oc= - i ~; (j(c/J')). (4) 

This transformation law is obtained from the BRS transformation (2) by eliminating 
the fields band c/J with the aid of their equations of motion b= - 0.£ /oc/J and c/J= j(c/J'). 
The theory (3) is clearly equivalenf) to the original one (1) by construction. 

On the other hand, we can start from the naively transformed Lagrangian 

(5) 

Then, unitarity of the theory necessitates8
) adding a Lee-Yang term9

) 

(6) 

t~ the Lagrangian (5). The resultant Lagrangian (5)+(6) coincides with the Lagran­
gian (3) with the ghosts c and c integrated out. This is in accord with the equiva­
lence theorem2

) which states that two Lagrangians which are naively transformed to 
each other by a point transformation yield the same theory after canonical quantiza­
tion. 

§ 3. Generalized field transformation 

The BRS procedure for field transformations exposed in the previous section can 
be applied not only to point transformations but also to spectrum-changing ones3

) 

including spacetime derivatives of the field c/J'. For example, let us consider the 
transformation c/J=j(c/J')=(ol'ol'+m2)c/J'. This is not a one-to-one correspondence,*) 
and the spectrum of the naively transformed theory '£(j(c/J')) is different from that of 
the original one (1). Hence they are not equivalent to each other on the contrary to 
the case of point transformations. Nevertheless,the equivalence between the two 
theories (1) and (3) still holds (if the latter theory exists at all), because the ghosts 
compensatelO

) the extra modes introduced by the spectrum-changing transformation. 

*) This multi-valuedness of ,pf->(j/ is a continuous one, which can be compensated by introducing FP 
ghosts, as is stated shortly. Transformations containing discrete multi-valuedness such as ,p=,p'_2,p'2+,p'S 
might be problematic. 
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Simple BRS Gauge-Fixing 761 

Furthermore, such generalized transformations as ¢= f( ¢', ¢,,) can also be treat­
ed in a similar manner. As an example, we investigate gauge transformations in this 
framework. Let us consider the transition from Coulomb to Landau gauge in the 
pure abelian gauge theory of a gauge field AI', whose Lagrangian is denoted by .£ A. 

This transition can be made by a gauge transformation 

(7) 

which we regard as a change of the variables AI' into A~ and A, and apply the BRS 
procedure to it. Note here that contrary to the case of usual spectrum-changing 
transformations,3) it is not necessary in the present scheme to use an explicit form of 
A in terms of A~. The need for an explicit form of A would cause difficulty when one 
treats the corresponding nonabelian case. 

The choice of Coulomb gauge leads to the Lagrangian .£ =.£ A +.£ c where .£ c is 
the following gauge-fixing and FP ghost terms: 

Here we have used the BRS transformation law 

(8) 

The additional BRS transformation for the change of variables (7) is given by 

(9) 

The FP ghost and NL field corresponding to the new variable A were denoted by 
C - e and B + b, respectively, for later convenience. In order to impose the relation 
(7), we add a BRS gauge-fixing term 

.£B= -io[ el'(AI'-A~+o~)+ C(OiOiA +ooA'O)] 

=bl'(AI'-A~+o~)-iel'(el'-oI'C) 

+(B+ b)(OiOiA + ooA'O)+ iC(OiOi{C- e}+ooeO) (10) 

to the original Lagrangian.£. Integrating out the fields bl', AI', el' and el'successive­
ly, we are left with the transformed Lagrangian 

(11) 

where .£ A' is the same as .£ A except for AI' replaced by A~. Mor~over we can 
integrate out e, e, B and A sequentially to obtain the Lagrangian 

.£'r=.£ A' + bo~'1' + iCol'ol'C 

with the reduced BRS transformation law (corresponding to (4) derived in the previ­
ous section) 

(12) 

This exactly corresponds to the choice of Landau gauge, where the gauge-fixing and 
FP ghost terms are given by .£ L = - io( Co~'I') in terms of the BRS transformation 
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762 K.-J. Izawa 

(12). 
Inclusion of matter fields and/or extensions to nonabelian cases are straight­

forward, and we omit to present them here. (See the treatment of nonabelian gauge 
theory in § 5.) 

§ 4. Gaugeon formalism 

In this section, we consider an application of our scheme to a subject other than 
field transformation. This gives an example which shows the utility of the method as 
a book-keeping device for introducing new fields into a Lagrangian without affecting 
the dynamical content of the system. We provide a natural derivation of the gaugeon 
formalism4

) with a slight improvement. 
The gaugeon formalism was proposed in order to accommodate gauge transfor­

mations to gauge theories with linear covariant gauge-fixings. Quantum gauge 
theories with different gauge choices are described in totally different Hilbert spaces. 
Hence one cannot perform quantum gauge transformations within one theory subject 
to one particular gauge-fixing. Nevertheless, the gaugeon formalism enables one to 
make quantum gauge transformations among covariant gauges with the help of a 
gaugeon field G which behaves as a gauge-transformation function. 

For simplicity, we also deal with the case of pure abelian gauge theory considered 
in the previous section. The gauge-fixing and FP ghost terms to be added to ...fA in 
a covariant gauge are given by 

in terms of the BRS transformation (8), where a is a gauge parameter. Introducing 
a new field G and its BRS transformation law 

oG=C, oC=iB, 

we can add another term 

to the Lagrangian ...fA +...f a. The total Lagrangian 

...f T=...fA +...f a+...f G 

is easily seen to be covariant under a (quantum) gauge transformation 

Ap.=A!;/---[3op.G, C=C'+[3c 

(13) 

with their BRS partners c= c' - [3C, B=B' + [3b (and the other fields are intact), where 
[3 is an arbitrary constant. That is to say, ...f T changes to 

under the above transformation. Therefore the transition between two different 
gauges, ...fa and ...f a+p, can be made directly by a quantum gauge transformation in the 
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Simple BRS Gauge-Fixing 763 

gaugeon formalism (13). We note that the original formalism given ad hoc in Ref. 4) 
needs old-fashioned subsidiary conditions a la Gupta-Bleuler/O) while the present form 
(13) is clearly capable of being implemented by Kugo-Ojima's subsidiary conditionl),IO) 
to insure physical unitarity. 

§ 5. BRS gauge-fixing by field transformation 

In the preceding sections, we mainly concern ourselves with the way of perform­
ing field transformations by means of BRS gauge-fixing. In this section on the other 
hand, we reconsider gauge-fixing of (nonabelian) gauge theories from the viewpoint of 
field transformation. 

Gauge-fixing in a gauge theory is a gauge transformation in nature. Let G be a 
compact Lie group and g its Lie algebra. We consider the Yang-Mills Lagrangian 
.LA of a gauge field AI' taking values in g. The choice of covariant gauge means that 
one performs a field transformation*) from AI' into A~ and g such that 

(14) 

where g is a field taking values in G, and that one uses the transformed field A~ instead 
of the original one AI'. 

We can make this transformation along the lines of the BRS procedure proposed 
in § 3. We first introduce the following BRS transformation: 

-ig-1og=c, oc=ib. 

Here we have written the ghost corresponding to g as igc so as to make c be 
g -valued. Then, to impose the relation (14), we add a term 

.L B= - io[ cp(Ap- gA~g-1- i(Opg)g-l) + co~'p] 
= bp(Ap- gA~g-1- i(Opg)g-I)- icp(cp- g(DpC)g-I)- io[ co~'p] 

to the original Lagrangian .LA, where Dpc=opc+i[A~, c]. 
Integrating out the fields bP

, AI', c P and Cp successively, we are left with 

(15) 

The reduced BRS transformation (obtained in an analogous way to the cases (4) and 
(12)) is given by 

(16) 

The expression (15) is nothing other than the total Lagrangian of Yang-Mills theory 
in the Landau gauge. We note that the form of the BRS transformation -ig-l(jg 
=c clearly indicates that the FP ghost c is a Maurer-Cartan form on the group of 
gauge transformations. 10) It immediately leads to the following BRS transformation 

*) If G is nonabelian, this gauge transformation seems to have discrete multi-valuedness, which corre­
sponds to the Gri1::)ov ambiguityll) present in the usual gauge-fixing. 
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764 K.-J. Izawa 

law: 8c= -(ij2)[c, c]. This is automatically consistent with the nilpotency of 8 and 
the transformation law 8A~=Dpc. 

It is remarkable that we have never fixed the original gauge degree of freedom of 
the field AI' in the above procedure of 'gauge-fixing', as is clear from 8Ap=O. The 
Lagrangian (15) still has the field g as one of its variables, though g does not appear 
in it explicitly because of the original gauge invariance of ..I A. We only make a 
change of field variables AI' into A~ and separate the gauge degree of freedom g. 

The gauge-fixing procedure proposed above can be applied in an analogous 
manner to open gauge theories, which we study in the next section. 

§ 6. BRS gauge-fixing of the Siegelsuperpoint 

Respecting locality and covariance which play important roles in relativistic field 
theories, gauge-invariant systems generally have open gauge-transformation genera­
tor algebras.l2} Unfortunately, open gauge theories are beyond the scope of the 
ordinary Lagrangian BRS gauge-fixing procedure/) which is a transparent method for 
covariant tre~tment of closed gauge theories. *) 

The Lagrangi~m extended BRS formalism of Batalin and Vilkovisky14) is generic 
enough to provide gauge-fixed actions for open gauge theories with on-shell nilpotent 
BRS transformations. However, in contrast to the simple BRS gauge-fixing proce­
dure, it is an implicit method in the point that the gauge-fixed action is obtained 
through solving the master equation.**) 

In this section, we consider non-extended BRS gauge-fixing method for open 
gauge theories in the spirit of Ref. 1). Namely, we perform a direct and explicit 
construction of the gauge-fixed action by defining off-shell nilpotent BRS transforma­
tions and adding BRS-exact terms to the action. We apply the gauge-fixing proce­
dure proposed in the previous section to the Siegel superpoint particle5

) as a toy model 
which has open gauge algebras of simple forms. Off-shell nilpotency is built in the 
procedure itself. Gauge-fixing and ghost terms are incorporated into BRS-exact 
form, as is the case for theories with closed algebras. We see that the present scheme 
provides a clear-cut understanding on the origin of higher-ghost terms16

) appearing in 
the resultant gauge-fixed theory. 

Let us consider the Siegel superpoint in four dimensions, for definiteness, which is 
a supersymmetric extension of a relativistic point particle. Its action reads***) 

(17) 

where 7[, f) and ¢ are Majorana fermions, dots denote the r-derivative, 7f is the Dirac 

*) Algebra closure is a necessary and sufficient condition for the existence of off-shell,nilpotent BRS 
transformation.13

) 

**) Roughly speaking, 'the Batalin·Vilkovisky master equation is the Ward· Takahashi identity stemming 
from the BRS symmetry for the effective action with the source fields in the latter corresponding to the 
antifields in the former. 

***) The expression given in Ref. 5) is obtained from the Lagrangian below through a field redefinition 
e->e-28</J and J[->J[+ijJ8. 
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Simple BRS Gauge-Fixing 765 

conjugate of 7[, and jf = yp. This action is invariant*l under the following gauge 
transformation: 

x=x'-~P-iff'YK, e=e'- t-Zal{(e'-ijfI/J') , 

7[=7['-aP2K, f)=f)'-ijfK, I/J=I/J'- K; 

(18) 

where a is an arbitrary real constant. We note that the terms proportional to a in 
this transformation constitute an on-shell trivial symmetry by themselves. The 
generator algebra of the above gauge transformation is closed only when a=O. 
When a=i=O, the ~lgebra is open and it is impossible5l to apply straightforwardly the 
scheme described in Ref. 1). But in the new setting below, necessary procedure is 
much the same as that in the closed algebra case considered in the previous section. 

We introduce the following BRS transformation: 

O~=C, oC*=iB; 

ox' = Cx , oCx* - iBx ; oe' = Ce , oCe* = iBe ; 

Notice that the antighosts are denoted by C*, c* and so forth throughout this section. 
(c means the Dirac conjugate of c.) Then we add a term 

L B = - io[ Cx*(x-x' +~p+ iff'YK) + Ce*(e- e' + t +Zal{( e' - ijfI/J'» 

+ C71:*(7[-7[' + aP2K) + co*(f)- f)' + ijfK) + c",*(I/J- I/J' + K)+ C\e' +ii*I/J'] 

to the original Lagrangian L to implement the relation (18). Integrating out the 
appropriate variables, we are left with 

ST= 11drLT; LT=L'-io(C*e'+ii*I/J') , 

where L' is the same as L except for x, e, 7[, f) and I/J replaced by the corresponding 
primed variables. 

Difference from the closed algebra case lies in the reduced BRS transformation 
law obtained in a similar manner to the one (16) in the previous section: 

ox'= Cp-ap2 CYK+ ff'yc, oe'= C+Ziac( e'-ijfI/J')+Zal{jc, 

07['=iaP2c , of)'=-jfc, oI/J'=ic, oK=ic, oC*=iB, oc*=b. (19) 

The BRS transform of the variable e' explicitly contains the gauge-transformation 
function K due to the algebra nonclosure. This results in troublesome non-decoupling 

*l There are some subtleties concerning actions due to surface terms and boundary conditions in 
connection with gauge choices to be made.l5) We impose the vanishing boundary conditions on the gauge­
transformation functions to freely discard total derivatives containing them which appear in Lagrangians. 
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766 K.-J. Izawa 

of the gauge degree of freedom K from the Lagrangian L T : 

LT=L' + Be' +iC*[C+2iae( a'-ijfq,')+2alU5e] + bq,'+i"i* c . 
As a matter of fact, the form of the above Lagrangian allows us to 'sweep away' 

the variable K from it. Namely, we make a field redefinition 

x"=x'-2iaC* J[ye (20) 

to get the expression 

LT=L" + Be' + iC*[ C+2iae( a' - ijfq,')] + bq,' + i"i* c , (21) 

where L" is the same as L' except for x' replaced by x". The BRS transformation 
law (19) yields that of the variable x" as follows: 

ox"=CP-a(p2-2B) eYK+ 7t'ye-2aC* eye. 

Note that the variable K still appears in the BRS transformation, and it maintains the 
off-shell nilpotency. 

Because the variable K, which is absent from the Lagrangian (21), is a pure gauge 
degree of freedom, we can set K=O without affecting the dynamics on shell. Then we 
obtain the total theory (21) with the following BRS transformation law: 

ox" = Cp+ 7t'ye-2aC* eye, oe'= C+2iae( a' - ijfq,') , 

(22) 

This is a symmetry of the Lagrangian (21) by construction. However, it has lost the 
off-shell nilpotency and is nilpotent only on shell. It is clear that the cubic ghost term 
in ox" just stems from the field redefinition (20) we performed. 

We can further simplify the form of the Lagrangian by means of a field 
redefinition 

Jr"=Jr'-2aC*c. 

We then arrive at the following expression that is independent of the parameter a 

introduced in the transformation (18): 

LT=L"'+Be'+iC*C+ bq,'+i"i*c, (23) 

where L'" is the same as L" except for Jr' replaced by Jr". The BRS transformation 
law (22) now provides a simple one 

ox"=Cp+ 7t"ye ,. oe'=C+2iae(a'-ijfq,') , 

oJr"=ia(p2-2B)e, o8'=-jfe, oq,'=ic,' oC*=iB, oe*=b. 

We note that this looks like a naive modification of the original transformation (18) 
with the terms proportional to a also constituting an on-shell trivial symmetry by 
themselves. 

The above procedure can be applied to the on-shell reducible case in a similar 
way.l7) This is no accident, since open algebras are none other than on-shell closed 
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algebras. l2
) 

§ 7. Conclusion 

We investigated generalized field transformations in Lagrangians by means of the 
BRS procedure. That was shown to provide a useful book-keeping device for 
introducing new fields into a Lagrangian without changing the dynamics of the 
system. It led, for example, to a natural derivation of the gaugeon formalism (13) 
straightforwardly. Gauge-fixing was reconsidered in this framework, and the simple 
BRS gauge-fixing method l

) was generalized to be applicable to generic gauge theories 
including those with open gauge algebras. We performed simple BRS gauge-fixing of 
the Siegel superpoint (17) as an example which has open gauge algebras. The 
present procedure clarified the origin of higher-ghost termsl6

) in the gauge-fixed 
theory. 

In addition to the examples we have considered so far, there remain various 
possible applications of the method explored in this paper, since generalized field 
transformation is quite a generic tool to investigate Lagrangian field theories in a 
kinematical manner. For example, the collective-coordinate methodl8

) can be sys­
tematically developed in this framework, and the superfield formulation of stochastic 
quantizationl9

) is nothing other than that of the BRS symmetry arising in the Lagran­
gian formalism of stochastic quantization. We hope that the BRS framework pro­
vides a simple and unified view on field-theoretical 'identities' derived separately in 
many other approaches. 
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