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Abstract

We present three alternative simple constructions of small proba-
bility spaces on n bits for which any k bits are almost independent.
The number of bits used to specify a point in the sample space is
(2 + o(1))(log log n + k/2 + log k + log 1

ǫ
), where ǫ is the statistical dif-

ference between the distribution induced on any k bit locations and
the uniform distribution. This is asymptotically comparable to the
construction recently presented by Naor and Naor (our size bound is
better as long as ǫ < 1/(k log n)). An additional advantage of our
constructions is their simplicity.

Keywords: Probabilistic computation, removing randomness, shiftregister se-
quences, small probability spaces.

1 Introduction

In recent years, randomization has played a central role in the development
of efficient algorithms. Notable examples are the massive use of randomness
in computational number theory (e.g., primality testing [26, 28, 18, 1]) and
in parallel algorithms (e.g. [21, 24]).
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A randomized algorithm can be viewed as a two-stage procedure in which
first a “sample point” is chosen at random and next a deterministic proce-
dure is applied to the sample point. In the generic case the sample point is
an arbitrary string of specific length (say n), the sample space consists of the
set of all 2n strings, and “choosing a sample at random” amounts to taking
the outcome of n consecutive unbiased coin tosses. However, as observed by
Luby [21], in many cases the algorithm “behaves as well” when the sample
is chosen from a much smaller sample space. If points in the smaller sample
space can be compactly represented and generated (i.e. reconstructed to
their full length from the compact representation) then this yields a saving
in the number of coin tosses required for the procedure. In some cases the
required number of coin tosses gets so small that one can deterministically
scan all possible outcomes (e.g. [21]).

To summarize, the construction of small sample spaces which have some
randomness properties is of major theoretical and practical importance. A
typical property is that the probability distribution, induced on every k
bit locations in a string randomly selected in the sample space, should be
uniform. Such a sample space is called k-wise independent.

Alon, Babai and Itai [5] presented an efficient construction of k-wise in-
dependent sample spaces of size approximately nk/2, where n is (as above)
the length of the strings in the sample space. This result is very close to
best possible, in view of the lower bound of Chor. et. al. [11]. Hence, k-
wise independent sample spaces of size polynomial in n are only possible for
constant k. This fact led Naor and Naor to introduce the notion of almost
k-wise independent sample spaces. Loosely speaking, the probability distri-
bution induced on every k bit locations in the sample string is “statistically
close” to uniform. Clearly, if an algorithm “behaves well” on points chosen
from a k-wise independent sample space then it will “behave essentially as
well” on points chosen from an almost k-wise independent sample space.
In view of this property it is not surprising that these spaces can be used
in many applications. Some applications are presented in [25], while more
recent applications are given in [4] and [10]. Another, more detailed appli-
cation, is that one can get an alternative (slightly nicer) proof of Lemma 8
(on page 8) of [15].

Naor and Naor presented an efficient construction of an almost k-wise
independent sample space [25]. Points in their sample space are specified by
O(log log n + k + log 1

ǫ ) bits, where ǫ is a bound on the statistical difference
between the distribution induced on k bit locations and the uniform one.

2



The heart of their construction is a sample space of size n
ǫO(1) for which

the exclusive-or of any fixed bit locations, in the sample point, induces a
0-1 random variable with bias bounded by ǫ (i.e. the exclusive-or of these
bits is 1 with probability 1

2(1 ± ǫ)). The constant in the exponent depends,
among other things, on the constants involved in an explicit construction
of an expander (namely the degree and second eigenvalue of the expander).
Using the best known expanders [22] this constant is slightly larger than 4.

We present three alternative constructions of sample spaces of size roughly
(n

ǫ )2 for which the exclusive-or of any fixed bit locations, in the sample point,
induces a 0-1 random variable with bias bounded by ǫ. Another construction
with similar parameters can be given [3] by applying the known properties
of the duals of BCH codes (see [23], page 280). Our three constructions are
so simple that they can be described in the three corresponding paragraphs
below:

1. A point in the first sample space is specified by two bit strings of

length m
def
= log(n/ǫ) each, denoted f0 · · · fm−1 and s0 · · · sm−1, where

f0 = 1 and tm +
∑m−1

i=0 fi · ti is an irreducible polynomial. The n-bit
sample string, denoted r0 · · · rn−1 is determined by ri = si for i < m
and ri =

∑m−1
j=0 fj · ri−m+j for i ≥ m.

2. A point in the second sample space is specified by a residue x modulo
a fixed prime p ≥ (n/ǫ)2. The n-bit sample string, denoted r0 · · · rn−1,
is determined by ri = 0 if x + i is a quadratic residue modulo p and
ri = 1 otherwise.

3. A point in the third sample space is specified by two bit strings of

length m
def
= log(n/ǫ) each, denoted x and y. The n-bit sample string,

denoted r0 · · · rn−1, is determined by letting ri equal the inner-product-
mod-2 of the binary vectors xi and y, where xi is the ith power of x
when considered as an element of GF (2m).

The first construction may be viewed as an explanation for the pop-
ularity of using linear feedback shift registers for sampling purposes. We
showed that when both the feedback rule and the starting sequence are se-
lected at random, the resulting feedback sequence enjoys “almost indepen-
dence” comparable to the length of the feedback rule (i.e., the sequence is
“almost” O(m)-wise independent, where m is the length of the feedback
rule). Similarly, an explanation is provided for the “random structure” of
quadratic characters: a random subsequence of quadratic characters (mod
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p) enjoys “almost independence” comparable to the logarithm of the prime
moduli (i.e. the sequence χp(x+i0), ..., χp(x+in−1) is “almost” O(log p)-wise
independent when x is randomly selected).

2 Preliminaries

We will consider probability distributions on binary strings of length n. In
particular, we will construct probability distributions which are uniform over
some set S ⊆ {0, 1}n, called the sample space. The parameter that will be
of interest to us is the “size of the probability space”; namely, the number of
strings in the support (i.e. |S|). The aim is to construct “small” probability
spaces which have “good” randomness properties. In particular we will be
interested in k-wise independence.
Convention: A sample space which is contained in {0, 1}n will be usually
sub-indexed by n. The super-index will usually represent an upper bound
on the logarithm (to base 2) of the cardinality of the sample space. Hence,
Sm

n denotes a sample space of ≤ 2m strings each of length n.

2.1 Almost k-wise Independence

Definition 1 (k-wise independence): A sample space Sn is k-wise inde-
pendent if when X = x1 · · ·xn is chosen uniformly from Sn then for any k
positions i1 < i2 < · · · < ik and any k-bit string α, we have

Pr[xi1xi2 · · ·xik = α] = 2−k.

In many applications it suffices that a bit sequence is “almost” k-wise
independent. There are several standard ways of quantifying this condition
(i.e. interpreting the phrase “almost”): cf. [9]. We use two very natural
ways corresponding to the L∞ and L1 norms:

Definition 2 (almost k-wise independence): Let Sn be sample space and
X = x1 · · ·xn be chosen uniformly from Sn.

• (max-norm): Sn is (ǫ, k)-independent (in max norm) if for any k po-
sitions i1 < i2 < · · · < ik and any k-bit string α, we have

|Pr[xi1xi2 · · ·xik = α] − 2−k| ≤ ǫ.
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• (statistical closeness): Sn is ǫ-away (in L1 norm) from k-wise inde-
pendence if for any k positions i1 < i2 < · · · < ik we have

∑

α∈{0,1}k

|Pr[xi1xi2 · · ·xik = α] − 2−k| ≤ ǫ.

Clearly, if Sn is (ǫ, k)-independent (in max norm) then it is at most 2kǫ-
away (in L1 norm) from k-wise independence, whereas if Sn is ǫ-away (in
L1 norm) from k-independence then it is (ǫ, k)-independent (in max norm).

2.2 Linear Tests

The heart of each of our constructions is a sample space which is very close
to random with respect to “linear Boolean tests” (i.e., tests which take the
exclusive-or of the bits in some fixed locations in the string). Following Naor
and Naor [25], these sample spaces can be used in various ways to achieve
almost k-wise independence.

Definition 3 :

• Let (α, β)2 denote the inner-product mod 2 of the binary vectors α and
β (i.e. (α1 · · ·αn, β1 · · ·βn)2 =

∑n
i=1 αiβi mod 2).

• A 0-1 random variable X is called ǫ-biased if

|Pr[X = 0] − Pr[X = 1]| ≤ ǫ.

• Let Sn be a sample space and X = x1 · · ·xn be chosen uniformly from
Sn. The sample space Sn is said to be ǫ-biased with respect to linear
tests if for every α = α1 · · ·αn ∈ {0, 1}n − {0}n the random variable
(α, X)2 is ǫ-biased.

• The sample space Sn is said to be ǫ-biased with respect to linear tests
of size at most k if for every α = α1 · · ·αn ∈ {0, 1}n − {0}n such that
at most k of the αi are one, the random variable (α, X)2 is ǫ-biased.

Clearly, the uniform distribution over all n-bit strings is unbiased (0-
biased) with respect to all linear tests. A linear test can be interpreted as
trying to refute the randomness of a probability space by taking a fixed
linear combination of the bits in the sample.

The following lemma, attributed to Vazirani [29] (see also [30], [11]),
links the ability to pass linear tests with almost independence.
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Lemma 1 (Vazirani): Let Sn ⊂ {0, 1}n be a sample space that is ǫ-biased
with respect to linear tests of size at most k. Then the sample space Sn is
((1 − 2−k)ǫ, k)-independent (in max norm), and (2k − 1)1/2ǫ-away (in L1

norm) from k-wise independence.

In particular this implies:

Corollary 1 (Vazirani): Let Sn ⊂ {0, 1}n be a sample space that is ǫ-biased
with respect to linear tests. Then, for every k, the sample space Sn is ((1 −
2−k)ǫ, k)-independent (in max norm), and (2k − 1)1/2ǫ-away (in L1 norm)
from k-wise independence.

Remark: In the applications of the lemma we will use the bounds ǫ and
2k/2ǫ respectively, since the difference is minimal.

For completeness we give the proof of Lemma 1 in an appendix.

A more advantageous way of using ǫ-biased (w.r.t. linear tests) sample
spaces, than just using Corollary 1, was suggested by Naor and Naor [25]:
They combine the use of a sample space which is ǫ-biased w.r.t. linear tests
with a “linear” k-wise independent sample space. A sample space is called
linear if its elements are obtained by a linear transformation of their succinct
representation (equivalently, the sample space is a linear subspace). For
example, the construction of a k-wise independent sample space presented
by Alon, Babai and Itai [5] is linear. To be more precise they construct a
sample space on n bits, where n = 2t−1, which is generated by td+1 bits and
is (2d + 1)-wise independent. Naor and Naor observed that a sample space
which is almost unbiased with respect to linear Boolean tests can be used to
sample succinct representations of points in the linear k-wise independent
space. The sample obtained can be shown to be ǫ-biased w.r.t. linear tests
of size at most k. Using Lemma 1 we get.

Lemma 2 (Naor and Naor): Let Sm
n ⊂ {0, 1}n be a sample space of cardi-

nality 2m that is ǫ-biased with respect to linear tests. Let k be an integer and
Ln

N ⊂ {0, 1}N be a k-wise independent linear sample space of cardinality 2n.
Suppose Ln

N is defined by the linear map T . Then, the sample space Rm
N con-

structed by applying the linear map T to each sample point in Sm
n , is ǫ-biased

with respect to linear tests of size at most k. Hence Rm
N is (ǫ, k)-independent

(in max norm), and 2k/2ǫ-away (in L1 norm) from k-wise independence.

Using the construction in [5] we get:
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Corollary 2 (Naor and Naor): Let k < n be an odd integer and N ≤
2⌊

2(n−1)
k−1

⌋ − 1. Given a sample space, Sm
n , as in Lemma 2, one can con-

struct a sample space Rm
N ⊂ {0, 1}N of cardinality 2m such that Rm

N is
(ǫ, k)-independent (in max norm), and 2k/2ǫ-away (in L1 norm) from k-
wise independence.

Hence, an (ǫ, k)-independent sample space on N bits can be constructed
using O(log log N + log k + log 1

ǫ ) random bits instead of O(log N + log k +
log 1

ǫ ) random bits (as in direct application of Corollary 1).
In view of Corollary 2, the main part of the paper deals merely with the

construction of small sample spaces which have small bias with respect to
linear tests.

3 The LFSR Construction

Our first construction is based on linear feedback shift register (LFSR) se-
quences.

Definition 4 (linear feedback shift register sequences): Given two sequences
s = s0, s1, . . . sm−1 and f = f0, f1, . . . fm−1 of m bits each, the shift regis-
ter sequence generated by the feedback rule f and the start sequence s is
r0, r1, . . . rn−1 where ri = si for i < m and ri =

∑m−1
j=0 fj · ri−m+j for i ≥ m.

Our sample space will consist of all shift register sequences generated by
“non-degenerate” feedback rules and any starting sequence.

Construction 1 (Sample Space A2m
n ): The sample space A2m

n is the set
of all shift register sequences generated by a feedback rule f = f0f1 · · · fm−1

with f0 = 1 and f(t)
def
= tm +

∑m−1
j=0 fj · tj being an irreducible polynomial

(such a feedback rule is called non-degenerate). Namely, A2m
n contains all

sequences r = r0r1 · · · rn−1 such that there exists a non-degenerate feedback
rule f and a start sequence s generating r.

Hence, the size of the sample space A2m
n is at most 22m (actually, it is

≈ 22m

m ). In view of Corollary 2 we now confine ourselves to evaluating the
bias of this sample space with respect to linear Boolean tests.

Proposition 1 : The sample space A2m
n is n−1

2m (1 + O(2−m/2))-biased with
respect to linear tests. Namely, for any nonzero α the random variable
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(α, r)2 is (n − 1)2−m(1 + O(2−m/2))-biased when r is selected uniformly in
A2m

n .

Proof: For the rest of this section we consider only polynomials over GF (2).
The number of irreducible monic polynomials ([19], p. 39) of degree m is

1

m

∑

d|m
µ(

m

d
)2d,

where µ is the ordinary Möbius function (i.e. µ(x) = (−1)s where s is the
number of primes that divide x if x is squarefree and µ(x) = 0 otherwise).
Since also µ(1) = 1 the above expression is (1+O(2−m/2))2m

m . For the rest of
this section we will, for notational simplicity, treat the number of irreducible
monic polynomials of degree m as if it is exactly 2m

m . (The error introduced
is absorbed in the error term.) Hence, with this convention we say that the

size of A2m
n is 22m

m .
Fix the feedback rule (i.e. f) and consider the distribution of (α, r)2

when we only vary the starting vector (i.e. s). A key observation is that the
ri’s are a linear combination of the sj ’s (which are the only indeterminates
as the fi’s were fixed). It is useful (and standard practice) to notice that
in GF (2), the reduction of tj modulo f(t) (= tm +

∑m−1
i=0 fi · ti) is a linear

combination of t0, t1, . . . tm−1 and that this linear combination is identical
to the coefficients in the expression of ri as a linear combination of the
sj ’s. Hence, a linear combination of the ri’s (which is exactly what (α, r)2
is) corresponds to a linear combination of the corresponding powers of ti.
This linear combination can be either identically zero or not. The first case

means that the polynomial f(t) divides the polynomial g(t)
def
=
∑n−1

i=0 αi · ti;
whereas in the second case (α, r)2 being a non constant combination of
the si’s is unbiased when the si’s are uniformly selected. Hence the bias
of (α, r)2, when r is uniformly selected in A2m

n equals the probability that
the polynomial f(t) divides the polynomial g(t). The latter probability
is bounded by the fraction of irreducible monic polynomials of degree m
which divide a specific polynomial of degree n − 1. There are at most n−1

m
irreducible monic polynomials of degree m which divide a polynomial of
degree n − 1. Dividing by the number of irreducible monic polynomials of
degree m (i.e. 2m

m ) the proposition follows.
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4 The Quadratic Character Construction

Our second construction is based on Weil’s Theorem regarding character
sums (cf. [27], p. 43, Thm. 2C). A special case of this theorem is stated
below.

Definition 5 (Quadratic Character): Let p be an odd prime and x be an
integer relatively prime to p. The Quadratic Character of x mod p, denoted
χp(x), is 1 if x is a quadratic residue modulo p and −1 otherwise. For x a
multiple of p we define χp(x) = 0.

Theorem 1 (Weil): Let p be an odd prime. Let f(t) be a polynomial over
GF (p) which is not the square of another polynomial and has precisely n
distinct zeros. Then,

∣

∣

∣

∣

∣

∣

∑

x∈GF (p)

χp(f(x))

∣

∣

∣

∣

∣

∣

≤ (n − 1)
√

p

The ith bit in the jth sample string, in our sample space, will be χp(i+j).
A translation from ±1 sequences to {0, 1} sequences can be easily effected.
Theorem 1 will be used to analyze the bias of this sample space with respect
to linear tests.

Construction 2 (Sample Space Blog p
n ): The sample space Blog p

n consists of
p strings. The xth string, x = 0, 1, ..., p − 1, is r(x) = r0(x)r1(x) · · · rn−1(x)

where ri(x) =
1−χ

p(x+i)
2 , for i = 0, 1, ..., n − 1. If x + i = p then let ri = 1.

Hence, the size of the sample space Blog p
n is exactly p.

Proposition 2 : The sample space Blog p
n is n−1√

p + n
p -biased with respect

to linear tests. Namely, for any nonzero α the random variable (α, r)2 is
n−1√

p + n
p -biased when r is selected uniformly in Blog p

n .

Proof: The bias of (α, r)2 equals the expectation of (−1)(α,r)2 taken over
all possible r’s. Hence the bias is

1

p
|
∑

x∈GF (p)

(−1)
∑n−1

i=0
αiri(x)|.
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For most x’s (−1)ri(x) = χp(x + i) and using χp(xy) = χp(x)χp(y), we get
the following bound for the bias:

1

p
|
∑

x∈GF (p)

χp(f(x))| + n

p

where f(x) = Πn−1
i=0 (x + i)αi and the second term comes form the special x

for which x+i = p for some i with αi = 1. Using Theorem 1, our proposition
follows.

5 The Powering Construction

Our third construction is based on arithmetic in finite fields. In particular,
we will use GF (2m) arithmetic and also consider the field elements as binary
strings.

Construction 3 (Sample Space C2m
n ): Let bin : GF (2m) 7→ {0, 1}m be

a one-to-one mapping satisfying bin(0) = 0m and bin(u + v) = bin(x) ⊕
bin(y), where α ⊕ β means the bit-by-bit xor of the binary strings α and
β. (The standard representation of GF (2m) as a vector space satisfies the
above conditions.) A string in the sample space C2m

n is specified using two
field elements, x and y. The ith bit in this string is the inner-product of xi

and y. More precisely, the ith bit of the sample point is (bin(xi),bin(y))2.

Hence, the size of the sample space C2m
n is 22m. We now evaluate the

bias of this sample space with respect to linear Boolean tests.

Proposition 3 : The sample space C2m
n is n−1

2m -biased with respect to linear
tests. Namely, for any nonzero α the random variable (α, r)2 is (n−1)2−m-
biased when r is selected uniformly in C2m

n .

Proof: Let r(x, y) = r0(x, y) · · · rn−1(x, y) denote the sample point specified
by the field elements x and y. Note that

(α, r(x, y))2) =
n−1
∑

i=0

αi(bin(xi), bin(y))2

which equals (bin(
∑n−1

i=0 αix
i),bin(y))2. Let pα(t) =

∑n−1
i=0 αit

i be a polyno-
mial over GF (2). We are interested in the distribution of (bin(pα(x)),bin(y))2
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when x ∈ GF (2m) and y ∈ GF (2m) are chosen uniformly. As in the proof
of Proposition 1, we analyze this probability by fixing x and going through
all possible y’s. There are two cases to consider. If x is not a zero of the
polynomial pα(t) then bin(pα(x)) 6= 0m and (bin(pα(x)),bin(y))2 is unbi-
ased when selecting y uniformly. If on the other hand x is a zero of pα(t)
then (bin(pα(x)),bin(y))2 = 0 for all y’s, but pα(t) has at most n− 1 zeros.
Hence, the proposition follows.

Remark: Construction 3 actually constructs linear feedback shiftregister
sequences, but with a different distribution compared to construction 1. The
interested reader is invited to check this. The minimal polynomial for x will
give the feedback rule.

Remark: It is possible to get slightly more bits without affecting the bias
of linear tests. Let v1, v2 . . . vm be a basis of GF [2m] over GF[2]. Then we
can extract nm bits by letting bij = (bin(vjx

i), bin(y)). The bias of any xor
is still n2−m. The proof of this fact is almost identical to the present proof.
The only difference is that we get a polynomial over GF [2m] instead of a
polynomial over GF [2].

6 Main Theorems for Almost k-wise independence

Let us put the pieces together. All three constructions use at most 2m bits
to get n bits with n2−m-bias with respect to linear tests. Combining this
with Corollary 2 we get:

Theorem 2 Let N = 2t − 1 and let k be an odd integer. Then it is pos-
sible to construct N bits which are (ǫ, k)-independent (in max norm) using

2
(

⌈log 1
ǫ + log

(

1 + (k−1)t
2

)

⌉
)

bits.

This is roughly 2 log
(

k log N
2ǫ

)

bits.

Theorem 3 Let N = 2t − 1 and let k be an odd integer. Then we can
construct N bits which are ǫ-away (in L1 norm) from k-wise independence

using 2
(

⌈k
2 + log 1

ǫ + log
(

1 + (k−1)t
2

)

⌉
)

bits.

This is roughly k + 2 log
(

k log N
2ǫ

)

bits.
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7 The smallest possible ǫ-bias spaces

The constructions above lead naturally to the problem of studying how
close to optimal these are in terms of the size of the sample spaces. Here
we briefly comment on this problem. We note that tight bounds for the
related quantity which is the minimum possible size of a sample space in
which there are n random variables which are k-wise independent are given
in [11] and in [5].

For an integer n and for a real ǫ < 1/2, let m(n, ǫ) denote the minimum m
such that there exists a sample space of size m and n (0, 1)-random variables
embedded in it, such that for any nontrivial linear combination over GF (2)
of the random variables, the probability that it is 0 is between 1/2 − ǫ and
1/2 + ǫ.

Our objective is to study the function m(n, ǫ). A very similar function
is studied in [6], and most of the techniques applied there can be used in
our case as well, as we briefly describe below. Besides these techniques, we
need a new result, stated in proposition 4 below.

As mentioned in [25] the problem of estimating m(n, ǫ) can be best
formulated as a problem about error correcting codes. Indeed, suppose
there is a sample space of size m and n (0, 1)-random variables as above
over it. Let aij ∈ {0, 1} denote the value of the ith random variable in the
jth point of the sample space, and let A be the n by m matrix given by:
A = (aij)1≤i≤n,1≤j≤m. Then A is the generating matrix of a linear code of
dimension n and length m over GF (2) in which all the distances are between
(1/2 − ǫ)m and (1/2 + ǫ)m. Conversely, from any linear code as above we
can obtain a sample space and random variables with the corresponding
properties.

Therefore, the known bounds in the theory of error correcting codes can
be used to estimate the function m(n, ǫ). The Gilbert-Varshamov bound (in
fact, with a slight modification, as here we need a code in which all code
words have weight which is very close to 0.5m) implies that for any n and ǫ:

m(n, ǫ) ≤ O(
n

ǫ2
).

The same bound can be easily proved by a probabilistic argument as well.
It is trivially true that for any positive ǫ, m(n, ǫ) ≤ 2n since there is a code
of length m = 2n and dimension n in which the weight of each code-word
is precisely 0.5m. Combining this with the modification in the remark of
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Construction 3 we conclude that for any n and ǫ:

m(n, ǫ) ≤ O(MIN{ n

ǫ2
, 2n,

n2

ǫ2(log2(n/ǫ))2
}). (1)

A lower bound for m(n, ǫ) can be derived- (as is also mentioned in [6]
for the case of fixed ǫ )- from the McEliece-Rodemich-Rumsey-Welch bound
(see [23], page 559). Although the proof of this bound, as described, e.g.,
in [23] is given only for the case of a fixed ǫ (when the length of the code
tends to infinity), the same proof can be extended to a more general case, by
studying the asymptotic behavior of the smallest roots of the corresponding
Krawtchouk polynomials. This gives here that there exists a fixed (small)
δ > 0, such that for every n and ǫ ≥ 2−δn:

m(n, ǫ) ≥ Ω(
n

ǫ2 log 1/ǫ
). (2)

What happens when ǫ < 2−δn? A lower bound which is sharp in this
range for m(n, ǫ) is given in the following result from [3].

Proposition 4 For every n and ǫ:

m(n, ǫ) ≥ Ω(MIN{ 1

ǫ2
, 2n}).

Combining Proposition 4 and inequality (2) we conclude that for every
n and ǫ:

m(n, ǫ) ≥ Ω(MIN{ n

ǫ2 log(1/ǫ)
, 2n}). (3)

Note that the upper and the lower bounds for m(n, ǫ) given in (1) and
in (3) coincide (up to a constant factor) when ǫ = 2−Θ(n) and give that in
this range m(n, ǫ) = Θ( 1

ǫ2
). Note also that in this range our third explicit

construction (the improvement in the remark) gives also a bound of the form
O(1/ǫ2), which is, thus, tight in this case.

In general, our three explicit constructions all give

m ≤ n2

ǫ2(log(n/ǫ))δ
,

where in the first construction δ = 1, in the second δ = 0 and in the third
δ = 2. The construction that can be obtained using the BCH-codes, also
gives δ = 2 [3].
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8 Concluding Remarks

All our three constructions admit fast translation of the succinct representa-
tion into the full length sample point. In fact, given succinct representation s
and bit location i, the ith bit of the sample determined by s can be computed
in NC.

All three constructions can be generalized to d-ary strings, for any prime
d. The generalized constructions have small bias with respect to linear tests
(which compute a linear combination mod d of the d-ary values considered
as elements of Zd). The first such generalization is due to Azar, Motwani
and Naor [7] (extending the characters construction). The second such gen-
eralization is due to Guy Even [14] (extending the LFSR construction). Our
third construction can be easily generalized as well. However, if one is in-
terested in distributions over d-ary sequences which are statistically close
to k-wise independent (d-ary) distributions then these construction do not
offer any improvement in efficiency (over the trivial construction which uses
a binary construction) (cf. [7],[14]).

An issue to be addressed is the “semi-explicit” presentation of all three
constructions. To be fully specified, the first construction requires a list of
irreducible polynomials of degree m over GF (2), the second construction
requires a prime p (of size ≈ 22m), whereas the third construction assumes
a representation of GF (2m) (which amounts to an irreducible polynomial of
degree m over GF (2)). The reader may wonder whether these requirements
can be met in the applications (in which the sample spaces are used). In
the rest of this section we answer this question in the affirmative.

In some applications we are allowed to use a preprocessing stage of com-
plexity comparable to the size of the sample space. Two notable examples
follow

• The sample space Ss
n is used for deterministic simulation of a random-

ized algorithm. In such a case the overall complexity of the simulation
is 2s times the cost of one call to the randomized algorithm. Hence,
adding a preprocessing stage of complexity 2s does not increase the
overall complexity.

• The sample space Ss
n contains strings of length comparable to 2s (i.e.

s = O(log n)). This is the case, for example, when m is selected such
that the sample space is ǫ-away from log n-wise independent, for some
fixed ǫ (or ǫ = n−O(1)) (cf. [25]).
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In a preprocessing stage (of complexity 2s), we may enumerate all monic
polynomials of degree s and discard those which have non-trivial divisors.
Similarly, to find a prime larger than M , we can test all integers in the
interval [M, 2M ] for primality.

In case such a preprocessing is too costly we either omit it or replace it
by a randomized preprocessing stage of complexity mO(1). In the 2nd and 3rd

constructions all that is needed is one “element” (either a prime in [M, 2M ]
or a irreducible polynomial of degree m). Such an element can be found by
sampling the strings of length ℓ (ℓ equals m or 1 + log M , respectively). In
both cases the density of good elements is ≈ 1

ℓ . A straightforward algorithm
to achieve this will require ℓ2 independently selected ℓ-bit strings, meaning
that we use ℓ3 coin flips in the precomputation (which dominates the O(ℓ)
coin flips used to select a sample point in the sample space). An alternative
procedure is suggested below (for sake of clarity we consider the problem of
finding an irreducible polynomial of degree m).

Construction 4 (sample space for irreducible polynomials):

• Use pairwise-independent sampling to specify m monic polynomials of
degree m. With probability at least 1

2 , at least one of these polynomials
is irreducible. The pairwise independent sampling requires 2m bits (cf.
[12]). Call the resulting sample space Pm.

• Use an expander-path of length O(m) to specify O(m) points in the
sample space Pm. This is done by using O(m) bits to specify a starting
point and then using O(m) bits to choose a path of length O(m) starting
at this point. With probability at least 1 − 2−m, at least one of these
points specifies a sequence of m polynomials containing at least one
irreducible polynomial (cf. [2, 13, 20, 17, 8]). This sampling requires
O(m) bits. Call the resulting sample space Em.

• A sample point in Em specifies O(m2) polynomials and with over-
whelming probability at least one of them is irreducible. Say we output
the first irreducible polynomial among these m2 polynomials.

Remark 1 When using an expander graph in this construction, it is impor-
tant to note that there are explicit constructions of expander graphs which do
not use a large prime or anything else that might be hard to find determin-
istically. An example of such a construction is the construction by Gabber
and Galil [16].
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Construction 4 suffices as a randomized preprocessing for Constructions
2 and 3, and for a modification of Construction 1 (sketched below). How-
ever, for Construction 1 (as appearing in Section 3) we need the ability to
select a random irreducible polynomial (and not merely to find and fix one).
Construction 4 does get “close” to that goal: although the output does not
specify a uniformly selected irreducible polynomial, it is easy to see that the
probability that a particular polynomial appears in the output is bounded
above by O(m2 1

N ), where N denotes the number of irreducible polynomials
(and hence 1

N is the probability that a particular one is picked when we
select with uniform probability). Thus, the probability that the polynomial
selected by Construction 4 divides a fixed n degree polynomial is bounded
above by m2 · n

2m . Hence, the implementation of Construction 1 in which
the feedback rule is selected using Construction 4 yields a sample space of
size 2O(m) which is nm2

2m -biased with respect to linear tests.
Finally, we sketch a modification of Construction 1, suggested by Y.

Azar. Fix a “non-degenerated” feedback rule f (i.e. an irreducible poly-
nomial of degree m). The sample point specified by a start sequence s =
s0, s1, ..., sm−1 and an integer k < 2m (called the gap) is r0, rk, . . . r(n−1)k

where ri = si for i < m and ri =
∑m−1

j=0 fj · ri−m+j for i ≥ km. It can be
shown that for any fixed irreducible polynomial f(t) (of degree m) and any
degree-n polynomial g(t), when k is uniformly chosen in {1, 2, ..., 2m − 1},
the probability that f(t) divides g(tk) is bounded above by n

2m . Using the
argument of Proposition 1 it follows that the modified sample space is n

2m -
biased with respect to linear tests. As in Construction 3 we again get linear
feedback shiftregister sequences. This time with a third distribution.
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A Proof of Lemma1

Without loss of generality let us look at the variables x1, x2 . . . xk. For
α ∈ {0, 1}k let pα be the probability that xi = αi for all 1 ≤ i ≤ k. For

β ∈ {0, 1}k let φβ be the function defined by φβ(α) = (−1)
∑k

i=1
αiβi . Then

the discrete Fourier transform of the sequence pα is defined by

cβ =
∑

α

φβ(α)pα.

If β 6= 0 this is exactly the same as the bias of the linear test given by β,
and hence in this case |cβ| ≤ ǫ, while c0 = 1.

By standard Fourier analysis we have

pα = 2−k
∑

β

φβ(α)cβ

and
∑

α

p2
α = 2−k

∑

β

c2
β.

Now we have

|pα − 2−k| = 2−k|
∑

β 6=0

φβ(α)cβ| ≤ (1 − 2−k)ǫ,

which proves the first part of the lemma. To see the second part let p′α =
pα−2−k and let c′β be the Fourier transform of the p′-sequence. Then c′0 = 0,
while c′β = cβ for β 6= 0. Hence by Cauchy-Schwarz inequality we have

∑

α

|pα − 2−k| ≤ 2k/2

(

∑

α

(pα − 2−k)2
)1/2

=

2k/2



2−k
∑

β 6=0

c2
β





1/2

≤ (2k − 1)1/2ǫ.

This finishes the proof of the lemma.
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