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The correspondence analysis of a two-way contingency table is now accepted as a very versatile
tool for helping users to understand the structure of the association in their data. In cases where the
variables consist of ordered categories, there are a number of approaches that can be employed and
these generally involve an adaptation of singular value decomposition. Over the last few years, an
alternative decomposition method has been used for cases where the row and column variables of a
two-way contingency table have an ordinal structure. A version of this approach is also available for
a two-way table where one variable has a nominal structure and the other variable has an ordinal
structure. However, such an approach does not take into consideration the presence of the nominal
variable. This paper explores an approach to correspondence analysis using an amalgamation of
singular value decomposition and bivariate moment decomposition. A benefit of this technique is
that it combines the classical technique with the ordinal analysis by determining the structure of the
variables in terms of singular values and location, dispersion and higher-order moments.
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1. Introduction

The analysis of categorical data is a very important component in statistics, and the presence

of ordered variables is a common feature. Models and measures of association for ordinal cate-

gorical variables have been extensively discussed in the literature, and are the subject of classic

texts including Agresti [1], Goodman [2], and Haberman [3].

The visual description of the association between two or more variables is a vital tool

for the analyst since it can often provide a more intuitive view of the nature of the asso-

ciation, or interaction, between categorical variables than numerical summaries alone. One

such tool is correspondence analysis. However, except in a few cases [4–7], the classical

approach to correspondence analysis neglects the presence of ordinal categorical variables
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when identifying the structure of their association. One way to incorporate the ordinal

structure of categorical variables in simple correspondence analysis is to adopt the ap-

proach of Beh [8]. His method takes into account the ordinal structure of one or both vari-

ables of a two-way contingency table. At the heart of the procedure is the partition of

the Pearson chi-squared statistic described by Best and Rayner [9] and Rayner and Best

[10]. However, when there is only one ordered variable, Beh’s [8] approach to correspon-

dence analysis does not consider the structure of the nominal variable. This paper does

consider the previously neglected nominal variable by using the partition of the Pearson

chi-squared statistic described by Beh [11]. The partition involves terms that summarize

the association between the nominal and ordinal variables using bivariate moments. These

moments are calculated using orthogonal polynomials for the ordered variable and gen-

eralized basis vectors of a transformation of the contingency table for the nominal vari-

able.

The correspondence analysis approach described here, referred to as singly ordered cor-

respondence analysis, is shown to be mathematically similar to the doubly ordered approach.

The singly ordered and doubly ordered approaches share many of the features that make the

classical approach popular. Details of classical correspondence analysis can be found by refer-

ring to, for example, Beh [12], Benzécri [13], Greenacre [14], Hoffman and Franke [15], and

Lebart et al. [16]. A major benefit of singly ordered correspondence analysis is that nominal

row categories and ordinal column categories can be simultaneously represented on a single

correspondence plot while ensuring that the structure of both variables is preserved. Con-

structing such a joint plot for the singly ordered approach of Beh [8] is not possible due to the

scaling of coordinates considered in that paper. For the technique described in this paper, the

special properties linking the bivariate moments and singular values provide the researcher

with an informative interpretation of the association in contingency tables. These numerical

summaries also allow, through mechanisms common to correspondence analysis, a graphi-

cal interpretation of this association. Hybrid decomposition has also been considered for the

nonsymmetrical correspondence analysis of a two-way contingency table by Lombardo et al.

[17].

This paper is divided into seven further sections. Section 2 defines the Pearson ratio and

various ways in which it can be decomposed to yield numerical and graphical summaries

of association. The decompositions considered are (a) singular value decomposition, used in

classical correspondence analysis, (b) bivariate moment decomposition, used for the doubly

ordered correspondence analysis approach of Beh [8], and (c) hybrid decomposition. This

latter technique amalgamates the two former procedures and is important for the singly or-

dered correspondence analysis technique described in this paper. Section 3 summarizes, by

considering the hybrid decomposition of the Pearson ratio, the coordinates needed to obtain a

graphical summary of association between the two categorical variables while Section 4 pro-

vides an interpretation of the distance between the coordinates in the correspondence plot.

Section 5 defines the transition formulae which describe the relationship between the coor-

dinates of the two variables. Various properties of singly ordered correspondence analysis

are highlighted in Section 6. The features of the technique are examined using a pedagogi-

cal example in Section 7 where it is applied to the data described in Calimlin et al. [18]. Their

contingency table summarizes the classification of four analgesic drugs according to their ef-

fectiveness judged by 121 hospital patients. The paper concludes with a brief discussion in

Section 8.
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2. Decomposing Pearson’s ratio

2.1. The Pearson ratio

Consider a two-way contingency tableN that cross-classifies n units/individuals according to

I nominal row categories and J ordered column categories. Denote the (i, j)th element of N

by nij , for i = 1, 2, . . . , I and j = 1, 2, . . . , J and the (i, j)th cell relative frequency as pij = nij/n

so that
∑ I

i=1

∑ J
j=1pij = 1. Let the I × J matrix of these values be denoted as P and let pi• be

the ith row marginal proportion of N so that
∑ I

i=1pi• = 1, and DI the I × I diagonal matrix

where the (i, i)th cell entry is pi•. Similarly, let p•j be the jth column marginal proportion so

that
∑ J

j=1p•j = 1, and DJ the J × J diagonal matrix where the (j, j)th cell entry is p•j . Define

pij/pi• as the ith row profile and the (i, j)th element ofD−1
I P , and pij/p•j the jth column profile

and the (i, j)th element of D−1
I PT .

For the (i, j)th cell entry, Goodman [19] described the measure of the departure from

independence for row i and column j by the Pearson ratio

αij =
pij

pi•p•j
. (2.1)

In matrix notation, the Pearson ratio αij is the (i, j)th cell value of the matrix Δ, where

Δ = D−1
I PD−1

J . (2.2)

Independence between the I rows and J columns ofN will occur when Δ = U, whereU is the

I × J unity matrix where all the values are equal to 1. One can examine where independence

does not occur by identifying those Pearson ratios that are statistically significantly different

from 1.

A more formal approach to determine whether there exists an association between the

row and column categories involves decomposing the matrix of Pearson ratios, Δ. For the cor-

respondence analysis of N, there are a variety of ways in which the decomposition can be

performed. Here we will consider three methods of decomposition: singular value decompo-

sition, bivariate moment decomposition, and hybrid decomposition. It is the consideration of

the third approach here that is important for the method of correspondence analysis discussed

in this paper. The use of hybrid decomposition relies on some basic knowledge of singular

value decomposition and bivariate moment decomposition and so these will be described in

the following subsections.

2.2. Singular value decomposition

Classically, correspondence analysis involves decomposing the matrix of Pearson ratios using

singular value decomposition (SVD) so that

Δ = ÃD̃λB̃
T , (2.3)

where Ã and B̃ have the property

ÃTDIÃ = I, B̃TDJ B̃ = I, (2.4)
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respectively where I is an identity matrix. Also, D̃λ = diag(1, λ1, . . . , λM∗), where λm is the mth

largest singular value of αij , form = 1, . . . ,M∗.

For the decomposition of (2.3), Ã is an I × M matrix of left generalized basic vectors,

while B̃ is a J ×M matrix of right generalized basic vectors. In both cases, M = min (I, J) and

the first (trivial) singular vector of both matrices has all values equal to one. Let A and B be

the matrices Ã and B̃, respectively, with the trivial singular vector from each is omitted. The

matrix D̃λ is anM×M diagonal matrix where the (m,m)th cell value is themth singular value,

λm, of Δ. These singular values have the property that they are arranged in descending order

so that 1 = λ0 ≥ λ1 ≥ · · · ≥ λM∗ ≥ 0, whereM∗ = min (I, J) − 1.

Suppose we omit the trivial column vector from Ã and B̃ to give the I × M∗ matrix A

and the J ×M∗ matrix B, respectively. Also omit the first row and first column from the matrix

D̃λ (since the (1, 1)th element of D̃λ is equal to 1), obtaining the M∗ ×M∗ matrix Dλ. Then the

SVD of the Pearson ratio becomes the SVD of

Δ −U = ADλB
T (2.5)

whose elements Goodman [19] referred to as Pearson contingencies.

The SVD of these contingencies leads to the Pearson chi-squared statistic being expressed

in terms of the sum of squares of the singular values such that

X2 = n
M∗∑

m=1

λ2m = n trace
(
D2

λ

)
. (2.6)

2.3. Bivariate moment decomposition

When a two-way contingency table consists of at least one ordered variable, the ordinal struc-

ture of the variable needs to be taken into consideration. Over the past few decades, there have

been a number of correspondence analysis procedures developed that take into account the

ordinal structure of the variables; see, for example, [4–7]. Generally, these procedures involve

imposing ordinal constraints on the singular vectors. Such a procedure therefore forces the po-

sition of the points (along the first axis) of the plot to be ordered, thereby imposing what can

sometimes lead to unrealistic “correspondences” between row and column categories. A way

to overcome this problem is to consider using orthogonal polynomials rather than imposing

constraints on the columns of A and B considered in the previous section.

For a doubly ordered two-way contingency table, the correspondence analysis approach

of Beh [8] employs the bivariate moment decomposition (BMD) of Pearson ratios so that

Δ = Ã∗Ỹ B̃
T
∗ , (2.7)

where

ÃT
∗DIÃ∗ = I, B̃T

∗DJ B̃∗ = I. (2.8)

For the decomposition of (2.7), Ã∗ is an I × I matrix of row orthogonal polynomials,

while B̃∗ is a J × J matrix of column orthogonal polynomials. The (j, v)th element of B̃∗ may be

calculated by considering the recurrence relation

bv(j) = Sv

[(
sJ(j) − Tv

)
bv−1(j) − Vvbv−2(j)

]
, (2.9)
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where

Tv =
J∑

j=1

p•jsJ(j)b
2
v−1(j),

Vv =
J∑

j=1

p•jsJ(j)bv−1(j)bv−2(j),

Sv =

{
J∑

j=1

p•js
2
J(j)b

2
v−1(j) − T2

v − C2
v

}−1/2

,

(2.10)

for v = 0, 1, . . . , J − 1. These are based on the general recurrence relation of Emerson [20] and

depend on the jth score, sJ(j), assigned to reflect the structure of the column variables. There

are many different types of scores that can be considered and Beh [21] discusses the impact

of using four different scoring types (two objectively and two subjectively chosen scores) on

the orthogonal polynomials. However, for reasons of simplicity and interpretability, we will be

considering the use of natural column scores sJ(j) = j, for j = 1, 2, . . . , J , and natural row scores

in this paper. For both Ã∗ and B̃∗, the first column vector is trivial, having values equal to 1 so

that b0(j) = 1 and a0(i) = 1. It is also assumed that b−1(j) = 0 and a−1(i) = 0, for all i and j.

The matrix Ỹ is of size I × J where the first row and column have values all equal to 1.

The nontrivial elements of this matrix are referred to as bivariate moments, or generalized cor-

relations, and describe linear and nonlinear sources of association between the two categorical

variables. By omitting these trivial vectors, the decomposition of (2.7) becomes

Δ −U = A∗YB
T
∗ , (2.11)

where A∗ and B∗ are the row and column orthogonal polynomials, respectively, with the first

(trivial) column vector omitted. The matrix Y has elements which are the bivariate moments

defined by

Y = AT
∗PB∗. (2.12)

By considering the BMD (2.11), the Pearson chi-squared statistic can be partitioned into

bivariate moments so that

X2 = n
I−1∑

u=1

J−1∑

v=1

Y 2
uv = n trace

(
Y TY

)
= n trace

(
YY T), (2.13)

where the elements of Y are asymptotically standard normally distributed. Refer to Best and

Rayner [22] and Rayner and Best [23] for a full interpretation of (2.12) and (2.13). An advan-

tage of using BMD is that the (u, v)th element of Y , Yuv has a clear and simple interpretation;

it is the (u, v)th bivariate moment between the categories of the row and column variables.

As a result, Davy et al. [24] refer to these values as generalized correlations. For example, the

linear-by-linear relationship can be measured by

Y11 =
I∑

i=1

J∑

j=1

pij

(
sI(i) − µI

σI

)(sJ(j) − µJ

σJ

)
, (2.14)
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where sI(i) and sJ(j) are the set of row and column scores used to construct the orthogonal

polynomials, and µJ =
∑ J

j=1sJ(j)p•j and σ2
J =

∑ J
j=1sJ(j)

2p•j − µ2
J . The quantities µI and σ2

I are

similarly defined. By decomposing the Pearson ratios using BMDwhen natural scores are used

to reflect the ordinal structure of both variables, Y11 is equivalent to Pearson’s product moment

correlation; see Rayner and Best [23]. One can also determine the mean (location) and spread

(dispersion) of each of the nonordered row categories across the ordered column categories

by calculating µJ(i) =
∑ J

j=1sJ(j)pij so that µJ =
∑ I

i=1µJ(i) and σ2
J(i) =

∑ J
j=1sJ(j)

2pij − µJ(i)
2,

respectively.

2.4. Hybrid decomposition

Another type of decomposition, and one that was briefly discussed by Beh [12], is what is

referred to as hybrid decomposition (HD). For a singly ordered contingency table, hybrid de-

composition takes into account the ordered variable and nominal variable by incorporating

singular vectors from SVD and orthogonal polynomials from BMD such that the Pearson con-

tingencies are decomposed by

Δ −U = AZBT
∗ . (2.15)

The Z matrix of (2.15) is defined as

Z = ATPB∗. (2.16)

TheM∗ × (J − 1)matrix of Z values, {Z(u)v : u = 1, 2, . . . ,M∗, v = 1, 2, . . . , J − 1}, can be derived

by premultiplying (2.15) by ATDI and postmultiplying it by DJB
T
∗ .

If one considers the decomposition of the matrix of Pearson contingencies using the hy-

brid decomposition of (2.15), then the partition of the Pearson chi-squared statistic can be ex-

pressed in terms of the sum of squares of the Z(u)v so that

X2 = n
M∗∑

u=1

J−1∑

v=1

Z2
(u)v = n trace

(
ZTZ

)
= n trace

(
ZTZ

)
, (2.17)

where the elements of Z are asymptotically standard normal and independent. Refer to Beh

[11] for more details on (2.16) and (2.17).

The effect of the column location component on the two-way association in the contin-

gency table is measured by
∑M∗

u=1Z
2
(u)1

, while, in general, the vth-order column component is
∑M∗

u=1Z
2
(u)v

. The significance of these components can be compared with the chi-squared with

M∗ degrees of freedom. Testing these column components allows for an examination of the

trend of the column categories, the trend being dictated by the vth orthogonal polynomial. For

example, the column location component determines if there is any difference in the mean val-

ues of the column categories, while the column dispersion component detects if there is any

difference in the spread of the columns.

The first-order row location component on the two-way association in the contingency

table is measured by
∑ J−1

v=1Z
2
(1)v

, while in general, the uth-order row component value is equiv-

alent to
∑ J−1

v=1Z
2
(u)v

. The row location component quantifies the variation in the row categories

due to the mean difference in the row categories. Similarly, the row dispersion component
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quantifies the amount of variation that is due to the spread in the row categories. Refer to

Section 6 for more informative details on the row components.

Partitions of other measures of association using orthogonal polynomials have also been

considered. D’Ambra et al. [25] considered the partition of the Goodman-Kruskal tau index.

For symmetrically associated multiple categorical random variables, Beh and Davy ([26, 27])

considered the partition of the Pearson chi-squared statistic, while for asymmetrically associ-

ated variables Beh et al. [28] considered the partition of the Marcotorchino index [29]. How-

ever, the application of extensions to hybrid decomposition will not be considered here.

3. Profile coordinates

One system of coordinates that could be used to visualize the association between the row

and column categories is to plot along the kth axis {aik} for the ith row and {bk(j)} for the jth-
ordered column. Such coordinates are referred to as standard coordinates. These are analogous

to the set of standard coordinates considered by Greenacre [14, page 93].

However, standard coordinates infer that each of the axes is given an equal weight of 1.

Thus, while the difference within the row or column variables can be described by the differ-

ence between the points, they will not graphically depict the association between the rows and

columns. Therefore, alternative plotting systems should be considered.

Analogous to the derivation of profile coordinates in Beh [8] using BMD, the row and

column profile coordinates for singly ordered correspondence analysis are defined by

F = AZ, (3.1)

G∗ = B∗Z
T , (3.2)

respectively. Therefore, by including the correlation quantities, the coordinates (3.1) and (3.2)

will graphically depict the linear and nonlinear associations thatmay exist between the ordered

column and nominal row categories.

The relationship between the row (and column) profile coordinates and the Pearson chi-

squared statistic can be shown to be

X2 = n
I∑

i=1

J−1∑

v=1

pi•f
2
iv = n

J∑

j=1

M∗∑

u=1

p•j
(
g∗
ju

)2
(3.3)

by substituting the elements of FTDIF and GT
∗DJG∗ into (2.17). However, instead of using the

Pearson chi-squared statistic as a measure of association in a contingency table, correspon-

dence analysis considers instead X2/n, referred to as the total inertia. By adopting X2/n as

the measure of association, (3.3) shows that when the profile coordinates are situated close to

the origin of the correspondence plot, X2/n will be relatively small. Thus the hypothesis of

independence between the rows and columns will be strong. Profile coordinates far from the

origin indicate that the total inertia will be relatively large and the independence hypothesis

becomes weak. These conclusions may also be verified by considering the Euclidean distance

of a profile coordinate from the origin and other profile coordinates in the correspondence plot;

refer to Section 4 for more details.
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4. Distances

4.1. Distance from the origin

Consider the ith row profile. The squared Euclidean distance of this profile from the origin is

d2
I (i, 0) =

J∑

j=1

1

p•j

(
pij

pi•
− p•j

)2

. (4.1)

It can be shown that by expressing this in terms of Pearson contingencies, and using (2.15)

and (2.4), this distance may be expressed in terms of the sum of squares of the ith row profile

coordinate such that

d2
I (i, 0) =

J−1∑

v=1

f2
iv, (4.2)

where fiv is the (i, v)th element of F. By substituting (4.2) into (3.3), the Pearson chi-squared

statistic can be expressed as

X2 = n
I∑

i=1

pi•d
2
I (i, 0). (4.3)

Therefore, row profile coordinates close to the origin support the hypothesis of independence,

while those situated far from the origin support its rejection. It can be shown in a similar man-

ner that

X2 = n
J∑

j=1

p•jd
2
J(j, 0), (4.4)

where

d2
J(j, 0) =

I∑

i=1

1

pi•

(
pij

p•j
− pi•

)2

=
M∗∑

u=1

(
g∗
ju

)2
(4.5)

is the squared Euclidean distance of the jth column profile from the origin and g∗
ju is the (j, u)th

element of (3.2).

4.2. Within variable distances

The squared Euclidean distance between two row profile coordinates, i and i′, can be measured

by

d2
I

(
i, i′

)
=

J∑

j=1

1

p•j

(
pij

pi•
−
pi′j

pi′•

)2

. (4.6)
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By considering the definition of the row profile coordinates given by (3.1), the squared

Euclidean distance between these two profiles can be alternatively be written as

d2
I

(
i, i′

)
=

J−1∑

v=1

(
fiv − fi′v

)2
. (4.7)

Therefore, if two row profile coordinates have similar profile, their position in the cor-

respondence plot will be very similar. This distance measure also shows that if two row cate-

gories have different profiles, then the position of their coordinates in the correspondence plot

will lie at a distance from one another.

Similarly, the squared Euclidean distance between two column profiles, j and j ′, can be

measured by

d2
J

(
j, j ′

)
=

M∗∑

u=1

(
g∗
ju − g∗

j ′u

)2
. (4.8)

These results verify the property of distributional equivalence as stated by Lebart et al.

[16, page 35], a necessary property for the meaningful interpretation of the distance of profiles

in a correspondence plot.

(1) If two profiles having identical profiles are aggregated, then the distance between them

remains unchanged.

(2) If two profiles having identical distribution profiles are aggregated, then the distance be-

tween them remains unchanged.

The interpretation of the distance between a particular row profile coordinate and a col-

umn profile coordinate is a contentious one and an issue that will not be described here, al-

though a brief account is given by Beh [12, page 269].

5. Transition formula

For the classical approach to correspondence analysis, transition formulae allow for the profile

coordinates of one variable to be calculated when the profile coordinates of a second variable

are known.

To derive the transition formulae for a contingency table with ordered columns and

nonordered rows, postmultiply the left- and right-hand sides of (3.1) by ZT . Doing so leads

to

FZT = AZZT = A
(
ATPB∗

)
BT
∗DJG∗, (5.1)

upon substituting (2.16) and (3.2). Based on the orthogonality properties (2.4) and (2.8), the

transition formula becomes

FZT = D−1
I PG∗. (5.2)

The transition formula (5.2) allows for the row profile coordinates to be calculated when the

column profile coordinates are known.



10 Journal of Applied Mathematics and Decision Sciences

In a similar manner, it can be shown that

G∗Z = D−1
J PTF. (5.3)

Beh [30] provided a description of the transition formulae obtained for a doubly or-

dered correspondence analysis and the configuration of the points in the correspondence plot.

For singly ordered correspondence analysis, similar descriptions can be obtained and are sum-

marized in the following propositions.

(i) If the positions of the row profile coordinates are dominated by the first principal axis,

then Z(1)2 ≈ 0.

(ii) If the positions of the row profile coordinates are dominated by the second principal axis,

then Z(2)1 ≈ 0.

(iii) If the position of the column profile coordinates are dominated by the first principal axis,

then Z(2)1 ≈ 0.

(iv) If the positions of the column profile coordinates are dominated by the second principal

axis, then Z(1)2 ≈ 0.

However, it is still possible that Z(1)2 and/or Z(2)1 will be zero if none of the row and

column profile coordinates lie along a particular axis. For such a case, it is not possible to

determine when this will happen.

For both classical and doubly ordered correspondence analysis, when either the row or

column profile positions is situated close to the origin of the correspondence plot, then there is

no association between the rows and columns. This is indeed the case too for singly ordered

correspondence analysis as indicated by (3.3). The items summarized above show that, in this

case, Z(1)2 ≈ 0 and Z(2)1 ≈ 0. It can also be shown that Z(1)1 ≈ 0 and Z(2)2 ≈ 0.

6. Properties

The results above show that the mathematics and characteristics of this approach to singly or-

dered correspondence analysis are very similar to doubly ordered correspondence analysis and

classical simple correspondence analysis. However, there are properties of the singly ordered

approach that distinguish it from the other two techniques. This section provides an account

of these properties.

Property 1. The row component associated with the mth principal axis is equivalent to the

square of themth largest singular value.

To show this, recall that the total inertia may be written in terms of bivariate moments

and in terms of the eigenvalues such that

X2

n
=

M∗∑

u=1

J−1∑

v=1

Z2
(u)v =

M∗∑

u=1

λ2u (6.1)

which can be obtained by equating the Pearson chi-squared partitions of (2.6) and (2.17).

Therefore, the square of themth singular value can be expressed by

λ2m =
J−1∑

v=1

Z2
(m)v, (6.2)
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where the right-hand side of (6.2) is just the mth-order row component. For example, the

square of the largest singular value may be partitioned so that

λ21 = Z2
(1)1 + Z2

(1)2 + · · · + Z2
(1)J−1. (6.3)

Therefore, the singly ordered correspondence approach using the hybrid decomposition of

(2.16) and (2.17) allows for a partition of the singular values of the Pearson contingencies

into components that reflect variation in the row categories in terms of location, dispersion,

and higher-order moments. That is, each singular value can be partitioned so that informa-

tion associated with differences in the mean and spread of the row profiles can be identified.

Higher-order moments can also be determined from such a partition.

Property 2. The row component values are arranged in descending order.

This property follows directly from Property 1. Since the eigenvalues are arranged in a

descending order, so too are the row components.

Property 3. A singly ordered correspondence analysis allows for the inertia associated with a

particular axis of a simple correspondence plot (called the principal inertia) to be partitioned

in bivariate moments.

Again, this property follows directly from Property 1, where the principal inertia of the

mth axis is the sum of squares of the bivariate moments when u = m.

Property 4. It is possible to identify which bivariate moment contributes themost to a particular

squared singular value and hence its associated principal axis.

This is readily seen from Property 3.

For classical correspondence analysis, the axes are constructed so that the first axis ac-

counts for most of the information in variation in the categories, the second axis describes

accounts for the second most amount of variation, and so on. However, it is unclear what this

variation is, or whether it is easily identified as being statistically significant. By considering

the partition of the singular values, as described by (6.2), the user is able to isolate important

bivariate moments that include variation in terms of location, dispersion, and higher-order

components for each principal axis. Therefore, there is more information that is able to be ob-

tained from the axes of the correspondence plot, and the proximity of the points on it, than

from a classical correspondence plot.

7. Example

Consider the contingency table given by Table 1 which was originally seen in Calimlin et al.

[18] and analyzed by Beh [11]. The study was aimed at testing four analgesic drugs (randomly

assigned the labels A, B, C, and D) and their effect on 121 hospital patients. The patients were

given a five-point scale consisting of the categories poor, fair, good, very good, and excellent

on which to make their decision.

If only a comparison of the drugs, in terms of the mean value and spread across the

different levels of effectiveness, was of interest, attention would be focused on the quantities

µJ(i) (and σJ(i)). These values for Drug A, Drug B, Drug C, and Drug D are 3.3000 (1.2949),
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Table 1: Cross-classification of 121 hospital patients according to analgesic drug and its effect.

Analgesic drug effect

Poor Fair Good Very Good Excellent Total

Drug A 5 1 10 8 6 30

Drug B 5 3 3 8 12 31

Drug C 10 6 12 3 0 31

Drug D 7 12 8 1 1 29

Total 27 21 33 20 19 121

3.6129 (1.4740), 2.2581 (1.0149), and 2.2069 (0.9606), respectively and were calculated using

natural scores for the column categories. Therefore, based on these quantities, it is clear that

Drug A and Drug B are very similar in terms of the two components across the different levels

of effectiveness. Therefore, these two drugs have a similar effect on the patients. Also, these

drugs are different to Drug C and Drug D which are themselves quite similar in effectiveness.

However, the association between the Drugs and the different levels of effectiveness is not

evident from suchmeasures. This is why correspondence analysis is a suitable analytical tool to

graphically depict and summarize the association. It can be seen that Table 1 consists of ordered

column categories and nonordered row categories. Therefore, singly ordered correspondence

analysis will be used to analyze the effectiveness of the drugs.

The Pearson chi-squared statistic of Table 1 is 47.0712, andwith a zero p-value, it is highly

statistically significant. Therefore, with a total inertia of 0.3890, there is a significant association

between the drugs used and their effect on the patients.

When a classical correspondence analysis is applied, the squared singular values are

λ21 = 0.30467, λ22 = 0.07734, and λ23 = 0.00701 and the two-dimensional correspondence plot is

given by Figure 1. Here, the first principal axis accounts for 0.30467/0.3890 ×100 = 78.3% of the

total association between the two variables, and the second axis accounts for 19.9%. Therefore,

the two-dimensional plot of Figure 1 graphically depicts 98.2% of the association that exists

between the analgesic drug being tested and its level of effectiveness.

Figure 1 shows a clear association between the analgesic drug being tested and the effec-

tiveness of that drug. Drug B appears to have an “excellent” effect on the patients that partic-

ipated in the study, Drug A was rated as “very good,” Drug D was deemed only “fair” in its

effectiveness and Drug C was judged “good” to “poor.” These conclusions are also apparent

when eyeballing the cell frequencies of Table 1. However, it is unclear how the profile of each of

the four drugs is different, or where they may be similar. By adopting the methodology above,

we can determine how these comparisons may be made in terms of differences in location,

dispersion, and higher-order components.

The component values that are associated with explaining the variation in the position

of the drug coordinates in Figure 2 are
∑

mZ
2
(m)1

= 0.21034,
∑

mZ
2
(m)2

= 0.08418,
∑

mZ
2
(m)3

=

0.07268, and
∑

mZ
2
(m)4

= 0.02452. Therefore, Figure 2 is constructed using the first (linear)

principal axis with a principal inertia value of
√
0.21034 = 0.45863, and the second (dispersion)

principal axis with a principal inertia value of
√
0.08148 = 0.28545, for the four drugs. Together,

these two axes contribute to 75% of the variation of the drugs tested, compared with 98.2% of

the variation in the patients judgement of the drug. The third (cubic) component contributes

to 18.7% of this variation.
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Figure 1: Classical correspondence plot of Table 1.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

First principal axis

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S
ec
o
n
d
p
ri
n
ci
p
al

ax
is

Drug B

Excellent

Drug A

Fair

Drug D

Very good
Poor

Drug CGood

Figure 2: Singly ordered correspondence plot of Table 1.

Applying singly ordered correspondence analysis yields Z(1)1 = −0.45648 and Z(1)2 =

−0.26016. Also, Z(1)3 = 0.16505 and Z(1)4 = 0.03696. Therefore, by considering (6.3), we can see

that

0.3047 = (−0.4565)2 + (−0.2602)2 + (0.1651)2 + (0.0370)2. (7.1)

That is, the dominant source of the first (squared) singular value is due to the linear component

of the effectiveness of the drugs. Thus, the location component best describes the variation of

the profiles for the drug effectiveness levels along the first principal axis of Figure 1 (68.4%).
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Table 2: Contribution of the drugs tested to each axis of Figure 2.

Principal axis 1 Principal axis 2

Drug tested Contr’n % Contr’n Contr’n % Contr’n

Drug A 0.02705 12.86 0.00011 0.14

Drug B 0.08053 38.29 0.05524 67.79

Drug C 0.04884 23.22 0.01229 15.08

Drug D 0.05392 25.63 0.01384 16.99

Total 0.21034 100 0.08148 100

Table 3: Contribution of the effectiveness of the drugs tested to each axis of Figure 2.

Principal axis 1 Principal axis 2

Rating Contr’n % Contr’n Contr’n % Contr’n

Poor 0.01356 4.46 0.00124 1.60

Fair 0.07502 24.62 0.03576 46.23

Good 0.01953 6.41 0.02432 31.44

Very good 0.05615 18.43 0.00406 5.25

Excellent 0.14040 46.08 0.01197 15.48

Total 0.30466 100 0.07735 100

Figure 2 shows the variation of these drugs in terms of the linear and quadratic com-

ponents. While Figure 1 indicates that the effectiveness of Drug C and Drug D is different,

Figure 2 shows that the positions of Drug C and Drug D are similar across the column re-

sponses. This is because the variation between the two drugs exists at moments higher than

the dispersion. It is also evident from Figure 2 that these two drugs have quite a different ef-

fect than do Drug A and Drug B, which in themselves are different. These conclusions are in

agreement with the comments made earlier in the example. Figure 2 also shows that by taking

into account the ordinal nature of the column categories, the variation between the drug effec-

tiveness levels may be explored. For example, “good” and “poor” share the very similar first

principal coordinate. However, there is slightly more variation (across the drugs) for “good”

than there is for “poor.”

An important feature of Figure 2 is that it depicts the association between the drugs and

the levels of effectiveness. It can be seen from Figure 2, just as Figure 1 concluded, that Drug

A and Drug B are more effective in treating pain relief than Drug C and Drug D. However,

because of the use of hybrid decomposition, the position of the drug profile coordinates have

changed. Figure 1 concluded that Drug D was rated as “fair.” This is primarily due to the

relatively large cell frequency (with a value of 12) that the two categories share; this feature is

a common characteristic of classical correspondence analysis. However, since the drug behaves

in a similar manner (in terms of location and spread)when compared with Drug C, its position

has shifted to the bottom right quadrant of the plot. Therefore, Drug D is associated more with

“poor” and “good” when focusing on these components of the category.

By observing the distance of each category from the origin in Figure 2, Drug B is the

furthest away from the origin and so is less likely than the other drugs to contribute to the in-

dependence between the drugs and the patients effect. This is because Drug B contributes more
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to the row location component (38.29%) than any of the other three drugs in the study, while

contributing to 67.79% of the variation in the dispersion component. Further results on the

dominance of the drugs to each of the axes in Figure 2 are summarized in Table 2. It shows the

contribution, and relative contribution of each drug to each of the two axes. Table 3 provides a

similar summary, but for the different effectiveness levels of the drugs.

Recall that Drug C and Drug D are positioned close to one another in Figure 2. Table 2

shows that they contribute roughly the same to the location and dispersion components.

Figure 2 also shows that “excellent” is the most dominant of the drug effectiveness categories

along the first principal axis and this is reflected in Table 3, accounting for nearly half (46.08%)

of the principal inertia for its variable. The second principal axis is dominated by the category

“fair” which contributes to 46.23% of the second principal inertia.

8. Discussion

Correspondence analysis has become a very popular method for analyzing categorical data,

and has been shown to be applicable in a large number of disciplines. It has long been applied

in the analysis of ecological disciplines, and recently in health care and nursing studies [31, 32],

environmental management [33], and linguistics [34, 35]. It also has developed into an analytic

tool which can handle many data structures of different types such as ranked data [30], time

series data [36], and cohort data [37].

The aim of this paper has been to discuss new developments of correspondence analysis

for the application to singly ordered two-way contingency tables. Applications of the classi-

cal approach to correspondence analysis can be made, although the ordered structure of the

variables is often not always reflected in the output. When a two-way table consists of one

ordered variable, such as in sociological or health studies where responses are rated accord-

ing to a Likert scale, the ordinal structure of this variable needs to be considered. The singly

ordered correspondence analysis procedure developed by Beh [8] is applicable to singly or-

dered contingency tables. However, due to the nature of this procedure, only a visualization

of the association between the categories of the nonordered variable can be made. Therefore,

any between-variable interpretation is not possible. The technique developed in this paper im-

proves upon this singly ordered approach by allowing for the simultaneous representation of

the ordered column and nonordered row categories.
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