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Abstract

This paper demonstrates how to determine canonical views of objects in
a way that is simple, robust and versatile. Common parlance loosely defines
canonical views as the “front”, “side”, and “top” views of an object. Our
approach determines these views for objects whether represented by images
or three-dimensional points; neither image segmentation nor model analysis
is required. It is easy to introduce constraints so that other views can be
determined, as desired. We explain our method and compare it qualitatively
to alternatives.

1 Introduction

Canonical views of objects are of interest to both the Computer Vision [2, 9, 11] and
the biological vision [1] communities, indeed the term “canonical view” seems to have
been coined in 1981 by the latter community [7]. Although literature is unable to agree
on a common definition of what a canonical view is, they share two points in common:
(1) all are premised on the idea that “view stability” of some kind is important and a
complex algorithm is needed to determine these views, and (2) none determine views
corresponding to the lay definition that canonical views are the “front”, “side”, and “top”
views.

We differ on both points – the contribution of this paper is to provide a method that
automatically determines the front, side, and top views in a way that is simple, robust,
and versatile. Our motivations were both philosophical and pragmatic. From a purely
philosophical stance it is important to conform to commonly held definitions rather than
to stipulate definitions of one’s own; breach of this principle has given rise to disagree-
ment as to what a canonical view actually is, typically justified by appeal to criteria that
are related to efficiency of representation. Pragmatically, the lay definition of canonical
views is of value, and is often an efficient representation. It is widely used in technical
drawings produced by architects and engineers, in medical photographs and drawings,
in photographs of museum pieces, and in paintings produced by children and in many
schools of Art spread throughout all history and every continent.

Empirical evidence in support of the intuition that humans seem to prefer the front,
side, and top set of views can be found in the work of Minet al. [12] where people were
asked to sketch views of 3D objects and found,



the most frequently chosen views were not the characteristic views predicted
by perceptual psychology, but instead ones that were simpler to draw (i.e.
front, side and top views).

Also the findings of Perrett and Harries [8] suggest that people often prefer views aligned
to the principal axes of three-dimensional objects. Unfortunately principle axes do not
always provide canonical viewing directions as we understand them, most obviously for
objects that exhibit little of no symmetry — an L-shaped building, for example. Despite
this, the notion that axes of symmetry provide a canonical basis set is a useful idea; Hong
et al. [6] make use of such basis sets in a variety of ways, including reconstruction of
objects from a single image.

Yet much of the Computer Vision literature eschews the common definition of canon-
ical views (equivalently; canonical viewing directions or canonical reference frames).
Freeman [3] and also Weinshall and Werman [11] argue in favour of the most likely views
one the grounds that these are the most stable, in the sense that small changes from them
make the least difference. Similarly, and more recently, Peterset al. [9], prefer views that
cover the widest area of the viewing sphere. Dentonet al.[2] state that canonical views are
those that most efficiently characterise a set of views, and use distance measures between
views to determine the canonical set. It is clear that the definition of what constitutes a
“canonical view” depends upon the applications that the researcher has in mind; some
kind of stable view is preferred because it is assumed reconstruction applications benefit
from such views.

Our definition of canonical views is based on observation; we definecanonical views
to be the most unique amongst all views, subject to orthogonality constraints. In other
words, canonical views are the least likely views and tend to be highly unstable.

Our method for determining canonical views, finding the rarest datum amongst a set,
is simple statistics. Because we are looking for outliers the system tends to be robust to
small variations. The system is versatile not only because we can generate datum from
images or projections of point sets, but because we can associate viewing directions and
so impose geometric constraints. Furthermore we can change our mind about what a
canonical view is and choose the most likely datum, that emulates the broad features of
that section of Computer Vision literature which we ostensibly disagree with.

2 Finding Canonical Views

Our problem is to determine these canonical views, given set of images from the view
sphere, or part of the view sphere. We assume invariant internal camera parameters, and
that the distance between the object and camera changes little. We define a set of canonical
views as the least likely set of views, subject to constraints. The constraints we choose
are that the view directions should be mutually orthogonal. We hope to obtain the front,
side, and top views.

We begin by normalising images to allow for lighting variations; we ensure pixel
values sum to unity; we perform no other preprocessing. As is common, each image is
treated as a high-dimensional vector in which each pixel value is a vector element. Colour
pictures are converted to greyscale beforehand.

Given a set ofn data (images)xi , each with an associated viewing directionf i we build
an eigenmodelΩ = (n,µ,U,Λ) to describe their distribution. The high volume of data



(up to 2500 images) and high dimension of each vector forces us to use an incremental
approach when constructing the eigenmodel [4]. Typically we retain about97% of the
eigenenergy, leaving a low dimensional representation of each images, typical 10 or 20
eigenvectors remain.

We then measure the Mahalanobis distance

mi = (xi −µ)TUTΛ−1U(xi −µ)

of each datum. The image with the largest Mahalanobis distance is the least likely, so it
is selected as the initial canonical viewy1, and a corresponding view directiong1

k = argmax
i mi (1)

y1 = xk (2)

g1 = fk (3)

Having obtained an initial canonical view we filter out all those that were not captured
from a (nearly) orthogonal vantage point and select the least likely image and view direc-
tion from amongst those that remain:

J = {i : |gT
1 f i |< ε} (4)

k = argmax
i mi subject toi ∈ J (5)

y2 = xk (6)

g2 = fk (7)

Whereε is typically a measure of machine accuracy, but could be increased to relax the
orthogonality constraint. We continue this procedure to obtain the final canonical view:

J ← J ∩{i : |gT
2 f i |< ε} (8)

k = argmax
i mi subject toi ∈ J (9)

y2 = xk (10)

g2 = fk (11)

Although this simple approach has proven very effective it can sometimes produce the
oppositeview to that desired, the back instead of the front, for example. This behaviour
is easily remedied by selecting the opposite point of view too, provided it lies within the
data set.

Figure 1 shows a typical surface constructed by scaling the unit viewing hemisphere:
pi = Mi f i . It is clear that the points lie on a convoluted surface, which we will call a
“Mahalanobis surface”. Canonical views lie on convex lobes of the Mahalanobis sur-
face. Figure 2 shows the corresponding canonical photographs, with views from opposite
directions appended. Figure 3 is a small gallery of results obtained from various objects.

3 Variations on a canonical theme

Here we demonstrate the versatility of the method by considering a few of the many
variations that could exist.



Figure 1: A typical Mahalanobis surface, in this case for the set of photographs repre-
sented in Figure 2. Canonical view directions views are shown in colours, red, green,
blue.

Figure 2: Canonical views identified from 2500 images, using the Mahalanobis surface
in Figure 1; the three left-most pictures correspond the identifiedfront, side, andtopview
directions in that order. The two right-most pictures have been appended as opposite
views. Images courtesy of Peterset al. [9].

3.1 Removing the explicit orthogonality constraint

Some readers might object to the forcing of orthogonality between canonical views. This
issue is addressed by processing the Mahalanobis surface. We have already observed that
this surface is highly convoluted, and that the canonical views thus far lie on convex sec-
tions. Ideally we would like to partition this surface into convex and concave components
so as to create disconnected components. The number of canonical views would then
be equal to the number of connected components, and the view with the largest Maha-
lanobis distance in each component would be taken to be a canonical view. Furthermore
we might hope to broaden the definition of “canonical view” to take views from the con-
cave partitions; the views so obtained could then be compared to the views obtained by
other methods because these would be the most likely views.

Unfortunately the Mahalanobis surface is small, noisy, and difficult to segment into
convex and concave parts. Furthermore, the concave parts form a single connected seg-
ment; the convex components appear as “islands” within a convex sea. We therefore adopt
a slightly different approach, as follows.

We consider the Mahalanobis surface as a height field of two independent variables,
(θ ,φ). This is robustly filtered to identify local minima, maxima, and saddle points. We
then look for groups of such critical points that are as widely spread as possible; if maxima
are used we can closely reproduce the front, side, and top views results obtained in the
standard version of our approach; if minima are used as critical points we obtain a set of
the most likely views.

The robust filter processes each direction independently, so we need only consider



Figure 3: A gallery of results for various objects. The toy rocking-horse, the toy camper-
van and the small clay statue were all obtained on a low-quality camera with the object
being turned by hand, using a table-top grid as a guide; twelve images per object, with a
single rotational degree of freedom. The doll images are courtesy of Adam Baumberg of
3D-SOM, and were acquired with a high-quality camera, the object being on a turn-table;
15 images were used to decided canonical views. Some images taken from above and
below the doll were provided but not used.

a one dimensional problem. Given a line of constantθ , say, we look for all minima
and maxima using a morphological filter based loosely on sieves [5]. An array element at
locationi is a maximum of integer half-widthw if h(θ , i)≥ h(θ , j) for all j ∈ [i−w, i +w].
We define a minimum similarly. Thus we construct a scale-dependent map of extrema,
m(θ ,φ ,w) = 1 at maxima,−1 at minima and0 elsewhere in row-by-row fashion.

An appropriate scale is determined using the principle that salient features are stable
over scale; this was based on the maximally stable regions advocated by Obdržálek and
Matas [10]. Given a set of mapsm(θ ,φ ,w) the squared distance between adjacent maps is
d(w,w+1) = |m(θ ,φ ,w+1)−m(θ ,φ ,w)|2. The number of extrema at scalew is n(w).
We use an exhaustive search to minimised(w,w+ 1)/n(w), and hence an appropriate
w, and hence a set of stable extrema. Having obtained stable maps in each direction,
mθ (θ ,φ) andmφ (θ ,φ) it is easy to find minima, maxima, and saddle points,max(θ ,φ) =
(mθ (θ ,φ) > 0)∧ (mφ (θ ,φ) > 0), for instance.

To determine a set ofN canonical views we consider allN− tuplesof the critical
points (minima, maxima or saddle points) to find the tuple whose viewing directions
are the most spread. The definition of “spread” we used is designed to coincide with
the orthogonality constraint previously used without imposing it directly. SupposeX =



[x1 . . .x−N] is an N-tuple of viewing directions, with eachxi ∈ℜ3. We define thespread
of these direction vectors as proportional to the mean of all inner products:

s(X) = 1− 1
9
[111](|X′X− I |)
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 (12)

in which |Y| is a matrix with all elements their absolute value andI is the(3×3) identify
matrix. We search for theN− tupleto maximises(.). Just as when an orthogonality con-
straint was explicitly enforced the system can produce “back” views rather than “front”
views; again just as easily handled by arguing that a viewing direction can be looked along
in two ways, and so picking opposite views that exist.

Figure 4 shows that this method is capable of producing canonical views that closely
conform to our definition. Unfortunately the generality brought by this modified definition

Figure 4: Canonical views of a toy cat determined by analysis of the Mahalanobis surface,
subject to loose geometric constraints. The initial 3-tuple of pictures chosen are boxed,
opposite views that exist are appended; compare this to Figure 2.

can lead to a slight degradation on performance; as demonstrated by the results for a toy
dwarf, shown in Figure 5.

3.2 Working with point sets

As well as sets of images our method can be used to generate canonical viewing directions
for 3D computer models. Using only point sets a sphere of viewing directions is chosen
and the points projected down to a plane using an affine camera. An eigenmodel is then
built from the projected points and canonical views can be chosen from the eigenmodel
just as for images, see Figure 6. Here we also see the process working well on a non-
symmetrical object, namely the violin.

4 Comparison with previous work

Recall that the previous literature defined canonical views as being those views that are
in some sense the most-likely or most-stable. The ability to choose maxima, minima or
saddles as critical points, introduced in Subsection 3.1, allows us to conform to or deviate
from that general line, as we choose.

Choosing to conform to the general definition ofmost-likelyviews, Figure 7 compares
canonical views of the toy cat using three methods. The views determined by our method
used minima of the Mahalanobis surface as critical points. The Peter’set al.reported
canonical views for the toy in [9]; views we have reproduced here. The method of Den-
ton et al. [2] requires the solution of a graph-cut problem subject to (non-geometric)



Figure 5: Canonical views of a set of 2500 images using 3-tuples, row by row; up to two
images may be appended to the right each row because canonical views can occasionally
locate the “back” instead of “front” view, as explained in the body of the text; initially
chosen images are boxed. Top row shows canonical views based on the explicit enforce-
ment of orthogonality; second row the maxima of the Mahalanobis surface for the object;
middle-row are views based on minima; bottom-row uses saddle-point images. Images
courtesy of Peterset al. [9].

Figure 6: A teapot and violin objects (far left) with canonical views of the teapot and
violin objects chosen from 2500 views of point sets.

constraints. For a large number of images (2500 in the Tom set) there are25002 edges in
the graph, making a graph-cut approach very expensive. This sets a practical limit on the
graph-cut approach, which forces us to take a single ring of views with a fixed altitude;
Dentonet al. [2] only provide canonical views at a single altitude also.



Figure 7: Canonical views of a toy cat, defined now as the most-likely view. Top row:
our method of Subsection 3.1 using minima of the Mahalanobis surface. Middle row:
as reported by Peterset al. [9]. Bottom row: as determined by our implementation of
Dentonet al. [2]

5 Discussion and Concluding Remarks

We have introduced a method to determine canonical views of objects. Its novelty arises
from the fact it is able to determine the front, side, and top views of an object that conform
to the lay understanding of characteristic views. We claim simplicity, robustness and
versatility as advantages.

Simplicity is an uncontroversial claim, the basic algorithm is surprisingly straight
forward. The slightly more complex but more general algorithm can be simplified by not
filtering for stable extrema but choosing all local extrema instead. In our experience the
N-tuple of views chosen as canonical remains the same, but the search takes longer. This
is because the time taken to find anN tuple from a set ofk elements rises in proportion to
kN; filtering reducedk. One possible way forward would be to introduce a more efficient
search, perhaps by maximising spread using branch-and-bound.

Robustness is demonstrated by the top three rows of Figure 3. Recall the object in
these were turned by hand over a radial-polar grid placed on the table. This led to notice-
able translations of the object, both to and fro and left and right; these variations are most
obvious when the images are quickly flicked through. The movement is not too great,
but sufficient to show some tolerance and so raise questions such ashow tolerant? that
we have not answered here. The camera was not mounted, so that some photographs are
blurred; the photograph showing the left flank of the rocking-horse is a very poor pho-
tograph (most evident when seen at full size). Again the question of degree of tolerance
arises. Also, in these hand acquired images, lighting variations are considerable, espe-
cially in the camper van set where sharp specular highlights, from the van’s trimmings,
appear and disappear. The simple normalisation we used compensated for these; whether
more sophisticated pre-processing is required is an unanswered question.

Versatility has been shown in several ways. First we have shown that the algorithm op-
erates equally well whether images or 3D models are used as source data. Second we have



shown that we can produce nearly the same results using either by explicitly enforcing or-
thogonality, or else by choosing maxima of the Mahalanobis surface and maximising the
spread of view directions. Thirdly we have shown that by choosing minima instead and
them maximising we choose views that are conform more closely to the general under-
standing of canonical views as advocated by the technical literature. The conclusion is
that the Mahalanobis surface plays an important unifying role in determining canonical
views.

Choosing views by processing the Mahalanobis surface does not always produce ex-
actly the same set of views as explicit enforcement of orthogonality. Nonetheless, the fact
the two sets of views are close approximations of one another is important, for it shows
that the lay understanding of canonical views is not arbitrary but can be explained by
reference to an objectively measurable artifact; the convex lobes of Mahalanobis surface
tend to be in orthogonal directions. Hence we can consider the explicit enforcement of
orthogonality as a special case resting within a more general framework, rather than an
ad-hoc approach.

The approach does not always produce the results we wish for. Most obviously it
equivocates between the front and back views, say; our current solution is to append
directly opposite views. One possible resolution (if desired) would be further processing,
front views often exhibit greater variation than back views. Another might be to better
model the Mahalanobis surface, perhaps using a Gaussian Mixture Model to determine a
surface of equal likelihood. This might resolve those few cases where even the explicit
enforcement of orthogonality gives incorrect results (see the doll on the bottom row of
Figure 3).

The method works for some but not all asymmetric objects. The violin model in
Figure 6 shows a positive result, yet even in cases of failure the general shape of the
Mahalanobis surface remains intact. This suggests that it may pay to conduct future
analysis continue along the lines begun here.

A deeper comparison with the work of others may benefit this study, but our method
is undoubtedly more simple and more efficient; it is more versatile in the sense it supports
wider definitions of canonical view; testing robustness should be the objective of future
experiments. It might be interesting to map onto the Mahalanobis surface canonical views
that humans have chosen as canonical.

We conclude that our method reliably produces canonical views in a simple way, and
that the central role the Mahalanobis surface plays deserves further study.
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