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FRACTIONAL DISCRETE–TIME LINEAR SYSTEMS

MIKOŁAJ BUSŁOWICZ, TADEUSZ KACZOREK

Faculty of Electrical Engineering
Białystok Technical University, ul. Wiejska 45D, 15–351 Białystok, Poland

e-mail: busmiko@pb.edu.pl,kaczorek@isep.pw.edu.pl

In the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed.
New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length
of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic
stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with
numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs take
only non-negative values. A variety of models having pos-
itive linear behavior can be found in engineering, man-
agement science, economics, social sciences, biology and
medicine, etc. An overview of state of the art in positive
systems theory is given in (Farina and Rinaldi, 2000; Kac-
zorek, 2002).

In the last decades, the problem of the analysis and
synthesis of dynamical systems described by fractional or-
der differential (or difference) equations has been consid-
ered in many papers, see, e.g., (Das, 2008; Kilbas et al.,
2006; Podlubny, 1999; Sabatier et al., 2007; Sierociuk,
2007; Vinagre et al., 2002).

Stability and robust stability problems of fractional
linear systems were investigated in (Busłowicz, 2008a;
2008b; 2008c; 2008d; Chen, 2006; Dzieliński and Sie-
rociuk, 2006; Gałkowski and Kumert, 2005; Gałkowski
et al., 2006; Sierociuk, 2007; Vinagre et al., 2002).
The reachability and controllability to zero of positive
fractional linear systems were considered in (Kaczorek,
2007a; 2007b; 2008a; 2008b). The notion of standard
and positive 2D fractional linear systems was introduced
in (Kaczorek, 2008c; 2008d).

The concept of practical stability of positive frac-
tional discrete-time systems was introduced and con-
ditions for practical stability were given by Kaczorek
(2008e).

In this paper, simple new necessary and sufficient
conditions for practical stability of positive fractional
discrete-time linear systems will be established.

The following notation will be used: R
n×m is the set

of n×m real matrices and R
n = R

n×1; R
n×m
+ is the set of

n × m real matrices with non-negative entries and R
n
+ =

R
n×1
+ ; Z+ is the set of non-negative integers; In is the n×

n identity matrix; a vector x with positive all entries (resp.
with negative all entries) will be called strictly positive
and denoted by x > 0 (resp. strictly negative and denoted
by x < 0).

2. Problem formulation

Let us consider the discrete-time linear system of frac-
tional order α ∈ (0, 1), described by the state equation

Δαxi+1 = Axi+Bui,

i ∈ Z+, 0 < α < 1, (1)

where xi ∈ R
n is the state vector, ui ∈ R

m is the input
vector, A ∈ R

n×n, B ∈ R
n×m and Δαxi is the fractional

difference defined by (Kaczorek, 2007a)

Δαxi = xi +
i∑

j=1

(−1)j

(
α

j

)
xi−j , (2a)
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α ∈ (0, 1), with
(

α

j

)
=

α(α − 1) . . . (α − j + 1)
j!

, j > 0. (2b)

Using (2a), we may write Eqn. (1) in the form

xi+1 = Aαxi +
i∑

j=1

cj(α)xi−j + Bui, i ∈ Z+, (3)

where
Aα = A + Inα, (4)

and

cj = cj(α) = (−1)j

(
α

j + 1

)
, j = 1, 2, . . . . (5)

The fractional system (1) is positive (internally), i.e.,
xi ∈ R

n
+ for all i ∈ Z+ for any initial conditions x0 ∈ R

n
+

and all input sequences ui ∈ R
m
+ , i ∈ Z+, if and only if

(Kaczorek, 2007a)

Aα = A + Inα ∈ R
n×n
+ , B ∈ R

n×m
+ . (6)

The system (3) has a variable number of delays. For
any discrete time i = N , the number of delays is equal to
N and this number increases to infinity if i → ∞.

From (5) and (2b) it follows that cj = cj(α) > 0 for
α ∈ (0, 1) and j = 1, 2, . . . . Moreover, the coefficients
cj = cj(α) strongly decrease for increasing j. Therefore,
in practical problems it is assumed that j is bounded by
some natural number h. This number is called the length
of the practical implementation. In this case, Eqn. (3)
takes the form

xi+1 = Aαxi +
h∑

j=1

cj(α)xi−j + Bui, i ∈ Z+, (7)

with the initial conditions x−i ∈ R
n
+, i = 0, 1, . . . , h.

Equation (7) describes a linear discrete-time system with
h delays in state.

The time-delay system (7) will be called a practical
implementation of the fractional system (1).

Definition 1. (Kaczorek, 2007e) The positive fractional
system (3) is called practically stable if and only if the
system (7) is asymptotically stable.

The positive linear system without delays, equivalent
to (7), has the form

x̃i+1 = Ãx̃i + B̃ui, i ∈ Z+, (8)

where x̃i = [xT
i , xT

i−1, · · · , xT
i−h]T ∈ R

ñ
+, Ã ∈ R

ñ×ñ
+ ,

B̃ ∈ R
ñ×m
+ , ñ = (h + 1)n and

Ã =

⎡

⎢⎢⎢⎢⎢⎣

Aα c1In c2In · · · ch−1In chIn

In 0 0 · · · 0 0
0 In 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · In 0

⎤

⎥⎥⎥⎥⎥⎦
,

B̃ =

⎡

⎢⎢⎢⎢⎢⎣

B
0
0
...
0

⎤

⎥⎥⎥⎥⎥⎦
. (9)

The practical stability problem was formulated and
solved in (Kaczorek, 2008e).

Theorem 1. (Kaczorek, 2008e) The positive fractional
system (3) is practically stable if and only if one of the
following equivalent conditions holds:

1. Eigenvalues z1, z2, . . . , zñ of the matrix Ã defined
in (9) have moduli less than 1.

2. All coefficients of the characteristic polynomial of the
matrix Ã − Iñ are positive.

3. All leading principal minors of the matrix Iñ− Ã are
positive.

4. ρ(Ã) < 1, where

ρ(Ã) = max
1≤k≤ñ

|zk|

is the spectral radius of the matrix Ã.

5. There exist strictly positive vectors x̄i ∈ R
n
+, i =

0, 1, · · · , h, satisfying the conditions x̄0 < x̄1, x̄1 <
x̄2, . . . , x̄h−1 < x̄h, such that Aαx̄0 + c1x̄1 + · · · +
chx̄h < x̄h.

Note that the size of the matrix Ã ∈ R
ñ×ñ with ñ =

(h+1)n, of the form defined in (9), depends on the length
h of practical implementation. Therefore, the application
of Theorem 1 to practical stability analysis of the positive
fractional system (3) is a difficult problem for large h.

The aim of the paper is to give new simple neces-
sary and sufficient conditions for practical stability of the
positive fractional system (3). We show that practical sta-
bility of this system with a given length h of practical im-
plementation is equivalent to asymptotic stability of the
corresponding positive system without delays of the same
order as the system (3), i.e., of order extremely less than
the order of the system (8) (equal to ñ = (h + 1)n).

3. Solution of the problem

From the structure of the matrix Ã ∈ R
ñ×ñ
+ of the form

given in (9) and from the condition (3) of Theorem 1 we
have the following important lemma.

Lemma 1. If the positive fractional system (3) is prac-
tically stable with the given length h = H of practical
implementation, then this system is also practically stable
for any positive h < H.
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Theorem 2. The positive fractional system (3) is prac-
tically stable if and only if there exists a strictly positive
vector λ ∈ R

n
+ such that

[Aα +
h∑

j=1

cjIn − In]λ < 0, λ > 0. (10)

Proof. We show that (10) is necessary and sufficient for
asymptotic stability of the positive time-delay system (7).
Necessity. Let X ∈ R

n×n
+ have all eigenvalues with abso-

lute values less than one. It is easy to show that

[In − X ]−1 =
∞∑

k=1

Xk ∈ R
n×n
+ . (11)

Hence, if the positive system (7) is asymptotically stable,
then from (11) we have [In−Aα−

∑h
j=1 cjIn]−1 ∈ R

n×n
+

and

γ = [In − Aα −
h∑

j=1

cjIn]−11n > 0, (12)

where 1n =
[

1 · · · 1
]T

.
From the above it follows that if the system (7) is

asymptotically stable, then the condition (10) holds for
λ = γ > 0.
Sufficiency. Let us consider the dual system (with B ≡ 0)

xi+1 = AT
αxi +

h∑

j=1

cj(α)xi−j , i ∈ Z+, (13)

which is positive and asymptotically stable if and only if
the original system (7) is positive and asymptotically sta-
ble.

As a Lyapunov function for the dual system (13), we
may choose the following function:

V (xi) = xT
i λ +

h∑

j=1

cj

i−1∑

r=i−j

xT
r λ, λ ∈ R

n
+, (14)

which is positive for non-zero xi ∈ R
m
+ and for strictly

positive λ.
From (14) and (13), we have

ΔV (xi) = V (xi+1) − V (xi)

= xT
i+1λ +

h∑

j=1

cj

i∑

r=i+1−j

xT
r λ − xT

i λ

−
h∑

j=1

cj

i−1∑

r=i−j

xT
r λ

= xT
i [Aα +

h∑

j=1

cjIn − In]λ < 0.

Hence, the condition (10) implies ΔV (xi) < 0 and the
positive system (7) is asymptotically stable. This means
that the fractional system (3) is practically stable. �

Theorem 3. The positive fractional system (3) is practi-
cally stable if and only if the standard positive system

xi+1 = Dxi, i ∈ Z+, (15)

with

D = Aα +
h∑

j=1

cjIn ∈ R
n×n
+ , (16)

is asymptotically stable.

Proof. In (Kaczorek, 2007c), it was shown that the pos-
itive system (15) is asymptotically stable if and only if
there exists a strictly positive vector λ ∈ R

n
+ such that

[D − In]λ < 0. Hence, the proof follows directly from
Theorem 2 and (16). �

The application of Theorem 3 requires computing of
the coefficients cj = cj(α) (j = 1, 2, . . . , h) defined by
(5) and (2b). These coefficients can be easily computed
by the following simple algorithm suitable for computer
programming:

cj+1 = cj
j + 1 − α

j + 2
, j = 1, 2, . . . , h, (17)

where c1 = 0.5α(1 − α).
From Theorems 2 and 3 and the stability condition

of the positive system (15), given in (Farina and Rinaldi,
2000; Kaczorek, 2002; 2007c; 2008e), we have the fol-
lowing theorem and lemma.

Theorem 4. The positive fractional system (3) is practi-
cally stable if and only if one of the following equivalent
conditions holds:

1. The eigenvalues z1, z2, . . . , zn of the matrix D de-
fined by (16) have moduli less than 1.

2. All leading principal minors of the matrix In−D are
positive.

3. All coefficients of the characteristic polynomial of the
matrix D − In are positive.

4. ρ(D) < 1, where

ρ(D) = max
1≤k≤n

|zk|

is the spectral radius of the matrix D.

Lemma 2. The positive fractional system (3) is practi-
cally unstable if one of the following equivalent conditions
holds:

1. At least one diagonal entry of the matrix D defined
by (16) is greater than 1.

2. The positive system xi+1 = Aαxi (Aα is defined by
(4)) is unstable.
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3. At least one diagonal entry of the matrix Aα is
greater than 1.

Now we consider the problem of practical stability of
the positive system (3) in the case when h → ∞ in (7).

From Definition 1 for h → ∞ and Lemma 1 we have
the following definition.

Definition 2. The positive fractional system (3) with
fixed α ∈ (0, 1) is called practically stable independent
of the length of practical implementation if and only if the
positive system (7) is asymptotically stable for all h ≥ 1.

First, we prove the following important lemma.

Lemma 3. The following equality holds:

∞∑

j=1

cj = 1 − α. (18)

Proof. In (Sierociuk, 2007), it was shown that

∞∑

j=0

(−1)j

(
α

j

)
= 0. (19)

It easy to see that

∞∑

j=0

(−1)j

(
α

j

)
= 1 − α −

∞∑

j=1

(−1)j

(
α

j + 1

)
. (20)

Taking into account (19), (20) and (5), we obtain (18).
�

From the above and Theorem 3, for h → ∞ one
obtains the following conditions for practical stability in-
dependent of the length of practical implementation.

Theorem 5. The positive fractional system (3) is stable
independent of the length of practical implementation if
and only if the standard positive system

xi+1 = D∞xi, i ∈ Z+, (21)

is asymptotically stable, where D∞ = A + In ∈ R
n×n
+ .

Proof. From (4), (18) and (16), for h → ∞ we have

D = Aα +
∞∑

j=1

cjIn

= A + Inα + In(1 − α) = A + In. (22)

Hence, the proof follows directly from Theorem 3. �

From Theorem 5 we have the following important
corollary.

Corollary 1. If the positive fractional system (3) if practi-
cally stable independent of the length of practical imple-
mentation, then it is practically stable for all h ≥ 1 and
for any α ∈ (0, 1).

Applying the well known stability conditions to the
positive system (21), one obtains the following theorem
and lemma.

Theorem 6. The positive fractional system (3) is practi-
cally stable independent of the length of practical imple-
mentation if and only if one of the following equivalent
conditions holds:

1. The eigenvalues z1, z2, · · · , zn of the matrix D∞ =
A + In have moduli less than 1.

2. All leading principal minors of the matrix −A are
positive.

3. All coefficients of the characteristic polynomial of the
matrix A are positive.

4. ρ(D∞) < 1, where

ρ(D∞) = max
1≤k≤n

|zk|

is the spectral radius of the matrix D∞.

Lemma 4. The positive fractional system (3) is not prac-
tically stable independent of the length of practical imple-
mentation if at least one diagonal entry of the matrix A is
positive.

Proof. If at least one diagonal entry of the matrix A
is positive, then at least one diagonal entry of the matrix
D∞ = A + In is greater than 1 and the system (21) is
unstable. This means that the positive fractional system
(3) is not practically stable independent of the length of
practical implementation. �

Let us consider the positive scalar discrete-time sys-
tem of fractional order α ∈ (0, 1) described by the state
equation (1), where A = a and B = b are real numbers
such that aα = a + α ≥ 0, b ≥ 0. In this case, from (3)
we have

xi+1 = aαxi +
i∑

j=1

cj(α)xi−j + bui, i ∈ Z+. (23)

Practical implementation of (23) with the given
length h of practical implementation has the form

xi+1 = aαxi +
h∑

j=1

cj(α)xi−j + bui, i ∈ Z+, (24)

with the initial conditions x−i ∈ R
n
+, i = 0, 1, ..., h.
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Lemma 5. (Busłowicz, 2008d) If α ∈ (0, 1), then
δh(α) ∈ (0, 1), where

δh(α) = 1 − α −
h∑

j=1

cj(α). (25)

From Theorems 4 and 6 and Lemma 2, we have the
following theorem (see also (Busłowicz, 2008d)).

Theorem 7. The positive scalar discrete-time system (23)
of fractional order α ∈ (0, 1) is

1. practically stable with the given length h ≥ 1 of
practical implementation if and only if a < δh(α),

2. practically stable independent of the length of prac-
tical implementation if and only if 0 > a ≥ −α,

3. practically unstable independent of the length of
practical implementation if a > 1 − α.

4. Illustrative examples

Example 1. Consider the positive fractional order linear
system described by the equation

Δαxi+1 =
[ −0.3 0.2

0.2 a

]
xi,

α = 0.3, a ∈ R. (26)

We wish to check the practical stability of the system with
the length of practical implementation h = 100.

From (6), it follows that the system is positive if and
only if

Aα = A + I2α =
[

0 0.2
0.2 0.3 + a

]
∈ R

2×2
+ ,

that is, a ≥ −0.3.
Computing the coefficients cj (j = 1, 2, . . . , h =

100) from (17) and the matrix D from (16), one obtains

100∑

j=1

cj = 0.5073

and

D =
[

0.5073 0.2
0.2 a + 0.8073

]
.

The leading principal minors of the matrix I2 − D
are as follows: Δ1 = 0.4927, Δ2 = −0.4927a + 0.0549.
They are positive for a < 0.1114. Hence, according to the
condition 2 of Theorem 4, the fractional system (26) with
h = 100 is practically stable if and only if −0.3 ≤ a <
0.1114. �

Note that the application of Theorem 1 to practi-
cal stability analysis of the positive system (26) requires
checking asymptotic stability of the matrix Ã ∈ R

ñ×ñ

(defined in (9)) with ñ = (h + 1)n = 202.

Example 2. Check practical stability independent of
the length of practical implementation of the positive frac-
tional order linear system described by (1) with α = 0.3
and

A =

⎡

⎣
a 0.3 0

0.2 b 0.1
0 0.2 c

⎤

⎦ , a, b, c ∈ R. (27)

The system (21) is positive if and only if D∞ = A+
I3 ∈ R

3×3
+ , i.e., a ≥ −1, b ≥ −1 and c ≥ −1.

Computing the leading principal minors of the ma-
trix −A one obtains Δ1 = −a, Δ2 = ab − 0.06, Δ3 =
det(−A) = −abc + 0.02a + 0.06c. They are positive if
and only if a < 0; ab < 0.06; c(ab − 0.06) < 0.02a.

Hence, the fractional system is positive and practi-
cally stable independent of the length of practical imple-
mentation (according to the condition 2 of Theorem 6) if
and only if

−1 ≤ a < 0, −1 ≤ b <
0.06
a

,

−1 ≤ c <
0.02a

ab − 0.06
. (28)

It is easy to check that inequalities (28) hold for, e.g.,
a = −0.5; b = −0.2 and c = −0.3. This means that the
positive system (1) with α = 0.3 and the state matrix (27)
with a = −0.5; b = −0.2 and c = −0.3 is practically sta-
ble independent of the length of practical implementation.

�

5. Concluding remarks

The practical stability problem of the positive discrete-
time system (3) of fractional order 0 < α < 1 has been
addressed. New simple necessary and sufficient condi-
tions for practical stability and for practical stability in-
dependent of the length of practical implementation were
established (Theorems 3, 4 and 5, 6, respectively).

It was shown that the positive system (3) is

(i) practically stable with the given length of practical
implementation if and only if the positive standard
discrete-time system (15) is asymptotically stable,

(ii) practically stable independent of the length of prac-
tical implementation if and only if the positive stan-
dard discrete-time system (21) is asymptotically sta-
ble.

In the case of the scalar positive discrete-time frac-
tional order system (23), the stability conditions were
given in Theorem 7.
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