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ABSTRACT

Motivation: Various studies have shown that cancer tissue samples

can be successfully detected and classified by their gene expression

patterns using machine learning approaches. One of the challenges in

applying these techniques for classifying gene expression data is to

extract accurate, readily interpretable rules providing biological insight

as to how classification is performed. Current methods generate clas-

sifiers that are accurate but difficult to interpret. This is the trade-off

between credibility and comprehensibility of the classifiers. Here, we

introduce a new classifier in order to address these problems. It is

referred to as k-TSP (k–Top Scoring Pairs) and is based on the concept

of ‘relative expression reversals’. This method generates simple and

accurate decision rules that only involve a small number of gene-to-

gene expression comparisons, thereby facilitating follow-up studies.

Results: In this study, we have compared our approach to other

machine learning techniques for class prediction in 19 binary and

multi-class gene expression datasets involving human cancers. The

k-TSP classifier performs as efficiently as Prediction Analysis of

Microarray and support vector machine, and outperforms other learning

methods (decision trees, k-nearest neighbour and naı̈ve Bayes). Our

approach is easy to interpret as the classifier involves only a small

number of informative genes. For these reasons, we consider the

k-TSP method to be a useful tool for cancer classification from micro-

array gene expression data.

Availability: The software and datasets are available at http://www.

ccbm.jhu.edu

Contact: actan@jhu.edu

1 INTRODUCTION

Many different tumors have a similar appearance when observed

using routine histological techniques and are therefore difficult to

distinguish. Histological approaches for tumor classification are

also labor intensive. With advances in microarray technology, it

is now possible to monitor global gene expression profiles of cancer

tissues and compare them with corresponding normal tissues.

Extracting accurate and simple decision rules from such microarray

data for classification and prediction tasks is of great interest for

biomedical applications. Accurate decision rules are essential for

diagnostic purposes, as the treatment options, responses to therapy

and prognoses vary depending on the type, staging and grouping of

tumors. However, accurate classification of microarray data poses

several challenges to machine learning methods. In particular, we

are faced with the ‘small N, large P’ problem of statistical learning,

as the number of genes P is typically much larger than the number of

samples N.
The Top Scoring Pair (TSP) classifier was introduced by Geman

et al. (2004) as a new classification technique for microarray data

based entirely on relative gene expression values, specifically pair-

wise comparisons between two gene expression levels. The TSP

classifier is a parameter-free, data-driven machine learning method,

which avoids over-fitting by eliminating the need to perform spe-

cific parameter tuning, as in other learning techniques [e.g. support

vector machines (SVMs) and neural networks (NN)]. In addition,

the TSP classifier provides decision rules that (i) involve very few

genes; (ii) are both accurate and transparent; (iii) are largely invar-

iant to any monotonic transformation of the data, as is typical of

most data normalization methods; and (iv) provide specific hypoth-

eses for follow-up studies (Geman et al., 2004).
In this paper, we present a new ensemble method, k-TSP, a

refinement of the original TSP algorithm, which uses exactly

k pairs of genes for classifying gene expression data. When

k ¼ 1, this algorithm, referred to simply as TSP necessarily selects

a unique pair of genes. More generally, both TSP and k-TSP may be

seen as special cases of a new classification methodology based on

the concept of ‘relative expression reversals.’

We also extend the TSP and k-TSP techniques beyond binary

classification to the multi-class setting. Three different multi-class

decomposition methods are employed in this study, namely

(i) One-vs-Others (1-vs-r); (ii) One-vs-One (1-vs-1) and (iii) Hier-

archical Classification (HC). We investigate the performance of

TSP-family classifiers (TSP and k-TSP) on both binary and

multi-class data, assessing their credibility and comprehensibility

on 19 different human cancer microarray gene expression datasets.

We show that our ensemble method (k-TSP) performs as efficiently

as state-of-the-art methods in classifying microarray data, is gen-

erally more efficient in terms of the number of genes employed and

provides biologically meaningful decision rules.

2 TSP-FAMILY CLASSIFIERS

Consider a gene expression profile consisting of P genes {1, . . . , P}
and suppose there are N profiles or arrays, x1, . . . , xN, available for*To whom correspondence should be addressed.
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training, these data can then be represented as a matrix of dimension

P · N in which the expression value of the i-th gene, i 2 {1, . . . , P},
from the n-th sample is denoted by xi,n. The column vector

xn ¼ (x1,n, . . . , xP,n) represents the P expression values for the

n-th sample.

Let (y1, . . . , yN) be the vector of class labels for the N samples,

where yn 2 C ¼ {C1, . . . , CM}, the set of possible class labels. We

begin by assumingM ¼ 2; for example, C1 refers to normal tissues

and C2 to cancer tissues. The labeled training set is then S ¼ {(x1,

y1), . . . , (xN, yN)}, where xn is the n-th column vector of the matrix

of gene expression profiles. As usual, we regard the expression

profile and its class label as random variables, denoted by X and

Y, respectively, and we assume that the elements of S represent

independent and identically distributed samples from the underlying

probability distribution of (X, Y).
The TSP classifiers are rank-based, meaning that the decision

rules only depend on the relative ordering of the gene expression

values within each profile. This should not be confused with rank-

based methods for determining differentially regulated genes in

which the expression values for each fixed gene are ordered within

samples. Here, in contrast, the expression values of the P genes are

ordered (most highly expressed, second most highly expressed, etc.)

within each fixed profile. Let Ri,n denote the rank of the i-th gene in
the n-th array (profile). Replacing the expression values xi,n by their
ranks Ri,n results in a new data matrix R in which each column is a

permutation of {1, . . . , P}.

2.1 The TSP classifier

Learning the TSP classifier Formulation of the TSP classifier

has been described previously (Geman et al., 2004). In essence,

we will exploit discriminating information contained in the R

matrix by focusing on ‘marker gene pairs’ (i, j), for which there

is a significant difference in the probability of the event {Ri < Rj}

across the N samples from class C1 to C2. Here, the quantities

of interest are pij(Cm) ¼ Prob(Ri < Rj | Y ¼ Cm), m ¼ {1, 2}, i.e.

the probabilities of observing Ri < Rj (equivalently, xi < xj) in

each class. These probabilities are estimated by the relative fre-

quencies of occurrences of Ri < Rj within profiles and over

samples. Let Dij denote the ‘score’ of the gene pair (i, j), where
Dij ¼ |pij(C1) � pij(C2)|. We compute the score Dij for every pair

of genes i, j 2{1, . . . , P}, i 6¼ j. Obviously, pairs of genes with

high scores are viewed as most informative for classification.

In fact, the TSP classifier defined in Geman et al. (2004) depends
only on those pairs of genes that achieve the largest score,

denoted Dmax.

It is possible for multiple gene pairs to achieve the same top score.

In order to eliminate ties and select a unique pair from the TSPs, we

use a secondary score based on the rank differences in each sample

in each class. For each top-scoring gene pair (i, j), we compute the

‘average rank difference’ g ij in class Cm, defined as

g ijðCmÞ¼
P

n2Cm
ðRi‚n�Rj‚nÞ
jCmj

‚ m¼f1‚2g‚ ð1Þ

where |Cm| denotes the number of samples in Cm. The ‘rank score’

of the gene pair (i, j) is then defined to be Gij ¼ | g ij (C1) – g ij (C2)|.

We then choose the pair with the largest rank score from those pairs

with the score Dmax. The motivation behind using the rank score to

break ties is that it incorporates a measure of the magnitude to which

inversions of gene expression levels occur from one class to the

other within a pair of genes.

Prediction with the TSP classifier If (i, j) is the unique, distin-

guished pair selected according to the criterion described above and

suppose pij(C1) > pij(C2), the TSP classifier hTSP is then defined as

follows: let xnew represent a new profile, Then

ynew ¼ hTSPðxnewÞ¼
�
C1‚ if Ri‚ new<Rj‚ new‚

C2‚ Otherwise:
ð2Þ

On the other hand, if pij(C2) > pij(C1), then the decision rule is

reversed. Put differently, the TSP classifier chooses the class for

which the observed ordering between the expression levels of genes

i and j is the most likely. It is also noteworthy that the sum of

misclassification probabilities over the two classes can be expressed

as 1 � Dij, which provides a natural justification for score maxi-

mization. The TSP algorithm is illustrated in Supplementary

Figure 1. It has been shown to perform well in classifying binary

class gene expression data (Geman et al., 2004).

2.2 The k-TSP classifier

In some instances, the TSPs may change when the training data are

perturbed by adding or deleting a few examples (Geman et al.,
2004). Here, we introduce the k-TSP classifier, which extends

the TSP classifier, and is designed to deal with this problem, as

well as increase the accuracy of the TSP classifier, by generating a

more stable classifier. This is accomplished by basing the classifi-

cation on the k disjoint Top Scoring Pairs (k-TSP) of genes that

achieve the best combined score. We can view the k-TSP as an

ensemble learning approach where the intention is to combine the

discriminating power of many ‘weaker’ rules to make more reliable

predictions. In this case, there are k ‘weaker’ rules, one for using

each of the k-TSP to classify according to Equation (2).

Learning the k-TSP classifier The learning algorithm of k-TSP is

similar to that of TSP. It consists of first forming a list of gene

pairs, sorted from the largest to the smallest according to their

original scores Dij, and then breaking ties by sorting within those

achieving the same score D using the secondary score Gij. The

k-TSP classifier uses the k top scoring disjoint gene pairs from

this list. The procedure is straightforward: take the first pair

(i1, j1), then go down the list until the first pair (i2, j2) that does

not involve either i1 or j1 is arrived at, and continue in this manner

until the k-th disjoint pair (ik, jk) is reached. The parameter k is

determined by cross-validation, with the restriction that k does not
exceed 10 in this study and is an odd number in order to break ties in

the majority voting procedure. Figure 1 illustrates the k-TSP learn-

ing algorithm.

In order to accelerate cross-validation, we have devised an

algorithm that employs an efficient computational shortcut to cal-

culate the cross-validation error. This shortcut creates a pruned

list consisting of all the pairs that could possibly be identified

among the TSPs and k-TSPs, no matter which of the original N
samples are removed during a loop of the cross-validation. In brief,

for every gene pair, a lower bound and upper bound for the score

that could be achieved for that pair, no matter which samples are

removed, is calculated. Next, after initializing O (Fig. 1) to be

the list of pairs ordered according to the score lower bound, a

list Q is created by applying Step 2d of the k-TSP algorithm
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2kmax times. Finally, letting L denote the lower bound for the score

of the last pair of Q, the pruned list consists of those pairs whose

score upper bound exceeds L. Even though this algorithm is exact, in

the sense that the same TSPs are chosen with or without it, the

amount of computation necessary for cross-validation is greatly

reduced; details can be found in the Supplementary Material,

Section 2.

Prediction with the k-TSP classifier Given a new profile xnew,

each gene pair (iu, ju), u ¼ 1, . . . , k, determines an individual clas-

sifier hu(xnew) according to the decision rule in Equation (2). This

yields k predictions of ynew. The k-TSP classifier hk-TSP employs an

unweighted majority voting procedure to obtain the final prediction

of ynew; in other words, the k-TSP classifier simply chooses the class

receiving the most votes:

ynew ¼ hk�TSPðxnewÞ¼ arg max
C¼C1‚C2

Xk
u¼1

IðhuðxnewÞ¼CÞ‚ ð3Þ

where

IðhuðxnewÞ¼CÞ¼
(

1 if huðxnewÞ¼C‚
0 otherwise

‚ C¼fC1‚C2g: ð4Þ

2.3 Multi-class classification

Some classification methods, e.g. SVMs, TSP and k-TSP, are

designed for binary classification problems and others, e.g.

nearest-neighbors, decision trees and variants of linear discriminant

analysis (LDA), apply immediately to any number of classes. In the

former cases, multi-class problems are usually addressed by training

and combining a family of binary classifiers dedicated to various

binary sub-classification problems. In this study, we investigate the

performance of the TSP and k-TSP classifiers for three different

schemes for differentiating among M classes.

2.3.1 One-vs-Others (1-vs-r) scheme. Given multiple classes

C ¼ {C1, C2, . . . , CM}, the One-vs-Others approach decomposes

the original problem into a set of M two-class problems (Supple-

mentary Figure 3a). For each class m ¼1, . . . , M, a classifier is

constructed for distinguishing between the individual class Cm

and the composite class C\Cm consisting of all other classes. To

predict the class of a new sample, each of these M classifiers is

evaluated, leading to a set of M predictions, each of which

consists of either a single class or a set of M � 1 classes. The

final prediction is chosen from among the single classes identified

by the M classifiers; in other words, classifiers that vote for a set

of M � 1 classes are ignored. If no single classes are chosen, or if

ties occur (i.e. if more than one single class is identified), then

the final output is the class with the largest number of training

samples.

2.3.2 One-vs-One (1-vs-1) scheme. Another well-known approach

for extending binary to multi-class classification is the One-vs-One

method [also known as pairwise coupling (Hastie and Tibshirani,

1997) or Round Robin ensemble (Furnkranz, 2002)]. A binary

classifier hlm is constructed for each distinct pair of classes Cl,

Cm 2 C, Cl 6¼ Cm, using only the training samples for those classes.

Consequently, this approach generates M(M � 1)/2 binary classi-

fiers (Supplementary Figure 3b), each predicting exactly one of the

M classes. In this scheme, the classifiers can be combined by simple

voting: the final prediction is the class that appears most often

among the M(M � 1)/2 decisions.

2.3.3 Hierarchical Classification (HC) scheme. Hierarchical clas-

sification is a sequential procedure in which a binary classifier is

associated with each internal node of a binary decision tree and a

class label is assigned to each leaf of the tree. The classifier h1 at the
root is designed to distinguish between the largest class and the

other classes combined (‘composite class 1’); it is trained using all

of the training samples. If h1chooses the largest class, the procedure
terminates and this becomes the final prediction. Otherwise, i.e. if

h1 chooses composite class 1, the second classifier, h2, is applied,
which is dedicated to separating the second largest class from

‘composite class 2’, consisting of all classes combined except

the largest and second largest; h2 is trained from all examples

whose class labels belong to composite class 1. This procedure

iterates until all the leaves in the decision-tree are labeled with a

unique class (Supplementary Figure 3c). The final prediction for

this scheme is obtained by traversing the decision-tree in a top-

down fashion and returning the class label of the leaf node that is

reached.

2.4 Implementation of TSP and k-TSP

The core TSP and k-TSP programs are written in C++, and wrapped
by the multi-class decomposition scheme, which is written in Perl

v5.8.0. The program utilizes some UNIX commands for data par-

sing and manipulation. The software has been tested on three dif-

ferent operating systems: a RedHat 9.0 Linux box of dual 500 MHz

Pentium III processors with 1 GB memory; an IBM cluster of 20

1.1 GHz Power4 processors with 24 GB memory running AIX 5.1

and a Windows XP machine of 2.8 GHz dual Xeon processors with

2 GB memory. The software is available at our website (http://

www.ccbm.jhu.edu).

Fig. 1. Description of the k-TSP algorithm.
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3 MICROARRAY DATA AND EVALUATION
METHODS

In the following sections we investigate the performance of TSP-family

classifiers on both binary and multi-class expression datasets. For this pur-

pose, we have collected 19 publicly available microarray datasets, with

sample sizes ranging from 33 to 327 and numbers of genes ranging from

2000 to 16 063. All of the datasets, which are summarized in Tables 1

and 2, are related to studies of human cancer, including colorectal, leukemia,

lung, prostate, breast, central nervous system, lymphoma, bladder, mela-

noma, renal, uterus, pancreas, ovary and mesothelioma. Further information

can be obtained from the related publications.

3.1 Other machine learning methods

We compare the performance of TSP-family classifiers with five well-known

machine learning methods: C4.5 decision trees (DT), Naı̈ve Bayes (NB),

k-nearest neighbor (k-NN), Support Vector Machines (SVM) and prediction

analysis of microarrays (PAM). We use the DT, NB, k-NN and SVM imple-

mented in the WEKA machine learning package (Witten and Frank, 2000)

and the PAMWindows version 1.22 program (Tibshirani et al., 2002) for all

the experiments in this study.

Since DT and NB directly handle multi-class problems, we use the default

parameters for these techniques. For k-NN, the number of neighbors k is

determined using cross-validation on the training set. The SVMs are trained

using sequential minimal optimization with a linear kernel and extended to

multi-class problems using both the (i) 1-vs-1 and (ii) 1-vs-r schemes.

PAM is a variation of diagonal LDA and one of the most popular sta-

tistical methods for analyzing gene expression data. PAM is a statistical

technique developed by Tibshirani et al. (2002) based on the nearest shrun-

ken centroids approach. We perform cross-validation on the training set to

determine the optimal amount of shrinkage (tuning parameter of PAM) for

each dataset. Other than that, we apply the default parameters of the PAM

program.

3.2 Estimation of classification rate

Leave-One-Out Cross-Validation (LOOCV) for binary class problems. In

order to estimate the classification error rate for the binary classification

problems listed in Table 1 we use standard LOOCV. Hence, for each sample

xn in the training set S, we train a classifier based on the remaining N � 1

samples in S and use that classifier to predict the label of xn. The LOOCV

estimate of the classification rate is the fraction of the N samples that are

correctly classified.

Independent test set for multi-class problems. In order to evaluate the

performance of the multi-class problems in this study (Table 2), we use

the test sets provided from the original references when available. Otherwise,

we randomly partition each dataset into a training set and a test set. We train

the classifiers on the training set and evaluate their performance on the

independent test set.

Estimation of k in k-TSP. The parameter k in the k-TSP classifier is deter-

mined by cross-validation, as described in Fig. 1. This requires a double loop

of cross-validation in the case of estimating the classification rate from

LOOCV in the binary classification problems, an outer loop for estimating

the generalization error and an inner loop for estimating k. Only a single loop

of cross-validation is necessary when there is an independent test set avail-

able (multi-class datasets).

Table 1. Binary class gene expression datasets

Dataset Platform No. of genes (P) No. of samples (N) Reference

C1 C2

Colon cDNA 2000 40 (T) 22 (N) (Alon et al., 1998)
Leukemia Affy 7129 25 (AML) 47 (ALL) (Golub et al., 1999)

CNS Affy 7129 25 (C) 9 (D) (Pomeroy et al., 2002)

DLBCL Affy 7129 58 (D) 19 (F) (Shipp et al., 2002)

Lung Affy 12 533 150 (A) 31 (M) (Gordon et al., 2002)
Prostate1 Affy 12 600 52 (T) 50 (N) (Singh et al., 2002)

Prostate2 Affy 12 625 38 (T) 50 (N) (Stuart et al., 2004)

Prostate3 Affy 12 626 24 (T) 9 (N) (Welsh et al., 2001)
GCM Affy 16 063 190 (C) 90 (N) (Ramaswamy et al., 2001)

Table 2. Multi-class gene expression datasets

Dataset Platform No of classes No of genes (P) No. of samples (N) Reference

Training Testing

Leukemia1 Affy 3 7129 38 34 (Golub et al., 1999)

Lung1 Affy 3 7129 64 32 (Beer et al., 2002)

Leukemia2 Affy 3 12 582 57 15 (Armstrong et al., 2002)

SRBCT cDNA 4 2308 63 20 (Khan et al., 2001)
Breast Affy 5 9216 54 30 (Perou et al., 2000)

Lung2 Affy 5 12 600 136 67 (Bhattacharjee et al., 2001)

DLBCL cDNA 6 4026 58 30 (Alizadeh et al., 2000)
Leukemia3 Affy 7 12 558 215 112 (Yeoh et al., 2002)

Cancers Affy 11 12 533 100 74 (Su et al., 2001)

GCM Affy 14 16 063 144 46 (Ramaswamy et al., 2001)
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4. RESULTS

4.1 The k-TSP classifier performs comparably to

PAM and SVM for the binary classification

problems

Table 3 summarizes the results of LOOCV using the seven

different classifiers on the nine binary classification problems. In

this case, the estimated classification rate is (TP + TN)/N, where TP
denotes the number of correctly classified C1 samples, TN denotes

the number of correctly classified C2 samples and N is the total

sample size.

Our results show that the seven classification methods can be

roughly divided into two groups. Averaged over the nine problems,

the top tier classifiers (k-TSP, SVM, TSP and PAM) achieve

accuracies in the vicinity of 90% and the second-tier classifiers

(k-NN, NB and DT) in vicinity of 80%. In this study (Table 3),

k-TSP outperforms PAM in four cases (CNS, DLBCL, Colon and

GCM), PAM outperforms k-TSP in four cases (Leukemia, Pros-

tate2, Prostate3 and Lung) and they perform the same in one case

(Prostate1). SVM is superior to k-TSP in classifying five datasets

(Leukemia, Prostate2, Prostate3, Lung and GCM), inferior in two

cases (CNS and Colon) and the same in two cases (DLBCL and

Prostate1).

The best classifier based on the average accuracy for the

nine binary classification problems used in this study is k-TSP
(92.01%), followed by SVM (91.18%), PAM (88.91%) and

TSP (88.26%). We do not consider these differences in accuracy

as noteworthy and conclude that all four methods perform

similarly. However, in terms of efficiency and simplicity, one

can argue that the TSP method is superior since it uses a single

pair of genes and an elementary decision rule based solely on

expression inversion. These results confirm the findings in

Geman et al. (2004) that TSP-family classifiers can generate

accurate and interpretable decision rules for classifying microarray

data.

4.2 The HC-k-TSP classifier performs comparably to

SVM and PAM in multi-class problems

Table 4 summarizes the performance of the 7 methods for the 10

multi-class problems. Recall that DT, NB, k-NN and PAM directly

handle multiple classes. In order to simplify the presentation of the

results for TSP, k-TSP and SVM, in Table 4 we only present the

multi-class scheme that performs best for each of these methods,

1-vs-1 for SVMs and HC for TSP and k-TSP; the full results for all
multi-class schemes are available in Supplementary Table 1. One

general observation from the multi-class experiments is that the

accuracy of the classifiers decreases as the number of classes

increases. This is due, at least in part, to the small number of

training samples for many of the classes, which makes learning

more difficult.

From the results (Table 4), PAM (88.50%) and 1-vs-1-SVM

(88.10%) yield the best performance averaged over the 10 problems

and each outperforms the other in 5 of the 10 cases. HC-k-TSP
achieves an average accuracy of 85.12%. Compared with PAM,

HC-k-TSP is superior in three cases (Leukemia2, SRBCT and

GCM), inferior in five cases (Breast, Lung2, DLBCL, Leukemia3

and Cancers) and the same in two cases (Leukemia1 and Lung1).

The situation is approximately the same when HC-k-TSP is com-

pared with 1-vs-1-SVM.

Table 3. LOOCV accuracy of classifiers for binary class expression datasets

Method Leukemia CNS DLBCL Colon Prostate1 Prostate2 Prostate3 Lung GCM Average

TSP 93.80 77.90 98.10 91.10 95.10 67.60 97.00 98.30 75.40 88.26

k-TSP 95.83 97.10 97.40 90.30 91.18 75.00 97.00 98.90 85.40 92.01

DT 73.61 67.65 80.52 80.65 87.25 64.77 84.85 96.13 77.86 79.25

NB 100.00 82.35 80.52 58.06 62.75 73.86 90.91 97.79 84.29 81.17

k-NN 84.72 76.47 84.42 74.19 76.47 69.32 87.88 98.34 82.86 81.63

SVM 98.61 82.35 97.40 82.26 91.18 76.14 100.00 99.45 93.21 91.18

PAM 97.22 82.35 85.71 85.48 91.18 79.55 100.00 99.45 79.29 88.91

The best prediction rate for each particular data set is highlighted in boldface.

Table 4. Accuracy of classifiers for the independent test set for multi-class expression datasets

Method Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Leuk3 Cancers GCM Average

HC-TSP 97.06 71.88 80.00 95.00 66.67 83.58 83.33 77.68 74.32 52.17 78.17

HC-k-TSP 97.06 78.13 100.00 100.00 66.67 94.03 83.33 82.14 82.43 67.39 85.12

DT 85.29 78.13 80.00 75.00 73.33 88.06 86.67 75.89 68.92 52.17 76.35

NB 85.29 81.25 100.00 60.00 66.67 88.06 86.67 32.14 79.73 52.17 73.20

k-NN 67.65 75.00 86.67 30.00 63.33 88.06 93.33 75.89 64.86 34.78 67.96

1-vs-1-SVM 79.41 87.50 100.00 100.00 83.33 97.01 100.00 84.82 83.78 65.22 88.11

PAM 97.06 78.13 93.33 95.00 93.33 100.00 90.00 93.75 87.84 56.52 88.50

The best prediction rate for each dataset is highlighted in boldface.
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5. DISCUSSION

5.1 Number of genes

We have shown that TSP-family classifiers are comparable in accu-

racy with state-of-the-art classification methods such as PAM and

SVM in a variety of cancer classification problems using gene

microarray data. One interesting observation is that the number

of genes involved in both the TSP and k-TSP classifiers is signifi-

cantly lower in most cases than the number used by PAM (which is

chosen by cross-validation); the SVM classifier uses all the genes.

Tables 5 and 6 show the number of genes used by the TSP, k-TSP,
DT and PAM classifiers for binary and multi-class datasets, respec-

tively. Since NB, k-NN and SVMs perform classification using all

the genes, these methods are not included in Tables 5 and 6.

For binary classification, the TSP classifier is naturally the most

efficient since, by construction, it only uses a single discriminating

pair of genes. The number of genes used in k-TSP is (by design)

fewer than 20, yet it achieves superior performance in the binary

class expression problems.

Although DT also uses a relatively small number of genes for

classification, its performance is significantly worse than TSP and

k-TSP (Table 3), suggesting that the chosen features may overfit the

training data and may be sensitive to noise. In fact, DT is known to

be a sensitive classifier; small perturbations in the training samples

lead to large differences in its tree-structure (Dietterich, 2000; Tan

and Gilbert, 2003).

For the multi-class problems, DT utilizes the smallest number of

genes. As expected, for the TSP-family classifiers, the number of

genes increases according to the number of classifiers used in the

hierarchical scheme (see Section 2.3), which is smaller than the

number of classifiers in the 1-vs-r and 1-vs-1 schemes (Supplemen-

tary Table 2). Eventhough the number of genes increases relative to

the binary case, the TSP-family classifiers still maintain reasonably

transparent results. In contrast, PAM and SVM achieved slightly

higher accuracy in these problems, the potential for post-analysis

study and biological interpretation is questionable. For PAM, the

concept of the nearest centroid has intuitive appeal, the number of

genes that figure in the decision rule can far exceed one thousand, as

shown in Table 6; in the case of SVM, the decision boundary is a

linear function of the entire input vector xnew and many support

vectors from S may participate in determining the coefficients.

Several studies have shown that it is possible to reduce the num-

ber of genes by using gene selection methods before training a

classifier. The simplest way of doing gene filtering is to introduce

a requirement of statistical significance of individual genes based on

measurements such as t-test or the commonly used signal-to-noise

ratio (Golub et al., 1999; Li et al., 2004). An alternative approach to
gene selection is to apply filtering and subset selection algorithms

frommachine learning (Bø and Jonassen, 2002; Guyon et al., 2002).
Gene filtering can improve the accuracy of classification. However

the performance of a gene selection method may depend on the

nature of the classifier, the criterion for selection and the number of

genes selected (Dudoit and Fridlyand, 2003; Li et al., 2004). As
opposed to most other gene selection approaches, the choice of the

number of gene pairs in the k-TSP classifier is systematically deter-

mined by an internal cross-validation loop in the training step.

5.2 Invariance to platforms and pre-processing

The TSP and k-TSP decision rules only use the ordering of the

expression values within profiles; in fact, only a selected number

of pairwise comparisons are utilized. However, other methods rely

on the actual expression values and are therefore sensitive to pre-

processing, such as scaling and normalization, as well as to the

manner in which the data are collected. For example, the decision

rules derived from the DT classifier (Fig. 2c) are based on compar-

ing individual expression values to a fixed threshold. As a result, the

expression values will typically vary according to the particular pre-

processing methods employed in different studies and experiments,

rendering it difficult to apply conventional decision rules, such as

those found in decision trees, to other technologies or studies. In

contrast, the TSP decision rule can be readily applied in clinical

settings across different technology platforms since the outcome

of gene-to-gene comparisons will usually be independent of

pre-processing based on scaling and other forms of normalizing

microarrays.

Table 5. Number of genes used in the classifiers for binary class expression datasets

Method Leukemia CNS DLBCL Colon Prostate1 Prostate2 Prostate3 Lung GCM

TSP 2 2 2 2 2 2 2 2 2

k-TSP 18 10 2 2 2 18 2 10 10

DT 2 2 3 3 4 4 1 3 14

PAM 2296 4 17 15 47 13 701 9 47

Table 6. Number of genes used in the classifiers for multi-class expression datasets

Method Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Leuk3 Cancers GCM

HC-TSP 4 4 4 6 8 8 10 12 20 26

HC-k-TSP 36 20 24 30 24 28 46 64 128 134

DT 2 4 2 3 4 5 5 16 10 18

PAM 44 13 62 285 4822 614 3949 3338 2008 1253
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5.3 Characterization of k-TSPas an ensemblemethod

Various empirical observations and studies have shown that it is

unusual for a single learning algorithm to outperform other learning

methods in all problem domains. Random Forests (Amit and

Geman, 1997; Breiman, 2001), bagging (Breiman, 1996) and boost-

ing (Freund and Schapire, 1996, 1997) represent recent success

stories of ensemble methods, and all have been shown to perform

well in classifying different microarray datasets (Dudoit et al.,
2002; Dettling and Buhlmann, 2003; Long and Vega, 2003; Tan

and Gilbert, 2003).

The k-TSP method can be seen as a straightforward extension of

the TSP classifier to an elementary ensemble approach in which the

‘base classifiers’ are the TSP classifiers for the top-scoring k dis-

joints pairs of genes. Consequently, the k-TSP classifier maintains

interpretability at the same time often improving the accuracy of the

TSP classifier by recruiting additional ‘weaker’ classifiers in the

final decision-making process.

5.4 Interpretation and biological significance of the

TSP-family classifiers

Interpretation of TSP. The TSP classifier can be easily translated

into a set of IF-ELSE decision rules describing the relationship

between the relative expression levels of the informative genes

and the class labels, as illustrated in Figure 2a for the Leukemia

dataset (Golub et al., 1999). The gene pair (SPTAN1, CD33) is

induced by the TSP learning algorithm for distinguishing ALL

(acute lymphoblastic leukemia) from AML (acute myeloid leuke-

mia). The corresponding decision rule is

IF SPTAN1>CD33 THEN ALL; ELSE AML:

In words: if the expression of SPTAN1 is greater than or equal to
CD33, then the sample is classified as ALL, otherwise AML. This
simple decision rule has an estimated accuracy of 93.80% (using

LOOCV). CD33 is one of the genes listed in the ALL vs AML

predictor in Golub et al. (1999), which is based on fifty genes. CD33
encodes a cell surface protein and SPTAN1 is involved in secretion

and it interacts with calmodulin in a calcium-dependent manner.

Early studies (Griffin et al., 1983; Bernstein et al., 1992) have

identified CD33 as a cell surface marker for AML, while several

studies have successfully demonstrated the use of monoclonal

antibodies in discriminating AML from ALL (Golub et al.,
1999), indicating that CD33 may be a therapeutic target for

AML. In another study using gene expression data to distinguish

subtypes of leukemia (Armstrong et al., 2002), SPTAN1 is found

to be over-expressed in ALL compared with AML. These findings

confirm the biological significance of the genes identified by

the TSP.

Fig. 2. Genes that distinguishALL fromAML.Each row corresponds to a gene and each column corresponds to a sample array.Genes labeledwith an asterisk (*)

were identified inGolub et al. (1999). This heatmap is generated by using thematrix2png software (Pavlidis andNoble, 2003). The expression level for each gene

is normalized across the samples such that themean is 0 and the standard deviation (SD) is 1. Geneswith expression levels greater than themean are colored in red

and those below the mean are colored in green. The scale indicates the number of SDs above or below the mean. In (a–c), the discriminative genes and decision

rules in three cases are shown: (a) TSP Classifier, (b) k-TSP Classifier and (c) Decision tree (DT) classifier.
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Interpretation of k-TSP. In Figure 2b, we illustrate the decision

rules derived by the k-TSP classifier using the Leukemia dataset.

The k-TSP classifier that distinguishes ALL from AML contains 9

modular rules, involving 18 genes. Of these 18 genes, 9(CD33,

ZYX, TCF3, CST3, ATP2A3, CCND3, TOP2B, CTSD and DF)

are among the 50 singled out in Golub et al. (1999) for distinguish-
ing ALL from AML. Recall that k is chosen by cross-validation in

contrast to the arbitrary choices for some of the parameters in many

other methods.

These nine genes have known biological correlation with cancer

pathogenesis. Genes CCND3 and ZYX are involved in cell devel-

opment and adhesion, respectively. CD33 is a specific marker for

AML, TCF3 is a known oncogene and TOP2B is a target of the anti-

leukemia drug etoposide (Golub et al., 1999). In addition, we found
that other genes used in the k-TSP classifier, such as HA-1 and

APLP2, have been linked with leukemia (Mutis et al., 1999; Yang,
2004).

Interpretation of HC-k-TSP. Finally, consider the example of

using the k-TSP classifier to distinguish among three subtypes of

leukemia. Armstrong et al. (2002) identified specific genes involved
in chromosomal translocation of the human acute leukemia known

as the mixed-lineage leukemia (MLL). This subtype of leukemia is

aggressive and is associated with poorer prognosis compared with

ALL and AML. Using gene expression profiling techniques, they

have identified discriminative groups of genes that are useful in

classifying these leukemia subtypes. Here, using k-TSP in the con-

text of hierarchical classification (HC-k-TSP), it gives 100% accu-

racy when tested on 15 independent test leukemia samples (4 ALL,

3 MLL and 8 AML), as does SVM (Table 4). Figure 3 illustrates the

decision rules of the HC-k-TSP classifier learned from the leukemia

subtypes dataset (Leukemia2 dataset in Tables 2 and 4).

Investigating the genes appearing in the HC-k-TSP class

reveals that 7 out of the total of 24 were also listed by

Armstrong et al. (2002). DNTT, WFS1 and MYLK have been

identified by Armstrong et al. (2002) as the top 100 under-

expressed genes in MLL as compared with ALL. Similarly, two

different probe sets of LGALS1 were listed in the top 100 over-

expressed genes in MLL compared with ALL, by Armstrong et al.
(2002), and ANPEP is highly expressed in AML and is included in

the list of 45 genes in distinguishing ALL-AML-MLL, by

Armstrong et al. (2002). In addition, MEIS1, a cofactor of HOX,

is found to be over-expressed in MLL in two independent gene

expression studies (Yeoh et al., 2002; Tsutsumi et al., 2003).

Yeoh et al. (2002) suggest that MEIS1 may be directly involved

in MLL-mediated alterations in the growth of the leukemia cells.

P29 is thought to be related to the functional regulation of GCIP, a

protein that is involved in cell cycle progression and the regulation

of transcriptional factors (Chang et al., 2000).

Fig. 3. Hierarchical classification of leukemia subtypes ALL, AML and MLL, using k-TSP. Rows and columns correspond to genes and samples, respectively.

Genes labeled with an asterisk (*) were previously identified as discriminating genes for this problem in Armstrong et al. (2002). The blue panel denotes the

independent test samples. HC-k-TSP consists of sequentially applying two k-TSP decision rules: the first classifier h1 distinguishes ALL from {AML, MLL}

based on three (top-scoring) pairs of genes and the second classifier h2 discriminatesMLL fromAMLusingnine pairs. The heatmaps generated the samewayas in

Fig. 2.
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5.5 Comparing multi-class schemes for the

TSP-family classifiers

In general, our results show that the HC scheme is the best. One

difficulty with the 1-vs-r scheme is the unbalanced sample sizes

when a small class is trained against all others combined, perhaps

resulting in over-sensitivity to the examples in the small class. One

difficulty with the 1-vs-1 scheme is the number of classifiers that

must be trained, which grows quadratically with M, the number of

classes and the corresponding loss of interpretability. The HC

scheme is less sensitive to sample imbalance and maintains better

interpretability since the number of classifiers is linear in M.

6 CONCLUSIONS

In this paper, we have introduced two examples of classification

based on relative expression reversals: a version of the original TSP

classifier, which provides a decision rule based on exactly two genes

and an extension of this classifier to learn a decision rule based on k-
disjoint pairs of genes. All classifiers in this TSP-family are based

entirely on the ordering of the gene expression values within profiles

and hence are largely invariant to pre-processing. We have com-

pared TSP-family classifiers with 5 different machine learning

methods on 19 gene expression datasets involving human cancers,

comprising both binary and multi-class classification problems.

From our results, TSP and k-TSP perform approximately the

same as the PAM and SVM classifiers on these data, but provide

decision rules that usually involve many fewer genes and are far

easier to interpret. Finally, the genes appearing in these TSP deci-

sion rules, which are automatically selected by the TSP learning

algorithms, have clear biological connections to their corresponding

cancer types.
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