
Simple Cognitive Modeling in a
Complex Cognitive Architecture

Dario D. Salvucci Frank J. Lee
Department of Computer Science Department of Cognitive Science

Drexel University Rensselaer Polytechnic Institute
Philadelphia, PA 19104 Troy, NY 12180

+1 215 895 2674 +1 518 276 4129
salvucci@cs.drexel.edu fjl@rpi.edu

ABSTRACT
Cognitive modeling has evolved into a powerful tool for
understanding and predicting user behavior. Higher-level
modeling frameworks such as GOMS and its variants
facilitate fast and easy model development but are
sometimes limited in their ability to model detailed user
behavior. Lower-level cognitive architectures such as
EPIC, ACT-R, and Soar allow for greater precision and
direct interaction with real-world systems but require
significant modeling training and expertise. In this paper
we present a modeling framework, ACT-Simple, that aims
to combine the advantages of both approaches to cognitive
modeling. ACT-Simple embodies a “compilation”
approach in which a simple description language is
compiled down to a core lower-level architecture (namely
ACT-R). We present theoretical justification and empirical
validation of the usefulness of the approach and framework.

Keywords
Cognitive modeling, cognitive architectures, ACT-R.

INTRODUCTION
Cognitive modeling of user behavior (or simply “user
modeling”) has emerged as a powerful technique for
exploring how users interact with complex systems. For
instance, recent investigations into the process of menu
selection using detailed cognitive models [4, 8], have
provided significant insights into how users coordinate eye
and mouse movements for different types of menus. In
addition to theoretical advances, cognitive modeling can be
a useful and practical tool for in the development life-cycle
of real-world systems. For example, the GOMS modeling
framework and its variants [see 7, 10, 11] have been used
successfully to predict user behavior and thereby speed up
the process of testing and evaluating new interfaces
[e.g., 7, 10]. In another example, integrated modeling of
driving and secondary-task behavior (e.g., dialing a cell
phone) has shown that modeling can help in evaluating
interfaces with respect to their potential for driver

distraction [20]. These and many other examples
demonstrate both the theoretical and practical benefits of
cognitive modeling for human-computer interaction.

Levels of Modeling
Cognitive user models have typically addressed behavior at
one of two levels of abstraction (or “grain sizes” of
modeling). Many models have addressed behavior using
higher-level frameworks that represent behavior as basic
user actions such as moving a mouse or pressing a key.
The GOMS framework and its variants [6, 10, 11] are by
far the most popular tool for representing user behavior at
this level. For instance, KLM-GOMS [6] provides a
simple framework for describing expert behavior as linear
sequence of steps, and its simplicity has benefited
evaluations of straightforward interfaces and tasks—e.g.,
the telephone-operator task [7]. While easy to learn and
use, such frameworks are limited to modeling expert
behavior in simple tasks (excluding more complex GOMS
frameworks like CPM-GOMS [see 11]) and say little about
lower-level user behavior (e.g., eye movements).

As a different approach, some models have represented
behavior using lower-level cognitive architectures that
describe “atomic components” of behavior [e.g., 2, 16,
17, 18] with cognitive steps of roughly 50 ms and parallel
perceptual and motor processes. Models developed within
cognitive architectures comprise condition-action rules that
gather perceptual knowledge, perform cognitive functions,
and issue motor commands. For instance, in the menu
models cited earlier [4, 8], investigators required a more
detailed level of analysis to understand coordination of eye
and mouse movements in menu selection, and thus turned
to the increased power of the production-system cognitive
architectures EPIC [17] and ACT-R [1]. The downside of
the cognitive architecture approach is that developing
detailed models typically requires significant training of the
modeler, and even with this training, writing these models
requires an order of magnitude more time than writing
models in simple GOMS-like frameworks.

Combining Levels of Modeling
In this paper we present a new framework, ACT-Simple,
that combines the simplicity of higher-level frameworks
with the power of lower-level cognitive architectures.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive modeling in a complex cognitive architecture. To appear in Human Factors in
Computing Systems: CHI 2003 Conference Proceedings. New York: ACM Press.

ACT-Simple is based on a “compilation approach” in
which a model, comprising basic perceptual, motor, and
cognitive commands (e.g., “look-at” or “press-key”), are
translated into lower-level production rules in the ACT-R
cognitive architecture [1]. We argue that the compilation
approach provides several significant advantages over
simply using a higher-level framework, namely that it
facilitates theoretical consistency, inheritance of
architectural features and constraints, model integration,
and model refinement. We also demonstrate the accuracy
of the ACT-Simple framework in the context of two
sample application domains, namely entering database
queries and dialing a cellular phone.

THE COMPILATION APPROACH
Our approach to integrating levels of modeling involves
compilation of a higher-level modeling framework to a
lower-level cognitive architecture. The process starts with a
high-level description of basic, GOMS-like actions of
several hundred milliseconds (roughly 100-1500 ms) in
duration—for instance, move the mouse to a new location,
press a key, or even think for given duration (to be
explained further in the next section). The process then
compiles, or translates, each command to a corresponding
representation in the low-level cognitive architecture (in our
case, condition-action production rules). In essence, the
compilation is very much analogous to the compilation of
a higher-level programming language such as Java or C
into lower-level assembly language.

Higher-level frameworks typically do not require any such
compilation process—they can run in simulation directly
(such as for NGOMSL [see 10]) or, even more simply, be
translated directly into run times (such as for KLM-GOMS
[6]). However, there are several significant benefits to
compiling higher-level models to a lower-level architecture,
as outlined in the following sections.

(1) Theoretical Consistency
Under the vision of a truly “unified theory of cognition”
[18], modeling at different levels, while perhaps each
having distinct benefits and uses, should be consistent with
levels above and below. For instance, the ACT-R
cognitive architecture [1] formulates knowledge as
condition-action production rules, but it has been
demonstrated to be consistent with higher-level unit task
descriptions [e.g., 17] as well as lower-level neural
implementations [e.g., 15]. The compilation approach
helps to maintain such consistency by using lower-level
knowledge as much as possible. For example, KLM-
GOMS assigns a time of 280 ms to pressing a key
(although this time can vary depending on skill level). In
the compilation approach, we compile the “press-key”
command down to a lower-level architecture and allow the
architecture to dictate the parameters of the action. To
continue our example, if we compile “press-key” down to
an analogous production rule in the ACT-R architecture,
ACT-R (particularly the perceptual-motor extensions
known as ACT-R/PM [5]) dictates how preparation of
various hand and finger movements affect the time needed
to press the given key. By allowing ACT-R to determine
the reaction time, we constrain the higher-level framework

to be more consistent with the (presumably well-tested)
predictions of the lower-level architecture.

It may not be surprising that difficulties may arise in the
realization of the compilation process—namely, that we are
forced to specify certain aspects of the model which the
higher-level description does not include. In the “press-
key” example, the reaction time depends on the actual key
pressed, but the higher-level model may not specify the
key; thus, the compilation process may need to make a
default assumption about the key—in some sense,
performing the “average” action over all possible
keypresses. We will make such assumptions for the ACT-
Simple framework that clearly work for our validation
studies; nevertheless, we recognize that these problems may
in the future require detailed analytic and empirical study.

(2) Inheritance of Architecture
One of the most important advantages of cognitive
architectures is that they incorporate built-in parameters and
limitations of human cognition and performance; in other
words, any model developed in the architecture necessarily
inherits the features of the architecture and thus becomes
more psychologically plausible. By translating a higher-
level model into a lower-level model in a cognitive
architecture, the resulting lower-level model also
automatically inherits these parameters and limitations,
thus adding an significant amount of new predictive power
to the model. For example, a simple KLM-GOMS model
can provide a total task time for a given interface, but
makes no predictions about learning and speed-up, memory
failures, etc. By translating this model (or a similar one)
to a model in an architecture such as ACT-R, Soar, or
EPIC, the model immediately inherits performance
parameters for common actions, thereby increasing
theoretical consistency as we have described earlier. In
addition, the model also inherits learning and performance
mechanisms built into the architecture, and thus can now
parallelize perceptual and motor processes with cognitive
processes, learn and optimize performance, make errors in a
human-like way, show individual differences in behavior,
etc. Compiling down to a lower-level architecture allows
for a priori predictions of behavior well beyond that of the
simpler model.

(3) Model Integration
As cognitive models become increasingly complex, there is
a burgeoning need for developing models as modules and
for integrating these “model modules” into full-scale
models of large, complex tasks. To facilitate such
integration, the models require a common descriptive
language with which to interact and communicate, and the
easiest way to guarantee such a common language is to
ensure that all models reduce to a single common
framework. The compilation process allows models
written at different levels of description to interact easily by
transforming the higher-level model to a lower-level one.
The lower-level model that results from compiling a
higher-level model can easily interact with other lower-level
models that have been written directly in the cognitive
architecture or have themselves been compiled. The
modeler thus has much greater freedom in utilizing the

framework that best suits the needs of the task. For
instance, recent work has demonstrated that integrating a
model of driver behavior with models of cell-phone dialing
can predict the affects of driver distraction on steering and
speed control [20]. While the driver model required the
complexity of the full-fledged architecture, the models for
cell-phone dialing (or other simple in-vehicle tasks) could
more easily have been written in a higher-level framework.
By compiling a simple dialing model to a cognitive
architecture, we can interface the model with the complex
driver model and run the two together in a simulation to
predict driver performance while dialing.

(4) Model Refinement
With a typical higher-level model of behavior, the modeler
starts and ends with this description and gleans whatever
information possible out of it. However, there are times
when the model raises issues that need further exploration,
and the higher-level model is insufficient to describe
behavior at that level—for instance, the coordination of
mouse and eye movements in menu selection [4, 8]. The
compilation process generates a lower-level model that has
greater potential to explore issues further, perhaps by
examining the lower-level model directly, or perhaps by
refining it further into a more detailed and accurate model.
As an alternative, the higher-level model may simply be
viewed as a starting point for modeling: the modeler
generates a first-pass description of behavior in the higher-
level language, compiles it to the cognitive architecture,
and then develops the model from there. Compilation thus
allows for an extremely flexible process of progressive
refinement in which the modeler can explore issues at a
variety of levels of detail and for a huge saving in time for
model development .

THE ACT-Simple FRAMEWORK
ACT-Simple is a higher-level framework built on the ACT-
R cognitive architecture [1]. ACT-Simple includes a set of
basic perceptual, motor, and cognitive commands that
compile down to ACT-R production rules. We first
provide a very brief overview of the ACT-R architecture,
and then outline ACT-Simple’s command set as well as the
compilation process that translates each command into a set
of production rules. The full ACT-Simple system is
publicly available for download, testing, and use.1

ACT-R
The ACT-R cognitive architecture is a production-system
architecture based on two distinct types of knowledge:
declarative and procedural. Declarative knowledge
comprises chunks of information that can represent factual
information (e.g., ‘4+3=7’) or encoded perceptual
information (e.g., the word ‘platypus’ on a written page).
Procedural knowledge comprises condition-action
production rules that act on declarative knowledge. When
the conditions of a production rule match, the rule can alter
declarative knowledge, initiate perceptual actions, and/or
issue motor commands. ACT-R incorporates cognitive,
perceptual, and motor processes that allow non-competing

1 http://hmil.cs.drexel.edu/projects/actsimple/

resources to operate in parallel (e.g., shifting visual
attention while moving a mouse). The perceptual and
motor processes, through recent major extensions to the
architecture [5], can interact with realistic simulations that
provide architectural models with an increased sense of
plausibility as accurate psychological models.

ACT-R has been applied to model behavior in an extremely
wide array of domains, from primarily cognitive tasks such
as choice, arithmetic, or scientific discovery [see 2] to
complex, dynamic, interactive tasks such air-traffic control
[17], driving [21], unmanned air vehicles [2], and real-time
multiplayer computer games [3]. The development of even
simple models requires at least several days to weeks2 of
experience using the system, and (arguably) takes months
to years to become an expert in its use. The ACT-Simple
framework aims to serve as a far simpler and easier
framework that shortens the learning curve but still takes
advantage of ACT-R’s many powerful features.

Command Set
Table 1 displays the ACT-Simple command set, where
brackets indicate optional arguments. The commands map
onto basic motor, perceptual, and cognitive processes as
follows:

• (move-hand position) : moves the right hand either to
the mouse (value ‘mouse’) or to the home position on
the keyboard (value ‘home’); uses the default ACT-R
performance parameters for determining the timing of
the movement (~650-800 ms).

• (move-mouse) : moves the mouse; requires that the
right hand is on the mouse; uses the default ACT-R
parameters for a mouse motor movement assuming a
distance of 500 pixels (~650-750 ms).

• (click-mouse) : clicks the mouse button (i.e., presses
and releases); requires that the right hand is at the
mouse; uses the default ACT-R parameters (~200-
350 ms).

• (press-mouse) : presses the mouse button (down only);
requires that the right hand is at the mouse; currently

2 The annual ACT-R summer school teaches the basic

components of the architecture in two weeks of full-time
study, by the end of which students can typically develop
basic yet interesting models of given task domains.

Table 1: The ACT-Simple command set, with
optional command arguments in brackets.

(move-hand position)

(move-mouse)

(click-mouse)

(press-mouse)

(release-mouse)

(press-key [key])

(speak [string])

(look-at)

(listen [time])

(think)

uses the default ACT-R parameters for the click-mouse
operator (~200-350 ms).

• (release-mouse) : releases the mouse button (up only);
requires that the right hand is at the mouse; currently
uses the default ACT-R parameters for the click-mouse
operator (~200-350 ms).

• (press-key [key]) : presses a key on the keyboard;
requires that the right hand is at the keyboard for a
right-handed key; if no key is specified, alternates
between ‘d’ and ‘k’ (the middle-finger keys for each
hand); uses the default ACT-R parameters (~200-
350 ms).

• (speak [string]) : vocalizes a string; if no string is
specified, defaults to saying “hello”; uses the default
ACT-R parameters (~350-1000+ ms).

• (look-at) : attends to and encodes a visual object; uses
the default ACT-R parameters assuming a distance of
500 pixels (~185 ms).

• (listen [time]) : listens to and encodes a sound; if no
time is specified, defaults to 500 ms.

• (think) : performs a cognitive action; uses the GOMS
value of 1.2 seconds.

It should be noted that in situations where default ACT-R
parameters produce a range of duration values, the actual
duration depends on the current context of the model, and
especially whether the features of necessary motor actions
have already been prepared; for instance, pressing the same
key twice in row generates a smaller duration for the second
press because ACT-R has already prepared the required
movement features and needs only to execute them (see [5]
for further information).

Modeling
Given the ACT-Simple command set, a modeler can create
a model by performing a task analysis of the desired task
and writing out the sequence of commands that correspond
to behavior in the task. In the following major section we
will present several such models for the sample tasks of
query entry and phone dialing. Overall, the ACT-Simple
framework is fairly similar to the KLM-GOMS framework
[6], and many of the basic techniques and issues for KLM-
GOMS modeling carry over to ACT-Simple. Because of
the high degree of similarity here, we refer interested
readers to the extensive GOMS literature for this
information, particularly the basics of task analysis and
initial model development. In particular, we should note
two important commonalities of ACT-Simple and KLM-
GOMS. First, ACT-Simple is meant to represent expert
performance — that is, well-practiced performance as would
be observed from an expert user. Second, ACT-Simple
models represent a linear, sequential behavior with no
significant deviation, as imposed by the specification of a
sequential list of commands. Nevertheless, after the
compilation to an ACT-R model, a modeler can indeed
take advantage of ACT-R’s learning mechanisms to
optimize behavior and choice (or “conflict resolution”)
mechanisms to incorporate decision making — one of the
benefits of the compilation approach.

Compilation
Given an ACT-Simple model comprising a sequence of
commands, the compilation process translates this sequence
into a set of ACT-R production rules. At the
implementation level, the compilation utilizes LISP
macros to perform this (very much syntactic) translation.
But more generally, the process can be characterized as
follows. First, an initial production is generated that
initializes the current goal to the first stage of running; in
essence, the productions maintain a counter to ensure that
the command sequence occurs in the correct order. Next,
the process translates each command to either one or two
corresponding productions, as described below. Finally,
the production set is wrapped in ACT-R-specific code to
initialize model state, declarative memory, etc., and the
resulting ACT-R model is ready to run. Note that the final
compiled model can be viewed directly and analyzed,
edited, and run just as any “hand-crafted” ACT-R model.

The compilation of the individual commands reduces to re-
writing the command to a production rule that an ACT-R
expert modeler might write directly. For most of the
commands, there is a one-to-one mapping from each
command to a single production rule. For instance, as
shown in Table 2, the compiled rule for the (press-key)
command checks that the state of the manual module is free
and, if so, issues a command to that module to press the
given key (or a default key as described earlier); again, the
rule is essentially the same rule that an ACT-R expert
would write from scratch for pressing a key. Only one
command is translated to two productions: (look-at)
compiles to one production that issues the shift of visual
attention and another that ensures that the attended object
has finished being encoded; although we could avoid
waiting for encoding to end, typically a model encodes a
visual object because that information is needed, and thus
we chose to lean toward the most common case. To allow
ACT-R to produce realistic mouse and eye movements, the
model includes a dummy window with two objects 500
pixels apart, and these objects are used as the targets of
mouse and eye movements. The (listen time) command
does not actually use ACT-R’s audition module because of

Table 2: Sample translation of (press-key a).

(p do-task-press-key-102
=goal>

isa do-task
state 1

=manual-state>
isa module-state
modality free

==>
+manual>

isa press-key
key a

=goal>
state 2

)

the difficulty of creating simulated sounds at the right
time, and thus its production rule simply stalls the
cognitive processor for the given duration. Similarly, the
(think) command does nothing other than stall the
cognitive processor (taking 1.2 seconds to fire).

Discussion
The specification of the ACT-Simple command set required
several difficult design choices with no clear correct
answers. First, two commands, (move-mouse) and (look-
at), could include specification of the location to which to
move/look. However, knowing locations would require
some rough prototype of the task interface; although we
could assume such a prototype, or even provide a separate
description language for the interface itself, this additional
specification goes against the desired simplicity of the
higher-level modeling language. Second, the (think)
command could certainly be replaced with more specific
thought processes—for instance, a command (retrieve)
representing the memory retrieval of a declarative chunk.
Again, we opted for the simpler option of a single
cognitive operator with a duration taken directly from
KLM-GOMS; for more specific cognitive processes,
modelers can always go directly into the compiled ACT-R
model and utilize its strengths as a powerful representation
of cognition. In a sense, these choices correspond to a
decision on the appropriate level of modeling, and thus the
chosen command set will likely evolve (or expand into
multiple command sets) as users find what level works best
for different domains and applications.

Nevertheless, given our design choices, it is enlightening
to consider how the ACT-R architecture provides ACT-
Simple models with predictive power beyond that of a
basic framework such as KLM-GOMS. One benefit is that
ACT-R automatically parallelizes those processes that do
not interfere with each other; for instance, if the ACT-
Simple model performs the commands (move-hand) and
(speak) consecutively, ACT-R will issue the hand
movement and, 50 ms later (the cost of firing a production
rule), will issue the speak command, and both commands
can continue on from that point in parallel. Thus, the
execution of the compiled ACT-R model begins to closely
resemble that of a CPM-GOMS model [9] rather than the
original KLM-GOMS-like high-level model. Another
benefit is that, as mentioned earlier, the compiled models
are sensitive to context in that their behavior is affected by
the current state of the various cognitive, perceptual, and
motor modules—for example, by predicting shorter times
for consecutive keypresses on the same letter, or
consecutive hand/finger movements more generally. These
are just two examples of how the compiled ACT-Simple
models inherit parameters and constraints of the ACT-R
architecture, which in turn gives them significantly greater
power as a priori predictors of behavior.

EMPIRICAL VALIDATION
To validate the ACT-Simple framework, we conducted a
study that compared model predictions and empirical data
for two tasks: a query entry task described by Nielsen and
Phillips [19], and a cell-phone dialing task described by
Salvucci [20]. The goal of the study was to generate a

priori predictions of total times for four conditions in each
task. Ultimately, we hoped to demonstrate that the ACT-
Simple framework facilitates rapid development of user
models and, at the same time, reasonably accurate
predictions of behavior comparable to those of GOMS and
its variants [see 10, 11].

Tasks
Query entry. The first task analyzed in the study is a
query-entry task [19] used to compare various methods of
predicting task times. Specifically, the task involved
issuing query of one or two phone numbers to one of
several databases. The user issued the query using one of
two interfaces: a dialog-box interface and a pop-up menu
interface. The necessary actions for each interface are listed
in Table 3. The original study [19] examined the
predictions obtained by “cold,” “warm,” and “hot” heuristic
estimates, GOMS analysis, and empirical user testing. In
our study we compare the Nielsen and Phillips task times
obtained by GOMS analysis and user testing with new
times obtained in the ACT-Simple framework.

Cell-phone dialing. The second task in our study is a cell-
phone dialing task [20] used to study the effects of interface
use and distraction on driver performance. The original
study used a hands-free phone mounted on the dashboard
and asked subjects to dial the phone both alone and while
driving; we focus only on the case where subjects simply
dial the phone (i.e., not while driving). The study
included four methods of dialing the phone: full-manual
dialing, typing all digits of a seven-digit phone number;
speed-manual dialing, typing only a single “speed digit”
representing the full phone number; full-voice dialing,
speaking the entire number and listening to the recognized
number to confirm correct recognition; and speed-voice
dialing, speaking a single phrase representing the full
phone number. Table 4 lists sample sequences for each of
the four methods. Each method starts with the user
pressing the Power button on the phone, and the manual
dialing methods end with the user pressing the Send
button. The “send” is implied for the voice dialing
interfaces after the phone confirms that it is connecting.

Modeling
Given these tasks and the ACT-Simple framework, we
wished to validate the framework by modeling the tasks
and comparing their predictions to real-world data. First,
we obtained two sets of models, a novice set and an expert
set. The novice models were developed by an
undergraduate student with one quarter-long course in
cognitive modeling. The expert models were developed by
two expert modelers, both faculty members with over seven
years of cognitive modeling experience. The novice
modeler and the expert modeler (the second author) were
given the original papers describing the tasks [19, 20] and
the list of ACT-Simple commands with basic instructions
on creating a model; model creation consisted simply of
generating a sequence of ACT-Simple commands for each
task condition. Both modelers were also instructed not to
read the empirical results of the studies before modeling
was complete. The expert models were then checked by the
second expert (the first author) for consistency and

assumption violations, which led to several minor edits:
for query entry, a (think) command in the one-number
dialog interface where it was for the two-number interface,
and (look-at) commands to look at the phone number while
typing; for cell-phone dialing, (look-at) commands before
pressing the power button, (move-hand) commands to
simulate the start position away from the keyboard,
removal of (press-key) arguments because of mismatch
between keyboard digit and phone digit positions, and
revision of a mistaken (speak) command.

Table 5 shows the time involved in the development of the
expert and novice models (not including time needed to
read and understand the interfaces, which is assumed to be
common to all other analytic methods). The novice
models required only slightly more time to develop than
the expert models, and all sets of models for each task were
completed in a time span of less than one hour.

Table 5. Time needed to create models.

 Query entry Cell-phone dialing

Expert 28 min 34 min

Novice 44 min 36 min

Results
Query entry. We first analyze the results of the query-entry
task, comparing the empirical data [19] to the expert and
novice model predictions. Table 6 shows the empirical
results for total time to complete each of the four tasks,
labeled according to whether they represent the dialog-box
or the pop-up menu interface (“Dialog” or “Popup”) and
whether they represent querying one or two telephone
numbers (“1” or “2”). The table also shows the results for
the novice and expert models in terms of task time, percent
error, and correlation (the latter two with respect to the
empirical data). The empirical data show that the dialog-
box interface required significantly more time than the pop-
up menu interface, and entering two numbers (not
surprisingly) required significantly more time than entering
one number. The expert models matched the empirical data
extremely well: the percent errors are 12% or less and the
correlation was excellent, R=.99. The novice models did
not match the data nearly as well quantitatively —
particularly for the dialog-box model, with errors up to
64% — but the correlation remained excellent, R=.99, and
thus even the novice models successfully predicted the
rank-order differences between the four interfaces. The
biggest difference by far between the expert and novice
models was the number of (think) commands: the novice
assumed mental operators before every small group of
commands (e.g., (think) + (lookat)), whereas the expert
used the mental operators very sparingly given the
presumed “expert” nature of behavior in the task.

Cell-phone dialing. Our analysis of the cell-phone dialing
task involves comparison of the model predictions with the
empirical data [20], as shown in Table 7. The empirical
data show the pattern that the voice interfaces required more
time than the manual interfaces and that the “full” interfaces
(i.e., entering or saying all numbers) required more time
than the “speed” interfaces (i.e., entering a speed number or
saying a phrase). As for the query-entry task, the expert
models closely matched the data with a maximum error of
12% and an excellent correlation, R=.98. The novice
models were quite far off in terms of quantitative
predictions, but also matched well in terms of correlation,
R=.93; as before, we see that even the novice models
generate reasonable rank-order predictions (with the
exception here that the novice predictions for speed-voice
and full-manual rankings are reversed). The novice models
again included far more (think) operators than the expert
models, and in addition, the novice assumed quite long
times for listening in the voice interfaces (10 s for seven
digits, 2 s for “home”).

Table 3: Query-entry task actions for each interface.

Dialog Box

Pull down the query menu, find the desired database,
open its submenu, select “query on telephone number”
‡ opens a query dialog box

For each phone number, click in the editable text box
(or select existing phone number), type the query phone
number, click the “Add” button
‡ adds number to query list

Click “Ok”
‡ issues query

Pop-up Menu

For each phone number, click down on the visible
phone number
‡ brings up pop-up menu of databases

Find the desired database, release mouse button
‡ issues query

Table 4: Cell-phone dialing actions for each interface.

Full-Manual

Press Power
Press 5, 5, 5, 4, 2, 8, 3
Press Send

Full-Voice

Press Power
Say 5, 5, 5, 4, 2, 8, 3
Listen for 5, 5, 5, 4, 2, 8, 3
Listen for “Connecting…”

Speed-Manual

Press Power
Press 2 (speed number)
Press Send

Speed-Voice

Press Power
Say “home”
Listen for “home”
Listen for “Connecting…”

GENERAL DISCUSSION
The model results are encouraging in several respects.
First, the expert model predictions matched extremely well
with the empirical data, suggesting that an expert ACT-
Simple modeler (or team of 2-3 modelers) can generate very
good quantitative predictions. In addition, we expect that
minimal expertise in the ACT-Simple framework can be
achieved with approximately 1-2 days of training and 1-2
weeks of practice — arguably, similar to the training
needed to reach a useful familiarity with the GOMS
framework. Second, while the novice model predictions
mismatched at a quantitative level, the comparative
predictions — that is, the predictions of the rank order of
the various interfaces — was reasonably good, as indicated
by the high model-to-data correlations. Third, the models
took little time (less than one hour per model set) to
develop, demonstrating that several interface options can be
evaluated and compared in a matter of a few hours.

ACT-Simple also has some notable weaknesses, the most
critical of which is the lack of constraint in using the
(think) operator. As for similar frameworks such as KLM-
GOMS, adding these mental operators is often the most
difficult aspect of modeling, and at the same time can have
a drastic impact on predicted times (as evident in the
overpredictions of the novice models). Researchers have
proposed more systematic methods of adding mental
operators in the GOMS framework and these same ideas
apply just as well for the ACT-Simple framework — for
instance, determining the size of “thoughtless chunks” for
novice vs. expert behavior, or specifying more detailed
cognitive operators (e.g., simple retrieval) with distinct
time values. There is clearly much room for further
investigation on this front, but nevertheless, this work
along with the large GOMS literature demonstrates that
perfect modeling of cognitive processing is not always
needed for fast and reasonable predictions of performance.
However, unlike GOMS, the ACT-Simple framework has
the advantage that a model compiled down to ACT-R can
be augmented and further developed into a very rigorous
model of cognitive processing with integrated perceptual
and motor processing.

From a broader perspective, compiled ACT-Simple models
are actually quite reminiscent of models developed in the
CPM-GOMS framework [9]. In particular, the compiled
models incorporate (typically) small bursts of cognitive
processing that initiate parallel streams of perceptual and
motor processing. The resulting execution in the ACT-R
cognitive architecture generates, in essence, the same
critical path that is the crux of the CPM-GOMS technique;
in fact, one could imagine compiling a CPM-GOMS-like
model into ACT-R using the basic compilation process
presented here. Such a method could also take advantage
of recent work tying CPM-GOMS and Apex to automate
resource scheduling [12].

The proposed ACT-Simple framework represents only one
possible point along a continuum of higher-level and
lower-level frameworks, and there are clearly many other
branches to explore. For instance, the commands that
currently take arguments — e.g., (look-at) and (move-
mouse) — could be expressed in more detail whenever
possible to increase the task and cognitive plausibility. Or
as another example, the basic ACT-Simple commands
could be compiled down to another cognitive architecture
— e.g., Soar [16, 18] or EPIC [17] — and could
potentially be used as a metric of comparison between
architectures. Such a technique would allow ACT-Simple
models to be integrated with existing Soar or EPIC
models, much like current ACT-Simple models can be
easily integrated with large-scale ACT-R models — e.g.,
integrating the cell-phone dialing models with the ACT-R
driver model [21]. Thus ACT-Simple serves as a first step
toward a large set of useful cognitive modeling tools for
rapid prototyping, evaluation, and comparison.

Table 6. Empirical, expert model predictions, and
novice model predictions for the query-entry task,
including percent error and correlation.

 Dialog-1 Dialog-2 Popup-1 Popup-2

Data 15.40 25.50 4.30 6.50

Expert 15.55 24.40 3.78 7.20

(Error) (1%) (4%) (12%) (11%)

— R — ——————— .99 ———————

Novice 25.01 41.87 4.87 9.37

(Error) (62%) (64%) (13%) (44%)

— R — ——————— .99 ———————

Table 7. Empirical, expert model predictions, and
novice model predictions for the cell-phone dialing
task, including percent error and correlation.

Full-

Manual
Speed-
Manual

Full-
Voice

Speed-
Voice

Data 5.21 2.68 7.71 3.77

Expert 4.79 2.99 8.49 4.14

(Error) (8%) (12%) (10%) (10%)

— R — ——————— .98 ———————

Novice 8.79 4.90 21.77 10.57

(Error) (69%) (83%) (182%) (180%)

— R — ——————— .93 ———————

ACKNOWLEDGMENTS
This work was supported in part by Office of Naval
Research grant N00014-03-1-0036 to the first author, a
Ford Motor Company gift to the first author, and an
Exploratory Research Seed Project grant to the second
author. We thank Alex Chavez for his extensive help in
the modeling portion of this study.

REFERENCES
1. Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Hillsdale, NJ: Erlbaum.

2. Ball, J., Gluck, K., Krusmark, M., Purtee, M., &
Rodgers, S. (2002). Process and challenges in
development of the Predator air vehicle operator
model. Eighth Annual ACT-R Workshop, Carnegie
Mellon University, Pittsburgh, PA.

3 . Best, B., Lebiere, C. & Scarpinatto, C. (2002).
Modeling synthetic opponents in urban combat
simulations. Eighth Annual ACT-R Workshop,
Carnegie Mellon University, Pittsburgh, PA.

4. Byrne, M. D. (2001). ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies, 55, 41-84.

5. Byrne, M. D., & Anderson, J. R. (2001). Serial
modules in parallel: The psychological refractory period
and perfect time-sharing.. Psychological Review, 108,
847-869.

6. Card, S., Moran, T., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale,
NJ: Lawrence Erlbaum Associates.

7. Gray, W. D., John, B. E., & Atwood, M. E. (1993).
Project Ernestine: A validation of GOMS for prediction
and explanation of real-world task performance.
Human-Computer Interaction, 8, 237-309.

8. Hornof, A. J., & Kieras, D. E. (1997). Cognitive
modeling reveals menu search is both random and
systematic. In Human Factors in Computing Systems:
CHI 97 Conference Proceedings (pp. 107-114). New
York: ACM Press.

9. John, B. E. (1990). Extensions of GOMS analyses to
expert performance requiring perception of dynamic
visual and auditory information. In Proceedings of
CHI 90 (pp. 107-115). New York: ACM Press.

10. John, B. E., & Kieras, D. E. (1996). The GOMS
family of user interface analysis techniques:
Comparison and contrast. ACM Transactions on
Computer-Human Interaction, 3, 320-351.

11. John, B. E., & Kieras, D. E. (1996). Using GOMS for
user interface design and evaluation: Which technique?.
ACM Transactions on Computer-Human Interaction, 3,
287-319.

1 2 . John, B., Vera, A., Matessa, M., Freed, M., &
Remington, R. (2002). Automating CPM-GOMS. In
Human Factors in Computing Systems: CHI 2002
Conference Proceedings. New York: ACM Press.

13. Kieras, D. E. (1988). Towards a practical GOMS
model methodology for user interface design. In M.
Helander (Ed.), Handbook of Human-Computer
Interaction (pp. 135-157). New York: North-Holland
Publishing.

14. Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence. Artificial
Intelligence, 33, 1-64.

1 5 . Lebiere, C., & Anderson, J. R. (1993). A
connectionist implementation of the ACT-R production
system. In Proceedings of the Fifteenth Annual
Conference of the Cognitive Science Society. Hillsdale,
NJ: Lawrence Erlbaum Associates.

16. Lee, F. J., & Anderson, J. R. (2001). Does learning of
a complex task have to be complex? A study in
learning decomposition. Cognitive Psychology, 42,
267-316.

1 7 . Meyer, D. E., & Kieras, D. E. (1997a). A
computational theory of executive cognitive processes
and multiple-task performance: Part 1. Basic
mechanisms. Psychological Review, 104, 3-65.

18. Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard University Press.

19. Nielsen, J., & Phillips, V. L. (1993). Estimating the
relative usability of two interfaces: Heuristic, formal,
and empirical methods compared. In Proceedings of
INTERCHI 1993 (pp. 214-221). New York: ACM
Press.

20. Salvucci, D. D. (2001). Predicting the effects of in-car
interface use on driver performance: An integrated
model approach. International Journal of Human-
Computer Studies, 55, 85-107.

21. Salvucci, D. D., Boer, E. R., & Liu, A. (2001).
Toward an integrated model of driver behavior in a
cognitive architecture. Transportation Research
Record, 1779.

