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Abstract: We consider how a vertex operator algebra can be extended to an abelian
intertwining algebra by a family of weak twisted modules which are simple currents
associated with semisimple weight one primary vectors. In the case that the exten-
sion is again a vertex operator algebra, the rationality of the extended algebra is
discussed. These results are applied to affine Kac-Moody algebras in order to con-
struct all the simple currents explicitly (except for Eg) and to get various extensions
of the vertex operator algebras associated with integrable representations.

1. Introduction

Introduced in [B] and [FLM], vertex operator algebras are essentially chiral al-
gebras as formulated in [BPZ] and [MoS], and provide a powerful algebraic tool
for studying the general structure of conformal field theory. For a vertex operator
algebra V', one wishes to adjoin certain simple J'-modules to get a larger algebraic
structure so that certain data such as fusion rules and braiding matrices are natu-
rally incorporated. The introduction of the notions of generalized vertex (operator)
algebra and abelian intertwining algebra in [DL] was made in this spirit. A sim-
ilar notion called vertex operator para-algebra was independently introduced and
studied in [FFR] with different motivations. Also see [M].

In this paper, we study how a vertex operator algebra can be extended to an
abelian intertwining algebra by a family of weak twisted modules which are sim-
ple currents associated with semisimple weight one primary vectors. In the case
that the extension is again a vertex operator algebra, we discuss the rationality
of the extended algebra. Applying these results to affine Kac—Moody algebras we
construct all the simple currents explicitly (except for Eg) and get various ex-
tensions of the vertex operator algebras associated with integrable representations.
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Many of the ideas discussed here are natural continuations of ideas discussed in
[DL] and [Li4]. Recently, it is shown in [Hua] that the extension of the moon-
shine module vertex operator algebra ¥® [FLM] by Z,-twisted module forms an
abelian intertwining algebra, where such an extension is called a nonmeromorphic
extension.

Let G be a torsion group of automorphisms of V' and g € G. A G-simple current
for a vertex operator algebra is an irreducible weak g-twisted module which gives a
bijection between the equivalence classes of irreducible weak A-twisted modules and
the equivalence classes of irreducible weak gh-twisted modules under the “tensor
product” if 2 € G commutes with g. The theory of simple currents originated in
the papers [FG] and [SY]. A simple vertex operator algebra V is always a G-
simple current for any G. It is natural to expect that any simple current can be
deformed from V by introducing a new action. Via this principle, a class of simple
currents are constructed in the present paper. Let U(V[1]) be the universal en-
veloping algebra of the Lie algebra V[1] =V ® C[t,t~'1/D(V ® C[t,t~']) defined
in [Li3] (for more detail see Sect.2) and let A(z) € U(V[1]){z} satisfy condi-
tions (2.13)—(2.16) below. Then for any weak A-twisted V-module (M, Yy ( - ,2)),
we show that (M, Yy;( +,2)) := (M, Y (4(2) - ,z)) is a weak gh-twisted }'-module
where # is any automorphism of V of finite order which commutes with g and
is not necessarily in G. If A(z) € U(V[1]) (V© is the space of G-invariants
of V) is invertible and 4 € G, then M is isomorphic to a tensor product mod-
ule of M with V and thus V is a G-simple current. There is a simple way to
construct such A(z) associated to any weight one primary vector o of ¥ whose
component operator «(0) is semisimple on V. The corresponding automorphism
of V is given by ¢?™*0) These results have been obtained in [Li4] in the case
that g = 1.

This paper is organized as follows: In Sect. 2 we recall the definitions of weak
twisted modules from [D2] and [FFR] and of intertwining operators among weak
twisted modules from [FHL] and [X] using the language of formal variables. We
present a notion of tensor product of two weak twisted modules in terms of uni-
versal mapping properties and relate the fusion rules (which are the dimensions
of the space of intertwining operators of certain types) to the dimensions of cer-
tain spaces of homomorphisms of weak twisted modules. For certain elements A(z)
in U(V[1]){z} associated to an automorphism g of V of finite order we show
how a weak A-twisted module can be deformed to a weak gh-twisted module
if the automorphism /4 commutes with g. We discuss the relations among this
deformation, the intertwining operators and tensor product. It turns out that the
deformation of V is always a simple current. Such A(z) are constructed for semisim-
ple primary vectors of ¥ of weight one. These results are interpreted in the the-
ory of vertex operator algebras associated with even lattices at the end of this
section.

Section 3 deals with the extension of a simple vertex operator algebra by a fam-
ily of simple currents constructed from semisimple primary vectors of weight one.
We begin with a finite dimensional subspace H of ¥; which contains all semisim-
ple vectors, and a lattice L contained in A such that the component operators (0)
(o € L) have only rational eigenvalues on V. We show that the direct sum U of all
the deformations of ¥ by using 4(z) associated with « € L is a generalized vertex
algebra in the sense of [DL]. Then there is an even sublattice Ly such that the cor-
responding deformation of V is isomorphic to V. We then prove that the quotient
U of U modulo the isomorphic relations has a structure of abelian intertwining
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algebra. This section is technically complicated, involving the abelian cohomology
of abelian groups introduced by Eilenberg—MacLane. We refer the reader to [DL]
for the definition of abelian intertwining algebras and related terminology.

In Sect.4 we discuss the rationality of a simple vertex operator algebra
V= @gGG V9 which is graded by a finite abelian group G satisfying certain
conditions. Such vertex operator algebras arise naturally in Sect.3 and in [DL].
Under a mild assumption we show how the rationality of ¥° implies the rationality
of V. In particular, if G consists of automorphisms constructed from semisimple
primary weight one vectors, the assumption always holds. In Sect. 5 we apply the
results obtained in the previous sections to affine algebras. After discussing sim-
ple currents for the vertex operator algebras associated to integrable representations
and which are related to the work of [FG], we obtain various extensions of these
vertex operator algebras by simple currents. Another result in this section is about
the representations of these algebras. Under the assumption that certain elements in
the Heisenberg subalgebra of a given affine algebra act nilpotently on a weak mod-
ule for the vertex operator algebra we show the complete reducibility of this weak
module®. In particular, this shows that any irreducible weak module is a standard
module.

We thank J. Fuchs and A.N. Schellekens for valuable comments.

2. Simple Currents and Twisted modules

In this section we first recall the definitions of twisted modules (cf. [D2 and FFR])
and intertwining operators among twisted modules (cf. [FHL and X]). We then
discuss how a weak module for a vertex operator algebra ¥ can be deformed to
a twisted module by using certain elements in the vector space of formal power
series with coefficients in the universal enveloping algebra U(V[1]) of ¥[1] which
is defined below. In general, we exhibit the deformation of intertwining operators
among weak V'-modules to intertwining operators among weak twisted modules. We
also apply these results to vertex operator algebras associated with even positive-
definite lattices. The ideas and techniques used in this section derive from those
in [Li4].

Let (V,7,1, w) be a vertex operator algebra (cf. [B, FHL and FLM]) and let g
be an automorphism of V' of finite order T. Then V¥ is a direct sum of eigenspaces

of g:
V= v,
rEZ/TZ
where V7 = {v € V|gv = e*™/Ty}. (We abuse notation and use r € {0,1,...,T — 1}
to denote both an integer and the corresponding residue class.) Following [D2 and
FFR], a weak g-twisted module M for V is a vector space equipped with a linear

map
V — (End M){z},

v Yy(v,z)= >, vz "1 (v, € End M)
neQ

(where for any vector space W, we define W {z} to be the vector space of W-valued
formal series in z, with arbitrary complex powers of z) satisfying the following

3 This assumption has been removed recently in [DLMI].
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conditions for u,v € V,w € M, and r € Z/TZ:

Yu(,z)= Y v,z "l forvev”; 2.1)
ne F+Z

vyw =0 for / € Q sufficiently large ; (2.2)

m(l,z)=1; (2.3)

-

) Yy(v,22)Ypr(u,21)

zo—la(z‘ Z—OZZ) Yar(u, 21 Yar (0,22) — 20_15(

o @4)
222—1(21;20) 5(21 _ZO)YM(Y(u,Zo)U,Zz)
V4 zZy
ifuerv,
1
[L(m), L(m)] = (m — m)L(m + 1) + T (mn® = m)Opsn,o(rank V')

for m,n € Z, where

L(n)=wuy; forneZ, ie, Yy(w,z)= Y Ln)z™"%;

neZ
d
£ Yu(0,2) = Y(L(=1)1,2) . (2.5)

dz
This completes the definition. We denote this module by (M, Y3,) (or briefly by M).

Remark 2.1. If a weak g-twisted V-module M further is a C-graded vector space:

M=1] M,,
A€C

such that for each 1 € C,
dim M, 1 <00

M p =0
for n € Z sufficiently small, and
LOWw=nw=wtww forweM, necC),
we call M a g-twisted V-module.

A weak l-twisted V-module M is called a weak V-module and a 1-twisted
V-module is called a ¥V-module. A g-homomorphism f from a weak g-twisted V-
module M to another weak g-twisted V'-module W is a linear map /M — W
such that

SYnu(u,z) = Yw(u,z) f
for all u € V. We denote the space of all g-homomorphisms from M to W by
Homy (M, W). A g-isomorphism is a bijective g-homomorphism.

Next we shall define intertwining operators among weak g, -twisted modules
(My, Yag,) for k=1,2,3, where g; are commuting automorphisms of order Tj
(cf. [X]). In this case ¥V decomposes into the direct sum of common eigenspaces

V= @ yUniz) ,

J1:J2
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where o Ny
yULi) = {y € Vg = ™t/ k = 1,2} .

An intertwining operator of type [ MJIM}MZ] associated with the given data is a
linear map

M; — (Hom(M;, M3)){z} ,

Wi H(w,z) = 3 wez ! (2.6)
neC

such that for w' € M; (i = 1,2), fixed ¢ € € and n € Q sufficiently large

Wi =0; 2.7
the following (generalized) Jacobi identity holds on M, :for u € VU172) and w €
M,

_ N _
z' (Z‘ ZZ) 5(2‘ Zz)YMg(u,z] YY(w,22)
Zy Zy
_ A/ B
o <22_21> 5<Z2_Z_1>@(W,ZZ)YM2(%ZI) (2.8)
Z9 —Zp
Az =2\ [z~
=2z ]<—1 0> 5( : O>@(YM1(M,ZO)W,22)
zy zZ2
and 4
o Y(w,z) = HY(L(—1)w,z), 2.9)

where L(—1) is the operator acting on M;.

The intertwining operators of type [ M?lilz] associated with prescribed data
M3
1

clearly form a vector space, which we denote by ¥, iy- We set
M- . M
Ny, = dim %345, (2.10)

These numbers are called the fusion rules associated with the algebra, modules and
auxiliary data. It is easy to observe that if NAAsz >0 then g3 = gi1g> (see [X]).

Thus we shall assume this relation in the following discussion.
The fusion rules have certain symmetry properties. Our next goal is to show

M3 _ M3 . - . M-
tha.t Nisw, = Nagu,- Let & be an intertwining operator of type [ M 342] We define
a linear map

M, — (Hom(M;, M3)){z}

Wi UEw,z) = 3 wyz ! 2.11)
neC
by the skew-symmetry
YEW?, z2)w! = eLDH (!, ez )w? (2.12)

i 1 iy — 1+ (—n—1)mi,,—n—1
for w' € M;, where Y(w ,ei’”z)_.znecwne (=n—D)miy—n—1
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Lemma 2.2. (1) The operator #*( - ,z) is an intertwining operator of type

L1152
My My 2°
(2) Each of the two maps ¥ — ¥* is a linear isomorphism from ¥, AZZ 342 to
M3 . My M
Yoty 11 particular NM2M1 = Nytuty-

Proof. (1) The relation (2.7) is clear. In order to prove (2.9) for #*(w?,z) we
first observe from (2.8) that

(-1, 90", 2)] = FU- D', 2) = 5802,

e DY (L(-1)w',2)e ™0 = Y(L(—1)w',z + 2) .

Thus we have the following calculation:

i @:I:(WZ Z)Wl — iGZL(_l)@(Wl e:tinZ)WZ
dz ’ dz ’

= eCDL-DH W', e )W — e TDH(IL(-1)w!, e 2w
— eZL(_l)@(wl,eii”z)L(—l)wz
= JEL(-1)w?, 2)w' .
The proof of Proposition 2.2.2 of [G] provides (as a special case) a proof of the
Jacobi identity (2.8) for Yy(u,z;) and FE(w?,2,).
(2) An easy verification shows that (#+)~ =% for any % € ¥, AZ i, The iso-
morphism between ¥ ij fM2 and ¥, AZ 3, is now clear. [
Next we formulate the notion of tensor product M) X M, of M| and M;: it is a

weak g3-twisted V-module defined by a universal mapping property. See [Li3 and
HL1-HL2] for the definition of tensor product of (ordinary) weak modules.

Definition 2.3. 4 tensor product for the ordered pair (My,M3) is a pair (M,F( - ,z))
consisting of a weak gs-twisted V-module M and an intertwining operator F( - ,z)

of type ( MlMMz) such that the following universal property holds: for any weak

gs-twisted V-module W and any intertwining operator I( - ,z) of type ( MlW Mz)’
there exists a unique V-homomorphism  from M to W such that I( - ,z) =
Yo F( - ,z). (Here \y extends canonically to a linear map from M{z} to W{z}.)

The following proposition is a direct consequence of the definition and
Lemma 2.2

Proposition 2.4. Let (M,F( - ,z)) be a tensor product of M, and M,.

(1) For any weak g3-twisted V-module M3, the space Homgy, (M, M3) is linearly
isomorphic to VAX -

(2) The pair (M,F*( - ,z)) is a tensor product of My and M,. In particular,
the tensor product is commutative up to isomorphism.

B) If g1=1 and M1 =V then M is isomorphic to M. That is, V X1 M, = M,.



Simple Currents and Extensions of Vertex Operator Algebras 677

Let 7 be a vertex operator algebra and g an automorphism of ¥ of order 7.
We recall from [DLM2] the Lie algebra

T-1

Vigl= @ (V" ® 7L, t_l]/D< Te_al (Ve ti/TC[t,t_I]))>
=0

i=0
associated with ¥ and g, with bracket

o0

[u(m), o(m)] = 3 (’:’) (wo)m+n—i=1),

i=0
where D=L(-1)® 1+ % ® 1 and w(m) is the image of u® " in V[g]. Then
VO[1] is a Lie subalgebra of both V[1] and V[g], and V[g] acts on any weak

g-twisted V-module.
Let A(z) € U(V[1]){z} satisfy the following conditions:

2T AZ)a € V[z,z™'] forae Vi (2.13)
A =1; (2.14)
[L(-1),4)] = - 5 4(2) 2.15)
Y(A(zy + zp)a,z0)A(z3) = A(z3)Y(a,zy) for any a € V. (2.16)

Let G(V,g) be the set of all A(z) satisfying the conditions (2.13)—(2.16). Define
G°(V,g) to be those A(z) in G(V,g) which are invertible. The following lemma is
obvious:

Lemma 2.5. (1) Let A\(z),42(z) € G(V,g). Then A\(z)4x(z) € G(V,¢%). In par-
ticular G(V,1) is a semigroup with idy € G(V,1).

(2) If A(z) € G(V,g) has an inverse A7'(z) € U(V[1]){z}. Then A7\ (z) €
G(V,g7").

From now on we fix two commutative automorphisms g and 2 of V of order

S and T respectively. The following result generalizes the corresponding results in
[Li4] with g =h = 1.

Lemma 2.6. Let (M, Yy ( - ,z)) be a weak h-twisted V-module and A(z) € G(V,g).
Set M =M and Y( - ,2) = Yu(4(z) « ,z). Then (M,Y;( + ,z)) is a weak gh-
twisted V-module.

Proof. First, (2.14) implies that fM(l,z) = Id,;. Second, it is ecasy to see that (2.15)
implies that ¥;(L(—1)a,z) = £¥;(a,z) for any a€ V. Let a€ V) and b€ V.
Then we have

7 '6 (Zl Z_o Zz) Yy (A(z1)a,z1)Ya(A(z2)b, 22)

—% 0 (ZZ —:) Yiu(A(22)b,22) V(421 )a,21)

=z;! (u) T (Zl Z‘zz") Yar(Y (A(z1)a,20) A(z2)b,22) =

22
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=z (Zl _Z°> T (Z‘ _Z°> T V(Y (22 + 20)F A2 + 20)020)8(z2)b,22)

zy zy
_ T _ T
. (Zl Z") 5 (Z‘ Z") (22 +Z°> Yar(Y(A(z2 + 20)a,20)A(22)b, 22)
z) V4) Z]
Z]1 —Zy E _% Z1 — 2y
=z (—Z——~> 6 ( - ) Yo(A(z2)Y (a,20)b,22) @17)
2 2

Thus (M, Yz( - ,z)) is a weak gh-twisted V-module. O

We shall use the notation V” for the A-fixed-point vertex operator subalgebra of
V for an automorphism #.

Lemma 2.7. (1) Assume that g commutes with each g;. Let A(z) € G(V9,q), let

M; (i = 1,2,3) be weak g;-twisted V-modules and I( - ,z) an intertwining operator

of type ( Mﬁlj@). Then I( + ,z) = I(A(z) - ,z) is an intertwining operator of type
M

Chity )

(2) Let A(z) € G(V,g) and let  be a h-homomorphism from W to M. Then
Y is a gh-homomorphism from W to M.

(3) Let A(z) € G(V9,1) be such that (V,Y(4A(z) - ,z) is isomorphic to the
adjoint module (V,Y( - ,z)). Then there is a nonzero homomorphism of weak g-
twisted modules from (M, Yy ( - ,2)) to (M, Yy (A(2) + ,2)) for any weak g-twisted
V-module (M, Yy ( + ,2)). Moreover, if A(z) € GV, 1), any such homomorphism
is an isomorphism.

Proof. The proof of (1) is similar to that of Lemma 2.6 and we omit details. (2) is
a special case of (1) with Mj = V,M, = W and M3 = M. It remains to show (3).
Clearly Yy( - ,z) is an intertwining operator of type (i ). By Lemma 2.2, there

is a nonzero intertwining operator of type ( ) Now by (1) there is a nonzero
1ntertw1n1ng operator of type ( A%,) which yields a nonzero intertwining operator
of type ( ) by hypothe51s Consequently there is a nonzero intertwining operator

I( - ,z) of type ( ) by Lemma 2.2 once more. Now /(1,z) is the desired nonzero
homomorphism. The other assertions are clear. [

Proposition 2.8. Let (W,F( - ,z)) be a tensor product of a weak g,-twisted module
M, and a weak g,-twisted module M, and assume that g commutes with each g;.
Then if A(z) € GO(V9,q),(W,F( - ,z)) is a tensor product of the pair (M, M>).

Proof. First by Lemma 2.7 (1), we have an intertwining operator F(-,2)=
F(4(z) - ,z) of type ( Mziz)' Let M be a weak ggigr-twisted ¥-module and let
I( - ,z) be any intertwining operator of type (Mf;[;lz). Then 1(A(z)~! - ,z) is an in-

tertwining operator of type (M%/I ), where (M, Yy( - ,2)) = (M, Yar(4(2)™" - ,2)).
By the universal property of (W,F( - ,z)), there is a unique g1g>-homomorphism
W from W to M such that /(- ,z) = |//oF’( - ,z). By Lemma 2.7 (2), ¥ is a g1¢9»-
homomorphism from W to M. Since A(z)u only involves finitely many terms, we
have: I( + ,z) =y o F(+,z). It is easy to check the uniqueness, so that the proof

is complete. O
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Corollary 2.9. Let M be a weak h-twisted V-module and let A(z) € GV, ).
Then M is isomorphic to the tensor product module of M with V.

Proof. 1t is easy to observe that (M,F( - ,z)) is a tensor product of M and V where
F( - ,z) is the transpose intertwining operator of ¥j( - ,z) (also see Proposition 2.4
(3)). By Proposition 2.8, (M,F( - ,z)) is a tensor product of M and V. O

Remark 2.10. In the situation_of Corollary 2.9 with g=h =1, M is defined as
the tensor product of M with V in the physics literature (cf. [MaS]). Corollary 2.9
asserts that this formulation coincides with our axiomatic notion of tensor product
in this special case.

Definition 2.11. Let V be a vertex operator algebra and G a torsion group of
automorphisms of V. We denote the set of equivalence classes of irreducible weak
h-twisted modules by Trty (V') for h € G. For convenience we write Irr(V) = Irry (V).
An irreducible weak g-twisted V-module M for g € G is called a G-simple current
if the tensor functor “M - 7 is a bijection from Tiey(V') to Tirg (V') for any
h € G which commutes with g. A l-simple current (G =1) is called a simple
current.

Clearly, a G-simple current M € Irr(V') acts on Irry (V') for A € G as a permutation
via the tensor product M - for any h.

Proposition 2.12. For any A(z) € G'(VY,9),(V,Y(A(z) - ,z)) is a G-simple current
if V is a simple vertex operator algebra.

Proof. By Corollary 2.9 for any weak A-twisted module M, M = (M, Y;(4(z) + ,z)
is isomorphic to the tensor product of M with (V,Y(4(z) - ,z)), and M is isomor-
ph1c to the tensor product of M with (V,Y(4(z)"! - ,z)). Thus if M is irreducible
so is M,V +— V &I M being a bijection from Irr(¥) to Ity (V). O

Conjecture 2.13. Let V be a vertex_operator algebra and G a group of automor-
phisms of finite order of V. Define V to be the direct sum of all G-simple currents
of V. Then V is an abelian intertwining algebra in the precise sense of [DL).

In the next section we will prove this conjecture in some special cases.
Let ¥ be a vertex operator algebra and let o € V' satisfying the following con-
ditions:
L{n)a = dn00, a(n)a = 9,191 for any ne Z, , (2.18)

where 7y is a fixed complex number. Notice that « in (2.18) is a primary vector of
weight one. Furthermore, we assume that «(0) acts semisimply on ¥ with rational
eigenvalues. Tt is clear that ¢ is an automorphism of V. If the denominators
of all eigenvalues of a(0) are bounded, then e2™*® js of finite order. Define

2mia(0)

A(a,z):z“m)exp(z (k)( —z)~ )EU(V‘”’ [D{z}. (2.19)

k__.
Recall the following proposition from [Li2].
Proposition 2.14. Let t be a finite-order automorphism of V such that to = o

and let (M, Yy( - ,z)) be any t-twisted V-module. Then (M,Y(4A(x,2) - ,2)) is a
oy T-twisted weak V-module, where ¢, = e 20,
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The main part of the proof of Proposition 2.14 in [Li2] is to establish that
A(a, z) satisfies the condition (2.16).

We end this section by discussing an example, namely vertex operator algebras
associated with even positive-definite lattices. Let L be a positive definite rational
lattice with form (, ), let Lo be an even sublattice of L and let 7 = V7 be the vertex
operator algebra constructed in [B and FLM]. For any B € L, Vg, is a twisted V7, -
module for the inner automorphism o5 = e ~2#©™ (see [DM and Le]). It is easy to
see that V,;, is isomorphic to the adjoint module V7, if and only if B € L.

Proposition 2.15. Let § € L. Then as a og-twisted module, (V,, Y(A(B,z) « ,z)) is
isomorphic to Vi,p.

Proof. First, since A(f,z) is invertible and 7, is a simple vertex operator algebra,
it follows from Proposition 2.12 that (V7,,Y(4(B,z) - ,z)) is an irreducible weak
op-twisted ¥z -module. For any « € H = € ®z Ly, we have:

A(B, 2y = A(B,2)a(— 1)1 = a4+ 271 {B,0a) . (2.20)

Let i be the algebra automorphism of U(V;,[1]) such that y(Y(a,z)) = Y(4(B,z)
a,z) for a € V;,. Then we have:

W(o(n)) = a(n) + 0n0(f,) foraeHnelk. 2.21)

Then the action of Y(H(0)) on V7, is also semisimple with Lo + f as the set of H-
weights and V7, is still a completely reducible module for the Heisenberg algebra
W(H). It follows from the classification result [D1] that (Vg Y(A(B,2) - ,2)) is
isomorphic to ¥7,.5. O

Let P be the dual lattice of L. Then Vg, is a Vi -module if f € P. It is
proved in [D1] that there is a 1-1 correspondence between the equivalence classes
of irreducible modules for 77, and the cosets of P/Ly. More specifically, Vp is the
direct sum of all inequivalent irreducible ¥7,-modules:

V;’ = V240+ﬂ1 @ ERR @ I/L()—{-ﬁk ’ (2.22)

where k = |P/Ly|. For the vertex operator algebra V,, intertwining operators are
explicitly constructed and fusion rules are calculated in [DL]. Moreover, it is es-
tablished in [DL] that J» is an abelian intertwining algebra.

For any fixed f € L, we consider all the irreducible og-twisted V7,-modules. It
was essentially proved [D1] that any irreducible gg-twisted V7, -module is isomorphic
to Vpyp+1, for some 1 <i k. It follows from Proposition 2.15 that all irreducible
op-twisted V7, -modules can be obtained as (V, Y(4(p,z) - ,z)) for y € L, so that
by Proposition 2.12 all irreducible og-twisted Vz,-modules are simple currents.

3. Abelian Intertwining Algebras

In this section we consider extensions of a vertex operator algebra V', whose weight
one subspaces is nonzero, by incorporating certain twisted modules. The correspond-
ing twist elements are automorphisms e2**(®), where 4 € ¥} is a primary vector and
7(0) acts semisimply on ¥. (There should be no confusion between 4 in Sect. 2—an
automorphism of ¥, and 4 in this section—an element in 7;.) We prove that such
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an extension is a generalized vertex operator algebra and that the quotient space
modulo isomorphic relations is an abelian intertwining algebra in the sense of Dong
and Lepowsky [DL]. We refer the reader to [DL] for the definitions of generalized
vertex operator algebras and of abelian intertwining algebras. In this section we
assume that ¥ is a simple vertex operator algebra.

Let 4 € V satisfy condition (2.18), that is, L(n)h = d, 0k and h(n)h = 8,171 for
some fixed complex number y. For any s € @, set

E*(sh,z) = exp ( > Mz*") . (3.1)
=k
Then we have:
—yst
Ev(sh,z))E~ (th,zy) = (1 — Z—2> E ™ (th,z,)E* (sh,z1) 3.2)
21
for s,t € Q (cf. formula (4.3.1) of [FLM]).
Let us recall some elementary results from [Li4].
Lemma 3.1. Let h € V; such that (2.18) holds. Then for any a €V,
eXHD=HD)e —2H(1) — exp ( > h—(,?(—z)k) : (33)
k=1
x© h(—
PHU=HA(=1) g =2L=1) _ oy ( 5 (kk)zk) , (3.4)
k=1
Y(E™(h,z1)a,22) = E” (h,z21 + 22)E™ (—h,22)
 Y(a,2)5 "B () + 2 Y OB (—hz +21) (3.5)

E™(hz)Y(a,22)E" (=h,z1) = Y(A(=h,z, — z21)A(h,22)a,22) . [J (3.6)
Let H be a finite-dimensional subspace of V) satisfying the following conditions:
L(n)h = 6p0h, W(n)h' = (h,H')6,11 forn€ Z, hh' c H, 3.7

where ( -, - ) is assumed to be a nondegenerate symmetric bilinear form on H. Then
we may identify H with its dual H*. We also assume that for any % € H, h(0) acts
semisimply on V. Then

V=@v®), where VO = {uc V|h0u= (a,hufor hcH}. (3.8)
a€H

Let L be a lattice in A such that for each a € L,a(0) has rational eigenvalues
on V. From now on, we assume that there is a positive integer T such that the
eigenvalues of Ta(0) on V are integers. One can show that this holds if V is
finitely generated. Let G be the group of automorphisms of ¥ generated by e2%®)
for « € L. Then G is an abelian torsion group. Note that A(«,z) € G%(V°,0,) and
(V,Y(4A(x,z) - ,z)) is a G-simple current by Proposition 2.12 where g, = e 2",
For any o € L and for any weak V-module (M, Yy, ( - ,z)), we have a weak

o-twisted module

(M(a)a Ya( * aZ)) = (M YM(A((X,Z) ° ’Z)) .
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This yields a linear isomorphism i, from M® onto M such that
Va(Yola,2)u) = Y(A(o,2)a,z W (u) for a e V,ue M@ . (3.9)

For o = 0, we may choose ¥y = idy,.
Set U=@P,, V®._ For a,f € L, we have a linear isomorphism l/lﬁ__lalllﬂ from

V) onto V- satisfying the following condition:
lp[;_luw,;(yﬁ(a,z)u) = Y/;_a(A(a,z)a,z)lﬁﬁ__la!ﬁﬁ(u) foracVuev® . (3.10)
Then we may extend ¥, to an automorphism of U such that
Yo(Yp(a,2)u) = Yool Mo, z)a,z)o(u) for a € Viue V@, (3.11)

Then it is easy to see that Y, p = Y0 for any o, € L. In other words, ¥ gives
rise to a representation of L on U.
By a simple calculation we get:

Aaz2)f=B+z Yo, B, Aoz)o=w+z""'a +z—2@1 . (3.12)

Lemma 3.2. For any o € L,h € H, we have

Wah(n) = h(nWry + Sp0{o,h) forne Z, (3.13)
Yad(h,z) = 20 A(h, 2 ), (3.14)
YDy _ e D = E(a,2) . (3.15)

Proof. By definition, we get A(h,z)a = o« +z~'{o, h)1. Then (3.13) is clear and
(3.14) follows from (3.13). By (3.11) and (3.12) we get:

Yol(—1) = (L(=1) + a(=1))¥s - (3.16)
Thus Y,e? "Dy 1 = e#=D+4=1)) Then (3.15) easily follows from Lemma 3.[1:.|
For any o € L,h € H, we define:
e = Ly c VW (O = (W, h+ a)u for ¥ cH} . (3.17)
Then by Lemma 3.2 we have:
y® = he% y@h y v@h — pOn for he H . (3.18)
€

Let P={A€ H|VOY+0}. As V is simple it is easy to prove that P is a
subgroup of A (cf. [LX]). Let 4 = L X P be the product group. We define:

11((0(1,/11 ), (Ot2,/12)) = ——(Otl,a2> — <O€1,/12> — <062,/{1> S %2/22 , (3.19)

C((o1, 41 ), (o2, Ap)) = el R)=Cezdidnd (3.20)
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for any (o4, 4;) € 4,i = 1,2. Then y( -, - ) and C( -, - ) satisfy the following con-
ditions:
n(a,b) = n(b,a), n(a+b,c)=nla,c)+nb,c), (3.21)

Ca,a)=1, C(a,b)=C(b,a)”!, C(a+b,c)=C(a,c)C(b,c) (3.22)
for a,b,c € G. C( -, - ) will be our commutator map later.

Definition 3.3. For uc V@, 0 c VP o, B € L, we define Y,(u,z)v € V*+H{z} as
follows:

Yo(u,2)o = Yy _pE™ (0, 2)Y (Yo A(B, 2)u, 2)A(x, —2z Wrp(v) . (3.23)

Set U = @, V™. Then this defines a map Y( - ,z) from U to (End(U)}{z}
via Y(u,z)=Y,(u,z) for uc V®, Notice that for any uc V@) pe VB y(u,zwe
yetbhth) 7],

Proposition 3.4. The following L(—1)-derivative property holds:
d
Y(L(—Du,z)v = d—ZY(u,z)v (3.24)
Jor any u,v € U.
Proof. Let o,f € L and let u € V®,v € V& Then
Y(L(—Dyu,z)v = Yo pE™ (0,2)Y (Yu A(B,2)L(—1)u, 2) A(0t, —2 ) p(v)
=YapE™ (0, 2)Y (YulA(B,2), L(—1)]u, 2) A(et, —2 ) p(v)

+ ¥ —a—pE™ (0, 2)Y (Yo, L(—1)]A(B, 2)u, ) A(or, —2Yp(v)

+ Yo pET (o, 2)Y (L= 1) A(B, 2)u, 2) A0t 2 W (v) . (3.25)
Note that (3.16) is equivalent to

W, L(—1)] = o= 1), .

From (2.8) with u = a(—1) - 1, which is oy-invariant for any 4 € H, we have

1

i=0

o [ —1
Y((~Dw,z) = ( ) ((—2Yo(—1 = )Y (w,2) + 27 7Y (w,2)a(i))

= S (=1 = )Y (w,2) + 2 ¥ (w,2)(i))
=0

=uz)"Y(w,z) + Y(w,2)a(z)",

where
[o¢] o0

wz)" =Y a(—n—1)2"az)" = S an)z™" L.

n=0 n=1
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Thus
‘P—a—ﬁE_(“a Z)Y([WO!’ L(_ 1 )]A(ﬁs Z)u’ Z)A(OC, —Z)l//ﬂ(U)

= W—a—ﬂE—(“,Z)a(Z)_ Y(l//txA(ﬁ,Z)u’Z)A(“’ —Z)l//ﬂ(v)
+ Yo pE (0, 2)Y (Yo d(B, 2)u, 2)(z) A, —2 )p(v)

d
= Ve (EE—(a,z)) Y (o A(B,2)u,2) A0, ~2)(o)
Vo pE~ (0 2)Y (% (%A(ﬁ,z)u,z)) Ao, =)o)
Now from (2.15) and Proposition 2.15 we obtain
YL(-Du,z)v = %Y(u,z). O

Theorem 3.5. For any uc V&), pc VR yw e Vi) o By e L by, hyhs € P,
we have the following generalized Jacobi identity:

B N @k B A
20_15 (Zl 22) <Zl Zz) Y(u,z1)Y(v,z2)w

20 20

_ (o k1 )7, h3))
=216 (Z‘ - Z") (ZZ ; Z°) Y (Y (1, 20)0,22)W . (3.26)

_is 22—z 25 — g\ 1B )
— C((e ), (B, 7))z, 15( 2 ZOI) < = ) YooY

Moreover, (U 1,0,Y,T,4,1(-,+),C(+,+)) is a generalized vertex algebra in the
sense of [DL].

Proof. By (3.21), (3.22) and Proposition 3.4 all the axioms in the definition of a
generalized vertex algebra (Chapter 9 of [DL]) hold except the Jacobi identity. By
Definition 3.3 and Lemma 3.1 together with the relation (3.14) we have:
Y(u,z )Y (v,22)w
= 2PN g B (0 20)Y (AR + 7,200 ,20) (0 ~20 Wiy V(0,220
= 2PNy B (a2 Y (AB + 3,2 Wa,21) A —21)

* E7(B,22)Y(A(y, 22)Ypv, 22) A(B, —22 )y w

()
zZ
_ (1 _ Z_?) by,

* E_((x’Zl )E_(ﬁ,Zz)Y(A(ﬁ,Zl —Zz)A(’)),Zl )WIX uazl)
- Y(A(a, —z1 + 22)A(7, 22 W0, 22 ) Ao, —21 ) A(B, —22 )Y, w
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=(z; — 22)(a,ﬂ>zf°‘,>’>zz(ﬁ,?) Veu oy
s E7 (0, 20)E7 (B, 22)Y(A(B, 21 — 22)A(v, 21 W 4, 21)
- Y(A(a, —z1 + 22)A(y, 22 )W, 22 ) Ao, =21 )A(B, —z2 )y w . (3.27)
Symmetrically,
Y(v,22)Y (u,z) )w
= (22— 2) @Dz Py g
< E7(0,20)E™ (B, 22)Y (A(, 22 — 21) A(p, 22 Wpv, 22)
< Y(A(B, —z2 + 20)A(p, 21 Wi 0, 20 ) A0, =21 )A(B, —z2 W, w . (3.28)

Since

BOYA(, 21 W u = Ay, z0) B0 = (B, 1) A(y, 21 W 1,

we see that (z) — z2)~ 5" A(B, zy — z2)A(y, 21 Wi, u involves only integral powers of
(zy — z2). Similarly, (z; —zz)_<°"h2>A(<x, —2z1 + 23)A(y,22 Wgv involves only integral
powers of (z; — z;). Using properties of é-functions (cf. [FLM]) we see that

z5'o (Z‘Z;Ozz) Y (u,20)Y (0,22)w

_ zZ1 — Z

71— 2p

(B.h1)
. E‘(a,zﬂE‘(ﬂ,z;_)( > Y (A(B,20)A(7,21 W 4 21)

z1 — 25\ (&h2)
. <1 2) Y (Ao, —20)A(p, 22 Wipv, 22 ) A0t —21 YA(B, —z2 ), w

Zo

(o, BY+ (o iy ) +{B, 1)
_ Z1 — 2y zZ1 — 22 8 5 A
=250 ( - ) ( = ) Zl<a V)Zz<ﬁ Y)Zéor ﬁ)l//—rx—ﬁ—y

- E7 (0, 20)E™ (B, 22) Y (A(B,20) A(7, 21 W u,21)
- Y(A(a, —20) Ay, 22 Wogv, 22 ) A(et, —21 ) A(B, —z2 )4y w (3:29)

and that

2(715 (25021) Y(v,22)Y (u,z1 )w

17—z
=26 ( 2 1) (zo — zl)<“’/’>zl(°"”z2<ﬂ”)w_a_,g_y

- E7(a,20)E™ (B, 22)Y (A(0t, 22 — 21 )A(y, 22 )Yg0, 22)
* Y(A(.B’ -z + 21 )A(’)),Zl )‘/Ia u,z; )A((X, -z )A(ﬂa “22)% w



686 C. Dong, H. Li, G. Mason

= 20_15 Zz___z_l (ZZ - 21 )<a’ﬁ>21(a’w2§ﬁ’y> w—a—ﬁ—yE_(aazl )E_(ﬂ, 22)
—Zg
Z — 271 ((l,hz)
: <——) Y(A(ar, —20)A(y, 22 Y30, 22)

—2z3 + 7 (8,1}
.<—Zo ) Y(A(B,20) A, 21 Wy , 21 ) A(t, —21)A(B, ~z2 Wy w

= MBm) =~ ()i =1 g <Zz —21> (Zz —z

(2 B+ (o b2 )+ (B k)
—Zy 2y )

. Zfa,v)zélf,v)zémﬂ)l//_a_ﬂ_v

) E_(OC,Zl )E_(ﬁ,22)Y(A(O(, _ZO)A(’%ZZ)‘/’[‘}D:ZZ)

V(AP 20)ACh 20 e 71042, ~20) AP, ~22 ) (3:30)
Thus
— _ (o 2B, p))
zo_la (Zl zz) <Z1 Zz> Y(u,z1)Y(v,2)w
20 Zo
— 2 —z 7y — 7 (o k1) BR2))
— C((a, 1), (B, h2))zg 15( 2—20 1) ( zZO 1) Y(0,2)Y (u,2)w

- Z1 — 4 «, - — —
=z2‘6(—1 - ")zf Doy P,y B (0, 20)E (B 22)

- Y(Y(A(B,20)A(y, 21 Wou(u0), 20) Ao, —20 ) A(y, 22 Wrp(v), 22)
» Ao, —=z1)A(B, —z2 Wy (w) . (3.31)
On the other hand,
Y(Y(u,zg)v,z2)w
=E7(a+ B 2o W a—py ¥ (WarpA(7,22)Y (U, 20 )0, 22) Aot + B, =22 Wy w
=E7 (0 + B2 Wa—p—yY (Yt pA(7,22)E™ (0, 20 Wp—a—p
« Y(uA(B,z0)u,20) Ao, —20 Wopv, 22) A(ex + B, —z2 Wy w
= 2PN B E (ot B Wy g Y (A(,22)E (0, 20)
- Y(A(B, zo W u, 20 ) A0, —2o Wigv, 22 YA(ot + B, —2 W, w

23

(o,7)
—(1+2) P E (4 B W gy Y (E (020)4(,22)
2 0 B—v

- Y(A(B, zo W u, 20) A(0t, —20 Woigv, 22 ) A(t + B, —z2 W, w
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= (@2 +20) 2" 2P B (0 + f22)E~ (020 + 22)E™ (0, 22)—apy
- Y(A(y,22)Y (A(B, 20 ) u, 20) A(0t, —20 W0, 22)
- 2Oz + 2 Y OE (0, 22)E* (=, 22 + 20)A(0t + B, —22 ) w
= (@2 +20) V2PV 5P B (B, 2)E (0,20 + 22 )a sy
 Y(A(p, 22)Y (A(B, 2o Wi 4, 20) A2, —20 )P0, 22)
e 2y M) (2, 4+ 20) BBV EY (= B2 EH (—0, 23 + 20 )(—22) BN, w
=(z+ zo)<°"V>z§ﬁ’y>zé“’ﬁ>E_(ﬁ,zz)E_(oc,zo + 2 W gy
- Y(Y(A(y,22 + 20)A(B, 20 Wi 14, 20 ) A(y, 22) A(t, —20 )0, 22)
e 2y M) (2 4 20) SV ET(— B, 20)EN (—0, 22 + 20)(—22) P, w . (3.32)

Hence

22_15 (Zl—z—@) Y(Y(u,zp)v,22)w
2

Zy — Z . _ —
=270 (‘7") (22 +20) 12 2 P E (B 2)E (0,21 W oy

- Y(Y(A(7,22 + 20) A(B, 20 Wi 1, 20) Ay, 22) A%, —20 Wopv, 22)

« 2y 1 (2 4 20) I EH(— B, 2)EF (—ot, 2 )(—22) )y w

— 21 — & a, , o, — —
=215 [ 220 (2 4+ 20) 2P 2P B (B, 20)E (o2 W gy
¥)

2 + 2 (n.hy)
( p ) Y(Y(A(y, 21)A(B, 20 W 4, 20 ) Ay, 22 ) A(t, —20 W0, 22)

(o, h3)
) (Zz +ZO) ’ Ao, —z1)A(B, —2z2 Wy w

Z]

_ —nl(e R )(7:43))
_1s (Zl zo> (Zz +zo> 20BN B p= (g VB (0, 2)

V4 Z1
: ‘//—06*,5~VY(Y(A(’Y’ZI )A(ﬁ,Z())l//a u’ZO)A(’y’ZZ)A(OQ ﬁZO)‘/Jﬂva 22)
- Ao, —21)A(B, —z2 Wy w . (3.33)

The generalized Jacobi identity (3.26) now follows immediately. [

Next we shall extend certain F'-modules to modules for U considered as a
generalized vertex algebra via Theorem 3.5. Let M be an irreducible V-module (with
finite-dimensional homogeneous subspaces). Since [L{0),4(0)] =0 for any h € H,
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H preserves each homogeneous subspace of M so that there exist 0+u € M,1 € H*
such that 2(0)u = A(h)u for h € H. Since H acts semisimply on V' (by assumption)
and u generates M by V (from the irreducibility of M), H also acts semisimply on
M. For any A € H*, we define

MO = {y € M|h(0)u = A(h)u for h € H}. (3.34)

Set
P(M)={4e H*M®V +0} . (3.35)

Since M is irreducible, P(M) is an irreducible P(¥')-set. Thus L X P(M) is an irre-
ducible (L x P(V))-set. Suppose that for any o € L,o(0) has rational eigenvalues
on M. Let 4y € P(M) be any H-weight of M. Then P(M) = Ay + P(V'). By using
a basis of L, we see that there is a positive integer K such that (A,a) € +Z for
any « € L. Therefore

(A, o) € %Z for any A € P(M ), € L. (3.36)

Using formula (3.19) we extend the definition of #(-,-) to (L x P(M)) x (L x
P(M)) with values in 7.

Recall that (M®, Y,( - ,z)) is a weak g,-twisted ¥-module for any a € L. Set
W =@, M®. For a € VD,u e MP), 0, B € L, we define Yy (a,z)u € M@+P{z}
as follows:

YW(a’Z)u = l//—ot—ﬂE_(ocaZ)YM(!/’dA(BaZ)a:Z)A(aa ‘Z)‘M?(u) . (337)

Then the same argument used in the proof of Theorem 3.5 shows that for any a €
vt b e i)y c MO, where o, f,y € L, hy,hy € P,hy € P(M), we have:

(o1 )8, h2))

— Z1 — 2

70 (Zl 2 Zz) ( : 2) Yw(a,z1)Yw(b,22)u
0 Zy

NN (CUR )
— C((o, 1), (B, h2))z, 15( 2 1) ( 220 1) Yy (b,z3)Yw(a,z; u

_ (e, iy )7, h3))
=215 (Zl ZO) (22 +Z°> Y (Y (a,20)b,22)u . (3.38)

Zy 21
Then we have:

Theorem 3.6. (W, Yy) is a module for the generalized vertex algebra U in the
sense of [DL].

In view of Proposition 2.15, it is possible that various ¥ in U may be V-
isomorphic to each other. Next we shall reduce U to a smaller space U such that
the multiplicity of any a,-twisted ¥-module V®(« € L) is one, and U is an abelian
intertwining algebra in the sense of [DL] rather than a generalized vertex algebra.

Set

Ly ={a € Lo, =idy, V¥ >V}, (3.39)
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Lemma 3.7. Let o, € L. Then 6, = o5 and V' is isomorphic to VP as a weak
aa-twisted V-module if and only if o — f € L.

Proof. Suppose that ¢, = g and ¥ is isomorphic to V® as a weak a,-twisted
V-module. Let ¢ be a V-isomorphism from ¥® onto ¥®). Then yYpdyy_; is 2 linear
isomorphism from V=) onto ¥ such that

YpdY-p(Y(a,2)u) = Y(A(B,2)A(—P,2)a, 2 Wy p(u) = Y(a, 2 Wpdpy_p(u) (3.40)

for any a € V,u € V5, Then by definition, « — § € L.

On the other hand, suppose that & — 8 € Ly for some «, f € L. Since 6,5 = idy,
we have 6, = 0. Let § be a V-isomorphism from V=% onto V. Then y_py ¥
is a linear isomorphism from ¥® onto V® satisfying the condition:

U W s (Yala, 2)u) = Y g (A(B, 2)a, 2 W = YpY (A(B,2)a, 2 ) yygu
= Yp(A(—B,2)A(B,2)a, 2 WYp vhpu = Yy(a,2)—py Yu (341)

for any a € V. Then V® is V-isomorphic to V). The proof is complete. (I

For any a, B € Ly, by definition we have V® ~ V ~ V®), From Lemma 3.7,
o« — f§ € Lyg. Thus Ly is a sublattice of L.

Lemma 3.8. Ly is an even sublattice such that Ly C PN P°, where P° is the dual
lattice of P.

Proof. Let a € Ly. Then > = id, if and only if a(0) has integral eigenvalues
on V. This proves o € P°. From (3.13), we obtain:

Ye0) = (B(0) + (% B) s (3:42)
Yol(0) = <L(0) + (0) + %(oc, oc)) Vi - (3.43)

Then (3.42) implies that P(V ) = —a + P. Since ¥® is V-isomorphic to V,P
=P(V®), Thus o € P. Let u € VO for 1€ P. Then from (3.43) the L(0)-
weight of yr,(u) € V® is wt u+ (o, A) + 3 (o, ). In particular, the L(0)-weight

of Yo (1) € V™ is L(x,a). Thus (&) € 2Z. The proof is complete. [

Let o € Ly and let 7, be a fixed V-isomorphism from 7@ onto V. If o =0,
we choose Ty = idy. For any 8 € L, considering the following composition map:

A A N A (3.44)

we obtain a linear isomorphism f = ,_p@.¥p_y from V® onto ¥¥~*), Then
S(Y(a,z)u) =Y (A(e — B,2)A(P — a,z)a,2) f(u) = Y(a,2) f(u) (3.45)

for any a € V,u € V®. Then we define an endomorphism f, of U as follows:

fou = BP0y ey (u) foruev® CU. (3.46)
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Since Yy = idy, we have f,|, ) = 7,. Then we may use @, to denote the linear
isomorphism f, of U without any confusion. It is easy to see that 7T, satisfies the
following condition:

T (Y(a,z)u) = Y(a,z)w{u) forac V,ueU. (3.47)

Lemma 3.9. For any « € Ly, € L, we have
Ypty = PR g (3.48)
Proof. Let y € L,u € V. Then by (3.46) we have:
UpTia(u) = Ype ™Yy Tty ou)
= BT g Ry alu) (349)
On the other hand, we have:
Tap(u) = VI Ty atlp() = TP Ty a(u) . (3.50)

The result follows. O

Lemma 3.10. For any a € Ly we have

T (Y (1, 2)0) = Y(u, 2)To(v)  for any u,v € U . (3.51)

Proof. Without losing generality we assume that u € V5, v € Y, where 8,7 € L.
Then by Definition 3.3, (3.14) and Lemma 3.9 we obtain

(Y (,2)0) = Tuh gy B~ (B,2)Y (Y A(3,2)(14),2)A(B, —2 Wi (v)
= Py g BT (B 2)Y (Y A(3,2)(w), 2) AB, —2)y ul0)
= P g BT (B 2)Y (YpA(3,2)(u), 2)A(B, —2) ia(0)
=Py, 5 E™(B,2)
- Y (A=, 2 WA (7, 2)(1), 2 W o A, =2 )y Ta(0)
— e<m,ﬁ>ni%ﬁﬂ_yg—(ﬁ,Z)Z<a,ﬁ>(_z)—(a,li>
- Y(UpA(y — 0, 2)(),2)A(B, —2 Wy aTea(0)
= Yo gy B~ (B 2)Y (YpA(y — 0,2)(u), 2)A(B, —2 W o T (v)
= Y(u,2)7(v). (3.52)

This proves the lemma. [J
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Lemma 3.11. For any u € U,v € V), 0 € Lo,y € L, we have
Y (7o), 2)0 = e N F ¥ (u,z)0 . (3.53)

Proof. By linearity we may assume that u € V® for some f € L. Using skew-
symmetry, (3.15), Definition 3.3 and Lemma 3.9 we obtain

Y (7 o(u),z)v
=Yg E" (B — 0 2) Y (Yp—o A(,2)T o), 2) AP — o =2 )Wy (0)
=Ygy E~(B — 0,2)e™ DY (AR — o, —2)y(0), —2Wp- 0 A(3,2)T o)
=Ygy E~ (B — 0,2)e™ "L Y (A(B, =2 Wy (), =2 Wip A(y, 2 )T o)
= DMy, g JET(B — 0,2)e™ T LT Y (A(B, —2 )y (0), —2 W A(y,2)(u)
=Py, g JET(B—0,2)e™ Y7,
- e DY (Y Ay, 2)(w), 2)A(B, —2)y ()
=Py, 5 JET(B— 0,2)etCVy e D,
< Y(pd(3,2)(w), 2)A(B, —2) (v)
=AMy 5 JET(B — o, 2)ET (a2 W oo Y (A3, 2) (1), 2) A(B, —2 W ()
= eIy, g JET(B 2 WeaRa Y (YpA(y,2)(u),2)A(B, —2)Y(v)
= Py g BT (B, 2) Y (YpA(y, 2)(),2) A(B, —2 )y (v)
= el P PR g JET(B,2)Y (Ypd(y,2)(u),2)A(B, 2 )y (v)

=e ME Y(uzw. O (3.54)

Remark 3.12. Let I be the sum of all subspaces (T, — 1)U of U for o € Ly. Define
U to be the quotient space U/I. Then the multiplicity of the o p-twisted V-module
V) in U is exactly one for € L. It follows from Lemma 3.10 that / is a left ideal
of the generalized vertex algebra U. But from Lemma 3.11, [/ is not necessarily
a right ideal, i.e., for u € Lv € U, Y(u,z)v may not be in [{z} unless {a,f§) € 2Z
for any « € Ly, f € L (Lemma 3.11). In general, U is a U-module, but it is not a
quotient generalized vertex algebra of U.

Before we modify the definition of vertex operator Y( - ,z) (3.23) to get an
abelian intertwining algebra we consider a special case. Let L be an integral sub-
lattice of L such that Lo C L; C L and

(LB)eZ,{a,p)y€2Z forany e Paclyfel;. (3.55)

Set Ui = @D pey, V# and U, = Uy/I. Then it follows from Theorem 3.5,
Lemmas 3.10 and 3.11 that U; is a generalized vertex algebra. By Lemma 3.8,
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for any o; € L1, 4; € P for j = 1,2 we have:

n((o1, A1), (2, 42)) = — (o, 02) — (o1, A2) — (o2, 1) € Z/2Z, (3.56)
C(o1, 41), (92, 22)) = (— 1)l i) (3.57)
Then
— _ (o1, A1 )02, 2))
C((o1, A1), (02, A2))zg '8 (ZZ Zl) (ZZ Zl)
—20 Zp
= (_1)(061#2)20—15 (fﬁ:.fl) . (3.58)
%

Therefore for any u € V®-41),p € V2h) yw € V.4 (4, a;) € L X P, the gener-
alized Jacobi identity (3.26) becomes the following super Jacobi identity:

7' (ZIZ_ 22) Y(wa)Y (02w — (D)5 (zz—?) Y(0,22)Y (21w
0 40

=26 <Z—‘Z—_222) V(Y (1,20)0,2)w . (3.59)

Then we have:

Corollary 3.13. Let Ly be an integral sublattice of L satisfying (3.55). Then U, is a
vertex superalgebra with I as an ideal so that U, is a quotient vertex superalgebra.

Continuing with Corollary 3.13, let M be an irreducible ¥-module such that
o(0) has rational eigenvalues on M for any o € L;. Let y be an H-weight of
M. Then P(M) =y +P. Set W1 = @ ¢, M®. For any (a1, 1) € Ly x P, (03, 43)
€L x P(M) =Ly x (y+ P), since {o1,03),{a3,A41) € Z and {(a),A) € Z for any
A € P, we have:

n((a1, A, (3, 43)) = — (o, a3) — (o1, A3) — (o3, A1)
= —(ay,y) € %Z/Z. (3.60)

Then we have the following twisted Jacobi identity:

20_15 (Zl 2_022) Y(u,z)Y(v,22)w

— (—1)(“1’“2>zo_15 <ﬂ> Y(v,22)Y(u,z1 )w
—z

22 Zy

_ —{nay)
=z (Z‘ Z") (22 +Z°> Y (Y (4, 20)0,22)W . (3.61)
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Therefore, for any u € V4 p € P22) yw e M4 (a1, A1), (02, 4) € Ly x P,
(a3,43) € L1 x P(M), we have the following super Jacobi identity:

20‘15 <le;022) Y(u,z)Y (v,z2)w
— (=)l <Zi_—1) Y(0,22)Y (w,20)w
-

_ 1oy, A1 (@3, 43))
=25 (Z‘Z Z") (ZZ;FZ°> Y(Y(u,20)0,2)w.  (3.62)
2 1

It is clear that ¢, = e~2*® is an automorphism of Uj. Then W, is a g ,-twisted

U;-module with I(W,) as a submodule, where I(W)) is defined as the subspace
linearly spanned by (m, — 1)) for a € Ly. Summarizing the previous arguments
we have:

Corollary 3.14. Let L\ be an integral sublattice of L satisfying (3.55). Let M
be an irreducible V-module such that o(0) has rational eigenvalues on M for
any o € Li. Then W =@ pey, MPB with MO = M, defined as in Theorem 3.6,
is a o,-twisted Uy-module with a submodule I(Wy), so that Wy = W\/I(W) is a
quotient & ,-twisted Uy-module.

Corollary 3.15. Under the conditions of Corollary 3.14, assume that there is a
t-twisted U-module E containing M as a V-submodule for some finite-order au-
tomorphism t of Uy. Then 1 =0,

Proof. Since U, is simple and ¥® is a simple current for any o € L;,(M®, Yy,
( +,z)) is a tensor product of V) with M. Let E* be the subspace of E linearly
spanned by u,M for u € V) n c Q. Similarly, (E%, Yz( - ,z)) is also a tensor prod-
uct of ¥® with M. Therefore, there is a ¢, € C* such that Yyj, (u2)w = ¢y Y (u, z)w
for any u € V), w € M. By definition of a twisted module, T and g, have the same
order. Then 7|, = 04|y for any a € L;. Thus 1 =0,. O

As mentioned in Remark 3.12, in general U = U/I is not a generalized vertex
algebra. Next we shall modify Definition (3.23) and prove that U = U/I is an
abelian intertwining algebra.

For any ¢, § € Ly, we have a V-isomorphism 7T, 7 ﬁﬁ;ili from V onto V. Since

V is a simple vertex operator algebra, by Schur’s lemma there is a nonzero complex
number Ag(a, f) such that

Tasp = Ao B)TaTi g, (3.63)

where both sides are considered as V-isomorphisms ¥(*+#) onto V. For any y € L
and for any u € V', we have:

s = sy = (0
LRI SRR ()
= &~ BN g0 (0, B Wi p—y T gy p)
= Ao(o, B)tuit g(u) . 68
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Then (3.63) holds when both sides are considered as operators on U. It is easy to
sec that the following 2-cocycle condition hold:

Ao(oq + 02, 03)Ao 01, 00) = Ao(o, %2 + o3)Ae(%2,03) (3.65)

for any «; € Ly, i = 1,2,3.
Next we define

Co(a, ) = Ao(at, B)do(B,2)™"  fora, f € Lo . (3.66)
Then Cy(-, ) satisfies the properties (3.22) and
gy = Cola, f)Tatpg fora, f € Ly. (3.67)

Since Ly is a sublattice of L, there is a basis {f,f2,..., 8.} for L and a basis
{a1,00,...,0,} for Ly such that each o; is an integral multiple of ;. It is easy to
find a Z-bilinear function 4;(-, -) on L with values in C* satisfying the following
condition:

Aoy, o) = A1(e;, ocj)2 foranyl =i j<n. (3.68)

Fixing such an 4,(-, +), we define C;(+, -) on L x L as follows:
Ci(o, ) = 4i(e, B)Ar(B,0)~" forany e, f€ L. (3.69)
Then C;(-, -) satisfies the following conditions:

Ci(B,B) = 1,Cy(B1, B2)C1(B2, B1) = 1,Co(B1 + B2, B3) = Cl(ﬁl,ﬁs)cl(ﬁz,%)m)

for any B, f1, 2,3 € L.
Next, for any o € Ly, we define a linear automorphism 7, on U as follows:

(1) = Cy(B, )Tu(u) forany uec VP CU. (3.71)
Then for any oy, 0 € Lo, f € L, we have:
Ty Moy () = C1(B — 02, 01 )C1(f, 42 )Ty Ty (1)
= Ci(B — o, 001 )C1(B, 02 )Col(002, 01 )T oy Ty (1)
= C\(B — 02,01 )C1(B, 02 )Co(0t2, 01 )C1(0t2, B — 01 )C1 (001, BIT oy 70 oy (4)
= naznal(u) (3.72)
for any u € VP, Thus
Mo Mgy = NoyTg for any g, € Ly . (3.73)

Remark 3.16. If L = Zu is of rank one, then Ly = kL for some positive integer £.
We can fix 7y, first, then we define Ty, = 7T, for any n € Z. Then Cy(+, +) = L.
So we can take C(-, -) = 1.

Lemma 3.17. For any a € Ly, € L, we have

Ypmy = PmC (B a)mp . (3.74)
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Proof. Let y € L,u € V. Then by Definition (3.71) of 7, we have:

Ypma() = Ci(r, () = Cr(p a)e™ P, p(u)
= G 0)Ciloy — e P  m(u)
= e*AmC (B )mp(u). O (3.75)
Lemma 3.18. For any o € Ly we have
(Y (4,2)0) = Ci{B, )Y (u,2)m,(v) forany uec VH C U . (3.76)
Proof. Let u e V4, v € ¥ with B,y € L. Then by Definition (3.71) we have:
(Y (u,z)0) = CL(f + 9, )oY (,2)0) = Ci(B + ,0)Y (4, 2) 740
= Ci(B+ 3, )C1(y, @)~ Y (u,2)750 = C1(B, )Y (1, 2)m(v) . (3.77)
This proves the assertion. [
Lemma 3.19. For any u € VB v e v o € Ly, y € L, we have
Y (rtu),z)v = e~ N C (o, y)m, Y (u,z)0 (3.78)
Proof. We may assume that u € V®) for some B € L. Then by definition we have:
Y (o), 2)0 = Ci(B, )Y (T o(u),2)v = e~ BV (B, ) Y (1, 2)0
= e NECY(B,a)Ci (B + 7,0) MY (w2 )0
= e N (o, 9)1, Y (u,2)0 . (3.79)
Then the proof is complete. [

Remark 3.20. Let oy,...,0, be a basis of Ly. Then we can define a Z-linear map
7’ from Ly to Aut (U) as follows:

b ok ok (3.80)

/!
noc_noclnocz oy

for any a = kjoy + koo + - - - + kyo, € Lg. Since all 7,,’s commute each other, 7/
is well-defined. It is easy to see that

n’a+ﬂ = n'arc/ﬁ = n'ﬁn/a for any (X,ﬂ ely. (3'81)

It is also easy to see that Lemmas 3.17, 3.18 and 3.19 still hold. By slightly abusing
the notion, from now on we will use n’ for =.

Let 4 =L x P/D, where D = {(o, —a)|x € Lo} is a subgroup of 4 =L x P.
Let {4[i € 4} be a (complete) set of representatives in 4. Then we define V=
@Dici V). For any u € V4, v € VW), we define ¥(u,z)v € V4+){z} as follows:

F(u,2)0 = Co(Ajs AT iy iy, Y (t0,2)0 (3.82)
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Because L(—1) commutes with 7, for o« € Ly and L(—1)V B C ¥ for B € L, the

L(—1)-derivative property (Proposition 3.4) still holds.
We define a function A(i, j,k) from 4 x A x 4 to C* as follows:

(i, j k) = e~ Wb dm e (G 4 Ay — gy ) for i jked. (3.83)
Next we shall prove that A(7, j, k) is a 3-cocycle. Observe that A(i, j, k) is symmetric
in the first two variables with the third variable being fixed. Following [DL], we
prove that h(i, j,k) is a 3-cocycle by proving that with the third variable k& being
fixed, A(i, ], k) is a 2-cocycle, i.e.,

h(i, J kYRG, j -+ r, k) k(i + jor kR( k) =1 for i jreA. (3.84)
For i, j,rk € A we have:

e~ ithi—Ai b} o (it =Aig jr AT o o{ij e —dijr M) o (Ajtr — Ajp oA ) i (3.85)

and
Col2i + Aj = Ainjs AICo(Ai + Apr — Aijirs A )™
= Co(Aiyj + A — Aigjir, M)Co(Aj + Ap — Ay, i) (3.86)

Combining (3.85) with (3.86) we obtain (3.84). Then from Proposition 12.13 of
[DL], A(i,j,k) is a 3-cocycle. Next we define

C((A1,h1), (A2, 12)) = C((h1, 1), (A2, 72))C1 (%, 42) (3.87)

for any (A; x P) € L x P (recall the definition of C(-, -) from (3.20)). Then C
satisfies (3.22).

Theorem 3.21. For any u € V%), p c y&ih) yw € Vi) the following gen-
eralized Jacobi identity holds:

(A1), (A4, h2))
Z1—Z Z1 — 2z _ -
20_15< ! 2) ( L 2) Y(u,z21)Y (v,22)w

Z Zy

- _ Zn — Z Zy —2Z n((li’hl)7(lj’h2))
— sy Gy )z ‘5( : ‘) ( 2 1)

—20 20

- Y(0,20)Y (u, 21 )w

_ 1((4ih1 ) (A h3)) L
=215 (zl zo) (22 +z°) hi, j, k)T (7 (u,20)0,22 )W .

V43 Z1
(3.88)

Therefore (U,1,0,Y , T A4, n,C‘) is an abelian intertwining algebra.
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Proof. Since Y(v,z)w € VVithphaths) 71 ysing (3.82) and Lemma 3.18 we obtain
Y (u,21)Y (v,27)w
= C1(yhs ATty iy Y 520 T (0,22)w
= Ct(Ajhs 2)CH (ks ATy =i Y (62004 2y, V(0,22 )W
= C1(Ajs A)C1 i, ADC1(AGj + Ak = Ajtes ATt 2= ot Whit k=i
s Thri—Ai Y (,21)Y (0,22)w
= C1(Aie, A))C(Ay + Aoy AT,y 2=y, Y (,20) Y (0,22)W (3.89)
Symmetrically, we have:
Y (0,22)¥ (u, 21w
= CilAes A)Cr(Ai + Ay AT apvdy—d i Y0, 22) Y (o zi)w . (3.90)
On the other hand, using (3.82) and Lemma 3.19 we get:
Y (Y (u,2)v,22 )W
= C1les At I ja—dgy ok ¥ (Y (u,20)v,22 )W
= C1( Ak A+ )C1 (A ATy ia—d e Y (Ragiy— 3, Y (w20 Y0, 22 )W
= C1 (s it )YC1 (s AYC1 (A + Ay — iy, Mg ye™ Bithi— iy i
i jthk—Aig g Tt A=A j Y(Y(u,zo)v,22)w
= C1(A, 4j+1)C1(A, A)C1(Ai + A = Ainjs A Yo~ ity =y homi
iy the—dy e Y (Y (200, 22)w (391)

Multiplying the generalized Jacobi identity (3.26) by Ci(Ar,4;,)Ci(4; + A, 4i),
applying 7y, ;44 —4, 4> then using (3.89)—(3.91) we obtain

1((2h1):(B,12))
Z1—2 z1—z _ _
20_15< ! 2) ( ! 2) Y(u,z21)Y(v,22)w

) 20

— Z—z 7y — 1((Aisk1), (A5, h2))
— C((Ai, ), (A, m2))C1 (44, Aj)—ZZO ls ( 2 1) < 2 Zl)

—Z0 Z9

- Y(0,22)Y (4,2 )w

- e—(i,'%—lj—l#j,lk)nicl(li + /Ij — j,,urj, /q/k)z

. n((ish1) (Qob3))
L2516 (Z‘ - Z°> (22:20) T (1, 20 )0, 22w . (3.92)
2 1

This gives the generalized Jacobi identity (3.88). The proof is complete. [J
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4. Rationality for Certain Extensions of Vertex Operator Algebras

In this section we study the rationality of certain extensions of rational vertex op-
erator algebras. Such an extension V = gec VY graded by a finite abelian group
G can be characterized by the properties listed below. We first obtain the complete
reducibility of a G-graded module M = P, ; M7 with M 0 being an irreducible V-
module. Then we study the complete reducibility of a canonical class of V'-modules.
We apply our results to some special cases.

From the last section (Corollaries 3.13, 3.14 and 3.15) under certain conditions
we obtain vertex operator (super)algebras satisfy the following conditions:

V= QBgEG V9, where G is a finite abelian group.

(2) V° is a simple rational vertex operator subalgebra and each V9 is a simple
current ¥%-module.

(3) a, V" C V9+h for any a € V9,n € Z,g,h € G.

(4) For any subgroup H of G, V") =: @, _,, ¥ is a simple vertex (operator)
algebra and V@) = @, . V"9 for any g € G is a simple current ¥*)-module.

(5) Let M° be any irreducible ¥°-module which is a ¥°-submodule of some
V-module . Then there is a V-module M = @geGMg satisfying the condition:
ay,M" C M9+ for any a € V9, nc Z,g,h € G.

Proposition 4.1. Let M =@, M° be a V-module satisfying the following
conditions: (a) M® is an irreducible V°-module. (b) a,M" C M9*" for any a € V¥,
neZgheG Then M is a direct sum of irreducible V-modules.

First we prove the following two special cases:

Lemma 4.2. Let M = @, M? be a V-module satisfying the conditions (a) and

(b) of Proposition 4.1. Suppose M? and M"* are not isomorphic V°-modules for
g+h Then M is an irreducible V-module.

Proof. Let M; be any nonzero V-submodule of M. We must show that M = M.
Since each M? generates M by the action of V, it suffices to prove that M; contains
some M9. Because M is a direct sum of irreducible ¥°-modules, M; is also a direct
sum of irreducible ¥°-modules. For any g € G, let P, be the projection of M onto
M?9. Then P, is a V°-homomorphism. Let W be any irreducible %-submodule
of Mi. Then the restriction of P, to W is either zero or a V°—isomorphism onto
M?9. Since M9 and M" are not V°-isomorphic for g+ h, there is g € G such that
Py(W)=M? and Py(W) =0 for h+g. Therefore W = MY for some g € G. Thus
M, contains some MY, as required. [

Lemma 4.3. Let M = EBgEGM 9 be a V-module satisfying conditions (a) and (b)

of Proposition 4.1. Suppose that G is a cyclic group and that all M9 (g € G)
are isomorphic irreducible V°-modules. Then M is a direct sum of |G| irreducible
V-modules, each of which is isomorphic to M° as a V°-module.

Proof. For any g € G, let f; be a fixed V%-isomorphism from M° onto M9. If
g =0, we choose fy =1Id;0. We shall extend f,; to be a V-automorphism of M.
Let # € G. Then (M",Y( - ,z)) is a tensor product for (¥*,M°) by Corollary 2.9.

h
Since Y( - ,Z)f, is an intertwining operator of type (%g;o ), there is a (unique)
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V9-homomorphism f, , from M* to M9** satistying
Y(a,z) f4(u) = fynY(a,z)u for any a € Vhue M “4.1)

(see Definition 2.3 for the tensor product of modules). If 2 = 0, we have f;o = f,.
Then we extend f, to be a linear endomorphism of M by defining:

Jou) = fan(u) forany h€ Gue Mt C M. 4.2)

Thus
Y(a,z)f(u) = f,Y(a,z)u for any a € V,u € M°. 4.3)

Leta,beV, g€ G, uc M" and let k be a positive integer such that the following
associativities hold:

(zo +22) Y (a,20 + 22)Y (b, z2)u = (20 + 22)° Y (Y (@, 20), b, 22 )ut , (44)
(20 + 22 Y (a,20 + 22)Y(b,20) fyut = (20 + 22} Y (¥ (@, 20), b, 20) fyu . (4.5)
Then by (4.3)—(4.5) we have:
(2o +22) £, Y (a, 20 + 22) Y (b, 22)u
= (20 + 22)" £, Y (Y (a,20)b, 22 )u
= (20 + 22)°Y(Y(a,20)b, 22) f(1t)
= (20 + 22)F ¥ (a, 20 + 22) Y (b, 22) f (1)
= (20 + 22)*Y(a, 20 + 22) f(Y (b, 22 )ut) . (4.6)
Multiplying by (zo + 2z2)~* we obtain
fo¥ (@20 +22)Y (b, z2)u = Y(a,zo + 22) f (Y (b, 22)u) . 4.7)

Thus
fo¥(a,20)Y (b, z2)u = Y(a,21) f(Y(b,22)u) . (4.8)

Since V - M® = M, we get
foY(a,z)v=Y(a,z1)fyv foranyacV, veM. 4.9)

That is, f; is a V-endomorphism of M.

For any g,k € G, both f,.4 and f,f} are ¥'°-homomorphisms from M? to M7+,
Since M is an irreducible ¥®-module, f,; is a constant multiple of f,fj. That is,
there is 4(g,h) € C* such that f,, = A(g,h)f,[n from M® to M9*h. Since each
fy is a V-endomorphism of M and M generates M by V, fy1, = A(g,h)f, f» holds
on M. It is clear that A(g,k) is a 2-cocycle.

Since G is cyclic, let G = {g) with o(g) = k. Since f;‘ is a V%-endomorphism
of M° and MO is an irreducible ¥°-module, there is a complex number a such that
f;(u) = ou for any u € M°. Then we modify f, by multiplying a kth root of o,
we have: fg"(u) = u for any u € M°. Since f, commutes with all vertex operators
Y(a,z) for a € V and M° generates M by V, we have fg" = Idy. Using f; we obtain
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a representation of G on M. For any nonzerou € MO, Cud Cfpud - @ (Efé“lu

is isomorphic to the regular representation of G. For any character y € G, let M(x)
be the y-homogeneous subspace of M. Then M = @xeG”M(X) and M(y)+0 for

any x € G. Since G commutes with all vertex operators Y(a,z) for a € V, each
M(y) is a V-module. Since M(y)=+0 for any y € G and M is a direct sum of |G|
irreducible ¥°-modules, then each M(y) must be an irreducible ¥-module, so that
it is also an irreducible ¥°-module. [

Proof of Proposition 4.1. We are going to prove Proposition 4.1 by using induction
on |G|. If |G| =1, there is nothing to prove. Suppose that Proposition 4.1 is true
for any finite abelian group with less than # elements. Suppose that |G| = n with
n> 1. Let H be a subgroup of G of prime order. Set V') =, _,, V® and y+1)
=@y V9™ for g € G. Then V™) is a simple vertex operator algebra and each
y@tH) js a simple current for V). Similarly set M) =@, ., M®. Let Hy
be the subset of H consisting of # such that M® is isomorphic to M®. Then
it is clear that Hy is a subgroup of H. Consequently, either Hy = H or Hy = 0.
By Lemmas 4.2 and 4.3, M) is a direct sum of irreducible ¥)-modules. Let
M =W, & - & W,, where W, are irreducible ¥'¥)-modules. Let M’ be the V-
module generated by W;. Denote the span of {a,wla € V9, ncZ, we W;} by
VéW; for g € G. Then from the proof of Lemmas 4.2 and 4.3,

M= VW= @ VW,
9€G KEG/H
and M =3, M/. The V"D, G/H,M; satisty the assumptions of Proposition 4.1.
By the inductive assumption, each Af; is a direct sum of irreducible ¥-modules,
hence so too is M. O

Theorem 4.4. Suppose that V° is rational and that for any irreducible V°®-module
WO, if there is a V-module W such that W° is a V°-submodule of W, then W° can
be lifted to be a V-module M = @ ,c; M? with M® = W°. Then V is rational.

Proof. Let W be any V-module. Then W is a completely reducible ¥°-module.
Thus it suffices to prove that any irreducible ¥%-submodule W° of W generates
a completely reducible V-submodule of /. By assumption, there is a V-module
M =@ ,c;M? such that

M =W, a,M" C M9 forany ac V9, ncZghecG. (4.10)

From Proposition 4.1, M is a completely reducible V-module. So it sufficient to
prove that the ¥-submodule (W°) of W generated by W° is a ¥-homomorphism
image of M. It is easy to see that (M, Y( - ,z)) is a tensor product of ¥°-modules
V with M® = W°. Therefore there is a ¥°-homomorphism f from M to W such
that

Yw(a,z)u = fYy(a,z)u forany acV, uec M®=w". 4.11)
Using the same argument used in the proof of Lemma 4.3 we obtain:
Yw(a,2)f(u) = fYu(a,z)u foranya eV, ueM. (4.12)

Then f is a ¥-homomorphism from M to W. Then (W?) is a completely reducible
V-module. Therefore M is a completely reducible V-module. [J
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Theorem 4.5. Suppose that V° is rational and that for any g € G, there is
an hy € Vi satisfying condition (2.18) and such that V9 is V°-isomorphic to
(V°,Y(A(hy,z) - ,z)). Then V is rational.

Proof. This follows from Theorem 4.4 and Corollaries 3.14—15 immediately. O

5. Applications to Affine Lie Algebras

This section is devoted to the study of affine Kac—Moody algebras and their rep-
resentations. It is well known that L(/Ag) is a vertex operator algebra (see the
definition below) and any weak module which is truncated below is a direct sum
of standard modules of level / (cf. [DL and FZ]). In this section we improve this
result by showing that under a mild assumption, any weak module is a direct sum
of standard modules of level /. Then we discuss the simple currents for vertex op-
erator algebras L(IAg) and various extensions of L(/Ay) as applications of results
obtained in previous sections.

Let g be a finite-dimensional simple Lie algebra with a fixed Cartan subal-
gebra H and let {e;, fi,a/|i = 1,...,n} be the Chevalley generators. Let ( -, - )
be the normalized Killing form on g such that the square norm of the longest
root is 2. Let Q@ = Za; & - - - @ Za,, where oy,...,a, are all simple roots. Notice
that ay,...,o form a basis for H. Let h; € H such that o;(h;) = 6;; for i,j =
1,...,n Let 6 = E:’Zl a;a; be the highest positive root. Let 4;(i = 1,...,n) be the
fundamental weights for g (cf. [H]). We shall denote the fundamental weights of
its dual algebra by 1Y. A dominant integral weight 1 is called a minimal weight
(cf. [H]) if there is no dominant integral weight y satisfying 1 —y € Q. Weight
A; is called cominimal if 4 is a minimal weight (see [FG]). Then A; is minimal if
and only if a; = 1, and all minimal dominant integral weights are given as follows
(cf. [H]):

N
& ox
§>

c A

i AL An—ts An

Eg: A1, ¢

Ey: Ay, (5.1)

>

Let § be the affine Lie algebra [K] with Chevalley generators {e;, f;, o |i
=0,...,n}. Then each 4; for 1 £ i < n is naturally extended to a fundamental
weight A; for §. Let Ay be the fundamental weight for g defined by Ag(2Y) = ;¢
for 0 < i < n (cf. [K]). Then A; is of level one if and only if @’ =1 (see [K]
for the definition of @). Let A € H* and let £ be any complex number. Then we
denote by L(/, 1) the highest weight g-module of level / with lowest weight A. It
is well known (cf. [DL, FZ, Lil]) that L(Z,0) is a vertex operator algebra. One can
identify g as a subspace of L(Z,0) through the linear map ¢: u — u_;1. Using this
formulation, it was proved in [Li4] that if A; is cominimal, then for any ¢,L(£A;)
(or L(Z,4;)) is an irreducible (weak) L(Z,0)-module and it is a simple current. The
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following proposition is proved in [Li4]. Since the information obtained is useful
(see Remarks 5.2 and 5.3), we repeat the short proof here.

Proposition 5.1. Suppose that 1; is cominimal. Let ¢ be any complex number
which is not equal to —Q, where Q is the dual Coxeter number of 8. Then L({£A;)
is isomorphic to (L(£,0),Y(A(h;,z) - ,z)) as a g-module. Consequently, L({A;) is
a simple current.

Proof. Note that 6(h;) = a; = 1. By definition we have:
A2y = of +£5;;27", Ahiz)er =zei, Ahyz)fi=2z""fi, (52)

AMhiz)e; = €5, Mhoz)fi= [ Ahnz)fo=z""fy for j+i. (53)

In other words, the corresponding automorphism i of U(g) or U(L(Z,0)) satisfies
the following conditions:

W (m) = o/ (n) + 6ols Wei(m)) = exln+ 1), Y(fin)) = filn —1); (5.4)
W (m) = o (), Y(ei(n)) = e;(m).Y(fy(m)) = fi(n) for j+in €L, (55)

and

Y(fo(n)) = fo(n—1) fornel. (5.6)

Then the vacuum vector 1 in (L(Z,0),Y(4(%;,z) - ,z)) is a highest weight vector
of weight £A;. Thus (V,Y(A(h;,z) - ,z)) is isomorphic to L(£A;) as a g-module.
By Proposition 2.12, L(£A;) is a simple current. [

Remark 5.2. 1t has been shown [FG] by calculating the four point functions that if 4;
is a cominimal weight and 7 is a positive integer, then L(/A;) is a simple current.
Moreover if g is of type Eg, L(A7) is a simple current of level 2 which is not
isomorphic to L(2,0). It has also been proved [F] that these are all simple currents.
In string theory, simple currents are useful for constructing modular invariants.

Remark 5.3. From the proof of Proposition 5.1 we see that the vacuum 1 becomes
a lowest weight vector of L(£A;). The lowest weight of L(£A;) is g(hi,h,-) because
L(0) acts on L(£A;) (= L(£Ap)) as L(0) + A,(0) + g(hi,h,). In general, if he H
satisfies o;(h) € Z for i = 1,...,n, it follows from the proof of Proposition 5.1 that
the vacuum vector is a lowest weight vector for € if and only if either 4 =0 or 4
corresponds to a cominimal weight. Then for some & € H, (L(Z,0),Y(4(h,z) - ,2))
might not be a highest weight g-module.

Next we shall prove that if Z is a positive integer, then for any s € H satisfy-
ing a;(h) € Z for i = 1,...,n and for any L(Z,0)-module (M, Yp( - ,2)), (M, Yy (4
(h,z) + ,z)) is an ordinary L(Z,0)-module. From now on, we assume that g is a
fixed finite-dimensional simple Lie algebra and ¢ is a fixed positive integer.

The following lemma easily follows from Proposition 13.16 in [DL] (see [Lil
or MP] for a proof).

Lemma 5.4. Let M be any weak L(£,0)-module and let e € g,, where o is any
root of g Then Yy (e,z)Y "' = 0 if o is a long root and Yy (e,z)***' = 0 for any o

Lemma 5.5. Let M be any nonzero weak L(¢,0)-module on which tC[t] ® H acts
locally nilpotently. Then M contains a standard g-module of level £.
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Proof. Set §, = 1C[¢t] ® g. We define M® = {u € M |§, u=0}. Since [g,§.]C &,,
gM® C MO, Let O%e € g,. Applying Yy(e,z)’*! to M® and extracting the coeffi-
cient of z7/~1, we obtain e(0)’*'M° = 0. By Proposition 5.1.2 in [Lil] (see also
[KW]), M is a direct sum of finite-dimensional irreducible g-modules. If M° 0,
let u be a highest weight vector for g in M°. Then u is a highest weight vector for
g. Extracting the constant from Yys(e,z)**'u = 0 we obtain e(—1)’*'u = 0. Then u
generates a standard g-module. So it suffices to prove that M° is nonzero. For any
u € M, it follows from the definition of a weak L(Z,0)-module that g u is finite-
dimensional. Let u be a nonzero vector of M such that g, # has minimal dimension.
If the minimal dimension is zero, then we are done. Suppose the minimal dimension
is not zero. Let k& be an integer such that g(n)u =0 for n > k and that there is
a nonzero a € g such that a(k)u=+0. Without loss of generality we may assume
that a € g, for some root a or a € H. By assumption, k£ > 0. If « € g, for some
root «, then Yy (a,z)**'u = 0 implies that a(k)***lu = 0. If a € H, by assump-
tion a(k) locally nilpotently acts on u. Therefore, there is a nonnegative integer r
such that a(kYu+0 and a(k)*'u = 0. Let v = a(k) u. If b(n)u = 0 for some b €
g.n > 1, then b(n)v = 0. Then dimg, v < dimg, u — 1, contradiction. The proof is
complete. OO

Proposition 5.6. Let M be a weak L({ Ag)-module on which tC[t] ® H acts locally
nilpotently. Then M is a direct sum of standard g-modules of level ¢.

Proof. Let M; be a direct sum of standard submodules of M. We have to prove that
M = M,;. Otherwise, the quotient module M = M/M; is not zero. By Lemma 5.5,
there is a standard submodule of M, say W/M;, where W is a submodule of M
containing M. It follows from Theorem 10.7 in [K] that W is a direct sum of
standard modules, so that W = M, contradiction. [

Corollary 5.7. Let he€ H such that a(h) € Z for any root o of g and let
(M, Yp(-,2)) be any L(¢,0)-module. Then (M,Y(A(h,z)-,z)) is also an L(Z,0)-
module.

Proof. Since any L(/,0)-module M is a direct sum of finitely many standard
g-modules and a direct sum of finitely many L(Z,0)-modules is a module, it
suffices to prove the corollary for an irreducible module M. Since A(h,z) is
invertible, it is clear that (M, Y(4(h,z)-,z)) is still irreducible as a g-module.
It follows from the proof of Proposition 2.15 that (M, Y(A(h,z).,z)) is still a
direct sum of highest weight modules for the Heisenberg Lie algebra H. By
Proposition 5.6, (M, Y(A(h,z)-,z)) is a direct sum of standard g-modules of
level /. Consequently, M is a standard g-module of level /. The proof is
complete. O

Remark 5.8. If we just consider the action of the affine Lie algebra g, it is easy
to see that the transition from L(Z,0) to L(Z, 4;) is due to a Dynkin diagram auto-
morphism of g The automorphism group of the Dynkin diagram of the affine Lie
algebra is commonly called .the outer automorphism group. To a certain extent we
have realized them explicitly as “inner automorphisms” in terms of exponentials of
certain elements of g,

Remark 5.9. 1t is very special for Eg that there is a simple current other than the
vacuum representation when £ = 2, but there is no outer automorphism. Let 2 € H
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be the element uniquely determined by a;(%2) = ;7 for 1 < i < 7. By Corollary 5.7,
(L(2,0),Y(A(h,z)-,z)) is still a standard module and it is a simple current. It is
interesting to ask what this module is. If this module is L(2, A7), then all simple
currents can be constructed in terms of A(4,z).

Let L be the Z-span of all cominimal weights of g. Then it follows from
Theorem 3.21 that for any positive integral Ievel 7, the direct sum of all simple
currents of L(Z,0) is an abelian intertwining algebra.

Theorem 5.10. Let g be a finite-dimensional simple Lie algebra, but not of type
Eg with a fixed Cartan subalgebra H and let { be any positive integer. Then
the direct sum of all (simple currents) L(¢,0)-modules L(Z, ;) for all cominimal
weights A; is an abelian intertwining algebra.

Example 5.11. Let g be the type 4,. From [H] we have:
1

/1,-:n+1((n—i+1)(x1+2(n~—i+1)a2+---—|—(i—1)(n—i+1)oc,~_1)
+ p—y 1(i(n—i+1)ai+i(n—i)oci+1 + o). (5.7)
Then
1 . V2 . \V2 . H \
h = n+1((n—l+1)oc1 +2n—i+ Doy +--+(G—-1)n—i+ Do)
1
+n+1(i(n-i+1)aiv+i(n—i)a,.v+1+---+ioc,,V).

By a simple calculation we get (%;,4;) = % forl £iZnletlL=L=Zh.
Notice that (from (3.7))

(h,W')1 = KD = h()H (= D1 = £(h, 1) (5.8)

for A,k € H. Then (h;,h;) = ﬂ'%ll_—') By definition, P is the root lattice with
the bilinear form #(-, ). If £ € 2(n+ 1)Z,, L, satisfies condition (3.56). Sup-
pose that Ly =kL; for some positive integer k. By Corollaries 3.13 and 2.9,
L(,0)® @;:01 L(¢, A1) is a vertex operator algebra if £ € 2(n + 1)Z,. In fact,
Ly = (n+ 1)L;. By Theorem 4.5, it is rational. For other types, there are similar
arguments, so we just briefly state the result.

Example 5.12. 1f g is of type, B,, then (cf. [H])
1
A = E(OC] + 205+ -+ noy) . (5.9)

Thus %, = 3(o) + 20y + -+ +na). Let L =Ly = Zh,. Since L(Z, 4,) is isomor-
phic to its contragredient module, we have a nonzero intertwining operator of
type (L([’jrfj]:((); ) Then 2k, € Ly. Thus Ly = 2L,. Since (h,,h,) = 1, we have
(An, An) = £. Then by Corollary 3.13 and Theorem 4.5, L(#,0) @ L(¢, /) is a rational
vertex operator algebra for ¢ is even and L(Z,0) @ L(Z, 1) is a rational vertex oper-
ator superalgebra if 7 is odd. If Z = 1, the lowest weight of L(1, 4,) is % It follows
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from the super Jacobi identity that L(1, 4,) 1 generates a Clifford algebra. This result

explains why one can realize B, [LP] in terms of the representations of a Clifford
algebra.

Example 5.13. If g is of type C,, then

1
A :cxl—l—---+oc,,_1+zoc,,. (5.10)

Thus Ay = oy + -+ +oy_; + Lo/ Since (A, k1) =1, we have: (b1, ki) = £. Thus
L(£,0)® L(¢, Ay) if £ is even is a rational vertex operator algebra and L(¢,0) &
L(¢,4,) is a rational vertex operator superalgebra if / is odd.

Example 5.14. 1If g is of type D,, then

1
/11=O<1+"'+O€n—2+5(05n—1+06n),

1 n n—2
An1 = 5 (al +20 4+ (= 2)y2 + Ean—l + 5 Oy |,
1 n—2 n
In = 3 o+ 200+ -+ (n—2)oty—2 + "TOC,,_1 + Ean . (5.11)

Then

1
h1:oc}/+---+a,\,’_2+§(oc,\,/_1+a,\,/),

1 n n—2
M1 = 7 (O‘}/ + 20y + o+ (n = 2), ) + 5“;\1/—1 3 o )
17y v v n—2 R v
hy = 7 @ + 20y -+ (n—2),_ 5+ 5 %1 + 5% ) - (5.12)
By a simple calculation we obtain:
n
(h1, ) =1, (hn—1,hp1) = (M, ) = e (5.13)
Then
nt
<h17h1> - f; (hn—lahn—1> = (hna hn> = —4_ . (514)

Let L=L; =Zhy © Zh,_1 S Zh,. Tt is not difficult to see that Ly = 2L,. Thus
L(£,0) B L(£, M) B L(L, Apa1 ) D L(L, Ay) is an abelian intertwining algebra with
Z; X Z, as its grading group. (This has been proved in [DL].) Furthermore,
L(£,0)® L(¢, A1) is a rational vertex operator superalgebra. Another special case
is when n/ is divisible by 8 [DM]: L(¢,0) @ L(£, An—1) and L(£,0) & L(¢, A,) are
(holomorphic) vertex operator algebras.
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