
1

Simple Delay-Based Controller Design
Javad Lavaei, Somayeh Sojoudi and Richard M. Murray

Abstract— The objective of this work is to study the benefits
that delay can provide in simplifying the control process of large-
scale systems, motivated by the availability of different types
of delays in man-made and biological systems. We show that
a continuous-time linear time-invariant (LTI) controller can be
approximated by a simple controller that mainly uses delay
blocks instead of integrators. More specifically, three methods
are proposed to approximate a pre-designed stabilizing LTI
controller arbitrarily precisely by a simple delay-based controller
composed of delay blocks, at most two integrators and possibly a
unity feedback. Different problems associated with the developed
approximation procedures, such as finding the optimal number of
delay blocks or studying the robustness of the designed controller
with respect to delay values, are then addressed.

I. INTRODUCTION

The field of control systems has seen a remarkable progress
in different sub-areas such as robust control, adaptive control,
cooperative control, system identification, optimal control, etc
[1], [2], [3], [4], [5]. This has made it possible to engineer
high performance controllers for real-world systems. How-
ever, the complex structure of such controllers is often an
obstruction to their implementation in practice. It is, therefore,
indispensable to impose a simplicity constraint on the structure
of the controller being designed for a large-scale system.
This problem has not yet attracted much attention in the
literature, and there are only a few works aiming at designing
low-complex controllers. For example, Brockett [6] tackles
a similar problem by optimizing a performance index that
accounts for the complexity of the controller.

On the other hand, many theories have been developed for
the analysis and synthesis of time-delay control systems due
to the ubiquity of communication, computation or propagation
delays in both man-made and biological systems [7], [8], [9].
The book [10] exemplifies the presence of delay in biology,
chemistry, economics, mechanics, physics, physiology, and
engineering sciences. Most of the existing controller design
methods for time-delay systems regard delay as a nuisance
and design a controller for the undelayed model of system
in such a way that it is sufficiently robust to the underlying
delay. Nevertheless, it is known that the voluntary introduction
of delay in the control of an undelayed system could benefit
the control process. For instance, delay can be used to create
a limit cycle for nonlinear systems [11], to perform deadbeat
tracking for continuous-time systems [12], or to stabilize
oscillatory systems [13], [14].

Given a continuous-time linear time-invariant (LTI) con-
troller, the primary objective of this paper is to show that
the controller can be approximated arbitrarily precisely by a

The authors are with the Department of Control and Dynamical
Systems, California Institute of Technology, Pasadena, USA (emails:
lavaei@cds.caltech.edu; sojoudi@cds.caltech.edu; murray@cds.caltech.edu).

simple delay-based controller. This controller is composed of
some delay blocks, at most two integrators and possibly a
unity feedback. In other words, every high-order LTI controller
has a simple delay-based implementation, which uses delay
blocks rather than several integrators. Delay blocks, known
also as delay lines, are intended to delay their incoming
signal by a certain time period and exist in many different
fields. For example, transmission lines in electronics and
communications, cavity delay lines or trombone delay lines in
optics, and neurons in neurobiology play the role of delay lines
[15], [16]. Gene regulatory networks are another source of
delay in biology, which can be defined as a set of interactions
between the genes of a living organism [17]. Time delay
appears in genetic networks due to transcription, translation,
and translocation processes [14], [18]. The study of genetic
networks has led to artificial networks such as VLSI nerochips
[19], [20], [21]. For the applications where a delay line
is already available or can be made much easier than an
integrator, it may be preferable to design a controller based
on delay blocks rather than integrators.

The rest of the paper is organized as follows. The problem
is formulated in Section II. An illustrative example is then pro-
vided in Section III to demonstrate how a high-order controller
can be approximated by a few delay blocks. Different delay-
based controller design methods are proposed in Section IV.
Some practical issues associated with the aforementioned
design methods are then discussed in Section V. The results
are further clarified in a numerical example in Section VI.
Finally, some concluding remarks are given in Section VII.

II. PROBLEM FORMULATION

Consider a continuous-time linear time-invariant (LTI) plant
with the state-space representation:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(1)

where x(t) ∈ "n, u(t) ∈ "m and y(t) ∈ "r denote the state,
input and output of the system, respectively. Let P (s) denote
the transfer function of the plant. Assume that a controller
G(s) must be designed for the system in order for its behavior
to satisfy certain specifications. It is preferred in practice that
G(s) has the least possible complexity. The simplest structure
that one can think of for G(s) is likely a static output-feedback
controller G(s) = L ∈ "r×m, i.e.,

u(t) = Ly(t). (2)

However, it is well-known that all LTI systems are not stabi-
lizable via static output feedbacks. A more complex, but still

Submitted, 2010 American Control Conference
http://www.cds.caltech.edu/~murray/papers/lsm10-acc.html

2

simple, type of controller is as follows:

u(t) =
k∑

i=1

αiy(t− τi), (3)

where α1,α2, ..., αk are constant gains and τ1, τ2, ..., τk are
some nonnegative delays. The above controller is motivated
by biological systems, as discussed in the introduction. Note
that this controller can be expressed in the Laplace domain as

k∑

i=1

αie
−τis. (4)

Since the decision problem of whether there exists a stabilizing
controller of the form (2) is NP-hard, it is expected that a
direct design of a controller of the type (3) is cumbersome.
The present work aims to develop an indirect method for
designing a controller in the form of (3). To this end, the
first phase is to contrive a controller G(s) (not necessarily in
the required form) using conventional techniques to satisfy the
design objectives. We write a state-space realization of G(s)
as

ẋc(t) = Acxc(t) + Bcy(t),
u(t) = Ccxc(t) + Dcy(t),

(5)

where xc(t) ∈ "nc represents the state of the controller. The
primary goal of the paper is to approximate the given controller
G(s) by a simple delay-based controller Ĝ(s) of the form (4)
so that the approximation error is less than any prescribed
tolerance. Since it may turn out that a proper approximating
controller Ĝ(s) either does not exist or exploits many delays,
another objective of the paper is to characterize other variants
of the type (4) that still have easy implementation and can
approximate every stabilizing controller.

III. ILLUSTRATIVE EXAMPLE

The objective of this section is to illustrate how a high-
order rational controller G(s) can be approximated by a simple
delay-based controller. To this end, consider the admittedly
artificial controller G(s) = 1− (s+0.9)80

(s+1)80 . This wideband low-
pass filter has the property that it cannot be approximated by
a low-order LTI controller due to its repeated zeros and poles.
To illustrate this fact, consider a 32th order LTI controller G̃(s)
that is obtained from G(s) using the balanced model-reduction
method. The Bode plots of G(s) and G̃(s) are depicted in
Figure 3, which substantiate that a good LTI approximation
of G(s) needs more than 32 integrators.

Alternatively, let g(t) be the Laplace inverse of the con-
troller G(s) and approximate the signal g(t) by a piecewise
linear function ĝ(t). A candidate for the approximating func-
tion ĝ(t) is shown in Figure 2. This piecewise linear function
has 10 knots given by the vector τ as follows:

τ =
[

0 0.1 0.2 0.3 0.4 0.5 0.81 1.21
1.96 2.72

]
.

(6)

G(s) G̃(s)

Fig. 1. The Bode plots of the controllers G(s) = 1 − (s+0.9)80

(s+1)80
(dashed)

and G̃(s) (solid).

The values of ĝ(t) at the breakpoints are

ĝ(τ1) = 7.901, ĝ(τ2) = 4.631, ĝ(τ3) = 2.505,

ĝ(τ4) = 1.121, ĝ(τ5) = 0.312, ĝ(τ6) = −0.264,

ĝ(τ7) = −0.551, ĝ(τ8) = −0.14, ĝ(τ9) = 0.1,

ĝ(τ10) = 0.0163.

(7)

Define Ĝ(s) to be the Laplace transform of ĝ(t), which can
be obtained as

Ĝ(s) :=
9∑

i=1

(
wi

s2
+

ĝ(τi)
s

)
e−τ is

+
9∑

i=1

(
−wi

s2
− ĝ(τi+1)

s

)
e−τ i+1s,

(8)

where

wi =
ĝ(τ i+1)− ĝ(τ i)

τ i+1 − τ i
, i = 1, 2, ..., 9, (9)

and τ i denotes the ith element of τ for every i ∈ {1, 2, ..., 10}.
The implementation of Ĝ(s) requires 2 integrators and 9
delay blocks. The Bode plots of G(s) and Ĝ(s) are compared
in Figure 2 to show how well Ĝ(s) approximates G(s).
This example elucidates that a high-order controller G(s) =
1 − (s+0.9)80

(s+1)80 , whose satisfactory LTI approximation needs
at least 33 integrators, can be approximated very well by 2
integrators and 9 delay blocks. Note that the infinity norm of
the approximation error G(s) − Ĝ(s) is equal to 0.022. The
present paper aims to develop a concrete theory for the general
case.

IV. DELAY-BASED CONTROLLER DESIGN

In this section, assume that G(s) is a single-input single-
output (SISO) controller that is (asymptotically) stable. The
results will be extended to the general case in the next section.
Moreover, with no loss of generality we assume that G(s) is
strictly proper, because the direct term Dc in the controller
corresponds to a static feedback that can be added to the
delay-based controller directly. Three different methods will
be proposed in the sequel for designing Ĝ(s).

3

g(t) ĝ(t)

(a)

g(t) ĝ(t)

(b)

Fig. 2. (a): A piecewise linear approximation of the inverse Laplace of G(s) = 1− (s+0.9)80

(s+1)80
in the interval [0, 0.5]; (b): a piecewise linear approximation

of the inverse Laplace of G(s) = 1− (s+0.9)80

(s+1)80
in the interval [0.5, 2.5];

G(s)

Ĝ(s)

G(s)

Ĝ(s)

Fig. 3. The Bode plots of the controllers G(s) = 1− (s+0.9)80

(s+1)80
and Ĝ(s).

A. Method 1

Let Ĝ(s) be a function in the Laplace domain which is
analytic on the open left-half s-plane. It follows from the
maximum modulus theorem and the stability of the controller
G(s) that

max
s: Re{s}≥0

|G(s)− Ĝ(s)| = max
ω∈%

|G(jω)− Ĝ(jω)|, (10)

where the operator | · | returns the absolute value of a
complex number. Therefore, the maximum difference between
the controllers G(s) and Ĝ(s) can be evaluated by only the
restriction to the jω axis. On the other hand, the definition of
the Fourier transform yields

G(jω) =
∫ ∞

0
g(t)e−jωtdt. (11)

Since each term e−jωt has the form of a delay component, the
above integral implies that G(s) can be regarded as a controller
with static distributed delays. In contrast, the controller Ĝ(s)
to be designed should be in the form of static lumped delays.
Hence, the question of interest would be how to approximate
the distributed delays with lumped delays. To answer this
question, one can take advantage of any integral approximation
method, such as the midpoint method. More precisely, consider
some nonnegative numbers τ1 < τ2 < ... < τk and define
Ĝ(s) as

Ĝ(s) =
k−1∑

i=1

g(τi)(τi+1 − τi)e−τis (12)

or

Ĝ(s) =
k−1∑

i=1

g(τ̄i)(τi+1 − τi)e−τ̄is, (13)

where
τ̄i =

τi + τi+1

2
, i = 1, 2, ..., k − 1. (14)

The main focus of this subsection will be on the approximating
controller (13) as the other one can be analyzed similarly.

Theorem 1: The approximation error G(jω) − Ĝ(jω) sat-
isfies the following inequality for every ω ∈ ":

|G(jω)− Ĝ(jω)| ≤
√

2
∫ τ1

0
|g(t)|dt +

√
2
∫ ∞

τk

|g(t)|dt

+
√

2
k−1∑

i=1

(τi+1 − τi)3

24
max

τ∈[τi,τi+1]

∣∣∣∣∣
∂2

(
g(τ) cos(ωτ)

)

∂2τ

∣∣∣∣∣ .

(15)
Proof: The proof is a direct consequence of the midpoint error
formula. The details are omitted for brevity (see the proof of
Theorem 2 for a similar argument). !

Notice that the right side of the inequality given in Theo-
rem 1 can become large for sufficiently large values of ω due
to the existence of the second derivative of the term cos(ωτ).
This fact can also be justified from another point of view:
if τ1, τ2, .., τk are integer multiples of some real number, then
Ĝ(jω) will be a periodic number, otherwise it would be almost
periodic with a potentially large period. In other words, Ĝ(jω)
cannot approximate G(jω) for high frequencies. However, in
the case when the plant for which G(s) is designed acts as a
low-pass filter with an appropriate stop frequency, it is not
critical that G(jω) and Ĝ(jω) are quite different for high
frequencies. On the other hand, it can be inferred from the
inequality (15) that the numbers τ1, τ2, ..., τk (in addition to k)
can be chosen in such a way that Ĝ(jω) approximates G(jω)
arbitrarily precisely over any desired range of frequencies.
This point will be further discussed in the next section

B. Method 2
Since Ĝ(s) proposed by Method 1 has an undesirable

behavior in high frequencies, a more sophisticated approach
can be used to resolve this issue. The basic idea behind the
new method is to approximate the impulse response of the

4

g(t)
ĝ(t)

Fig. 4. An approximation of the inverse Laplace of the controller G(s) =
1

(s+1)20
by a step-like function (needed for Method 2).

controller G(s) by a step-like function. Figure 4 illustrates
this idea for the particular controller G(s) = 1

(s+1)20 . Given
a monotonically increasing sequence of nonnegative numbers
τ1, τ2, ..., τk, the function g(t) can be approximated by a step-
like function such as

ĝ(t) =
{

g(τi) t ∈ [τi, τi+1], i = 1, 2, ..., k − 1
0 t < τ1 or t > τk

(16)
or

ĝ(t) =
{

g (τ̄i) t ∈ [τi, τi+1], i = 1, 2, ..., k − 1
0 t < τ1 or t > τk

(17)
where τ̄i = τi+τi+1

2 . This subsection will focus on the later
ĝ(t) as the former one can be analyzed similarly. The transfer
function corresponding to the function ĝ(t) given in (17) is as
follows:

Ĝ(s) =
1
s

k∑

i=1

αie
−τis, (18)

where

α1 := g(τ̄1),
αi := g(τ̄i)− g(τ̄i−1), i = 2, 3..., k − 1,

αk := −g(τ̄k−1).
(19)

Note that Ĝ(s) can be implemented using k static delay terms
and an integrator.

Theorem 2: The approximation error G(jω) − Ĝ(jω) sat-
isfies the following inequality for every ω ∈ ":

|G(jω)− Ĝ(jω)| ≤
k−1∑

i=1

max
τ∈[τi,τi+1]

|g′′(τ)|
√

2(τi+1 − τi)3

24

+
√

2
k−1∑

i=1

|g′(τ̄i)|max
{
|Re{H(i,ω)}| , |Im{H(i, ω)}|

}

+
√

2
∫ τ1

0
|g(t)|dt +

√
2

∫ ∞

τk

|g(t)|dt,

(20)
where

H(i,ω) :=
∫ τi+1

τi

(t− τ̄i)e−jωtdt, i = 1, 2, ..., k − 1, ω ∈ ".

(21)
Proof: One can use the Taylor series with the Lagrange form
of the remainder to obtain that for every i ∈ {1, 2, ..., k − 1}

and t ∈ [τi, τi+1], there exists a function γ(t) ∈ [τi, τi+1] such
that

g(t) = g(τ̄i) + g′(τ̄i)(t− τ̄i) +
g′′(γ(t))

2
(t− τ̄i)2. (22)

Therefore

|Re{G(jω)− Ĝ(jω)}| =
∣∣∣∣
∫ ∞

0
(g(t)− ĝ(t)) cos(ωt)dt

∣∣∣∣

≤
k−1∑

i=1

∫ τi+1

τi

∣∣∣∣
1
2
g′′(γ(t))(t− τ̄i)2 cos(ωt)dt

∣∣∣∣

+
k−1∑

i=1

∣∣∣∣
∫ τi+1

τi

g′(τ̄i)(t− τ̄i) cos(ωt)dt

∣∣∣∣

+
∣∣∣∣
∫ τ1

0
g(t) cos(ωt)dt

∣∣∣∣ +
∣∣∣∣
∫ ∞

τk

g(t) cos(ωt)dt

∣∣∣∣

≤
k−1∑

i=1

max
τ∈[τi,τi+1]

|g′′(τ)| (τi+1 − τi)3

24
+

∫ τ1

0
|g(t)|dt

+
k−1∑

i=1

|g′(τ̄i)| |Re{H(i, ω)}| +
∫ ∞

τk

|g(t)|dt.

(23)
An inequality similar to (23) can be written for |Im{G(jω)−
Ĝ(jω)}| which together with (23) proves this theorem. !

It is noteworthy that H(i,ω) introduced in the above
theorem has the property that it is equal to zero at ω = 0
and also tends to zero as ω goes to infinity. The inequality
provided in Theorem 2 implies that one can design the delays
τ1, τ2, ..., τ2 (besides k) so that the approximation error is less
than any given number at every frequency (note that since
G(s) is strictly proper, g(t) attenuates to zero as t increases).

C. Method 3
Although Method 2 eliminates the fluctuation effect created

by Method 1 at high frequencies, we propose a third method
that normally needs fewer delays than Method 2 at the cost
of deploying one more integrator. Let the function g(t) be
approximated by a piecewise linear function ĝ(t) with the
breakpoints τ1, τ2, ..., τk (listed in an ascending order), i.e.,

ĝ(t) =

{
g(τi+1)−g(τi)

τi+1−τi
(t− τi) + g(τi) t ∈ [τi, τi+1]
0 t < τ1 or t > τk

(24)
for all i ∈ {1, 2..., k − 1}. As before, the function Ĝ(t) can
be obtained as follows:

Ĝ(s) =
k∑

i=1

βi(s)e−τis, (25)

where

β1(s) :=
w1

s2
+

g(τ1)
s

,

βi(s) :=
wi

s2
− wi−1

s2
, i = 2, ..., k − 1,

βk(s) := −wk−1

s2
− g(τk)

s
,

(26)

and

wi :=
g(τi+1)− g(τi)

τi+1 − τi
, i = 1, 2, ..., k − 1. (27)

5

Note that the approximating controller Ĝ(s) introduced above
can be implemented using k static delay terms and two
integrators. It is desired to measure the estimation error
‖G(jω)− Ĝ(jω)‖∞.

Theorem 3: The approximation error ‖G(jω) − Ĝ(jω)‖∞
satisfies the following inequality:

‖G(s)− Ĝ(s)‖∞ ≤
√

2
∫ τ1

0
|g(t)|dt +

√
2

∫ ∞

τk

|g(t)|dt

+
k−1∑

i=1

max
τ∈[τi,τi+1]

|g′′(τ)|
√

2(τi+1 − τi)3

12
.

(28)
Proof: Given an index i ∈ {1, 2, ..., k − 1}. it follows from

the polynomial interpolation formula that

g(t)− ĝ(t) =
1
2
g′′(η(t))(t− τi+1)(t− τi), t ∈ [τi, τi+1],

(29)
where η(t) is some time instant in the interval [τi, τi+1].
Therefore, one can write:

|Re{G(jω)− Ĝ(jω)}| =
∣∣∣∣
∫ ∞

0
(g(t)− ĝ(t)) cos(ωt)dt

∣∣∣∣

≤
k−1∑

i=1

∫ τi+1

τi

∣∣∣∣
1
2
g′′(η(t))(t− τi+1)(t− τi) cos(ωt)dt

∣∣∣∣

+
∣∣∣∣
∫ τ1

0
g(t) cos(ωt)dt

∣∣∣∣ +
∣∣∣∣
∫ ∞

τk

g(t) cos(ωt)dt

∣∣∣∣

≤ 1
2

k−1∑

i=1

max
τ∈[τi,τi+1]

|g′′(τ)|
∫ τi+1

τi

(τi+1 − t)(t− τi)dt

+
∫ τ1

0
|g(t)|dt +

∫ ∞

τk

|g(t)|dt

=
k−1∑

i=1

max
τ∈[τi,τi+1]

|g′′(τ)| (τi+1 − τi)3

12

+
∫ τ1

0
|g(t)|dt +

∫ ∞

τk

|g(t)|dt.

(30)
A similar inequality can be obtained for |Im{G(jω)−Ĝ(jω)}|
whose combination with the above relation completes the
proof. !

It follows from the inequality provided in Theorem 3 that
the delays τ1, τ2, ..., τk (together with k itself) can be contrived
in such a way that the approximation error in infinity norm
does not exceed a prescribed tolerance.

Remark: This subsection approximates the time-domain
signal g(t) by a piecewise linear function, but assumes that
the knots of the approximating signal lie on the curve of the
function g(t). This assumption has been made for simplicity
and it is not required in general to choose the corners of the
approximating function ĝ(t) on the signal g(t). This idea is
illustrated in Figure 2b. The theory developed above can be
easily extended to the general case.

V. PRACTICAL ISSUES

The goal of this section is to address some practical issues
associated with the aforementioned delay-based controller
designs.

A. Optimal Choice of Delays

Three methods have been proposed in the preceding section
for approximating a given high-order controller by a simple
delay-based controller. In terms of the given delays, upper
bounds on the infinity norm of the error were proposed
for each method. However, a fundamental question in the
first place would be how to find an optimal set of delays
{τ1, τ2, ..., τk}. The provided upper bounds can definitely help
pick appropriate delays. Alternatively, one can take advantage
of the existing methods in the literature for this purpose.
More specifically, notice that Methods 2 and 3 rely on the
approximation of a function g(t) by a step-like or a piece-
wise linear function ĝ(t). In terms of a given function norm
‖·‖ (namely 1 or ∞ norm), there are systematic methods in the
literature for finding a function ĝ(t) with the minimum number
of breakpoints such that the error ‖g(t)− ĝ(t)‖ is less than a
prescribed positive tolerance ε. The most straightforward way
for this purpose is to discretize the signal g(t) in order to
make the underlying problem finite dimensional. One of these
methods will be outlined in the sequel for piecewise linear
approximation with respect to the ∞-norm. Let T denote a
positive time such that |g(t)| ≤ ε for all t ≥ T . Discretize the
signal g(t) over the interval [0, T] with a sampling time d to
obtain a discretized signal gd(t). The goal is to find a discrete
piecewise linear signal ĝd(t) such that ‖gd(t)− ĝd(t)‖∞ ≤ ε.
Four problems can be defined as follows for a given positive
real ε and a natural number k:

• P1: Find a piecewise linear function ĝd(t) with the
minimum number of breakpoints (corners) such that
‖gd(t)− ĝd(t)‖∞ ≤ ε.

• P2: Find a piecewise linear function ĝd(t) with the
minimum number of breakpoints such that ĝd(t) overlaps
on gd(t) at its corners (when regarded as a graph) and
that ‖gd(t)− ĝd(t)‖∞ ≤ ε.

• P3: Find a piecewise linear function ĝ(t) with at most k
breakpoints such that ‖gd(t)− ĝd(t)‖∞ is minimum.

• P4: Find a piecewise linear function ĝ(t) with at most
k breakpoints such that ĝd(t) overlaps on gd(t) at its
corners and that ‖gd(t)− ĝd(t)‖∞ is minimum.

Note that the delays being found will all be multiples of
the sampling time d. Let N denote the number of discrete
points of the function gd(t). It is shown in [22] that there
are deterministic algorithms for solving P1, P2, P3 and
P4 whose complexities are O(N), O(N2), O(N2 log N) and
O(N2 log N), respectively. This implies that P1 seems to
be the easiest problem to solve, which is indeed the most
desirable one for the purpose of the present paper. However,
since the algorithm for solving P1 is somewhat involved, the
algorithm for P2 will be briefly explained next which provides
insight into how the algorithms for the other problems P1,
P3 and P4 work. Represent the points of the discrete signal
gd(t) with p1, p2, ..., pN . Construct a directed graph G with N
vertices as follows. For every i, j ∈ {1, 2, ..., N} and i < j,
connect vertex i to vertex j via a directed edge if the infinity
norm between the line connecting pi to pj and all points
pi, pi+1, ..., pj is less than or equal to ε. This graph can be
built in O(N2). Now, every path in this graph from vertex 1 to

6

vertex N is a candidate for ĝ(t). An optimal ĝ(t) corresponds
to the shortest path from vertex 1 to vertex N , which can be
found in O(N2) due to the graph being acyclic.

B. Strong Stabilization
The current paper assumes that a stable controller G(s) is

available for a plant P (s), which needs to be approximated
by a simple delay-based controller. Nonetheless, such a stable
controller may not exist in general. The problem of designing
a stable controller for a given system is referred to as strong
stabilization and has a long history in control. The main
motivation for the strong stabilization problem is that a stable
controller for a system provides more robustness with respect
to specific faults in the control system. It is well-known that
P (s) is strongly stabilizable if and only if the system has
an even number of unstable real poles between every two
consecutive unstable real blocking zeros of P (s) (including
the zeros at infinity) [23]. Note that a complex number z is
said to be a blocking zero of the system if P (z) is equal to
zero. There are many methods in the literature for designing
a stable controller for a strongly stabilizable system. These
methods normally deign a high-order stable controller, say
with an order as double as the order of the system [23], [24],
[25]. Hence, the current work can be used to simplify the
implementation of such a high-order stable controller.

C. Unstable Controllers
Assume that a given controller G(s) is unstable. The next

question would be how to implement it in practice using
delay terms with the aim of simplifying the control structure.
The easiest approach is to decompose G(s) as the cascade
of a stable and unstable sub-controllers and then simplify
only the stable part. This technique is inefficient in the case
when most of the poles of the controller G(s) are unstable.
Thus, a more advanced technique will be introduced here.
Since G(s) stabilizes the plant P (s), the controller itself must
be stabilizable. As a result, the pair (Ac, Bc) is stabilizable
and, therefore, there exists a matrix gain F ∈ "r×nc for
which Ac − BcF is Hurwitz. Define ỹ(t) := Fxc(t) and
v(t) := y(t) + ỹ(t). The controller G(s) is equivalent to the
feedback controller given in Figure 5 whose backward path is
a unity feedback and whose forward path is a sub-controller
G̃(s) with the control law

ẋc(t) = (Ac −BcF)xc(t) + Bcv(t),
u(t) = Ccxc(t),
ỹ(t) = Fxc(t).

(31)

Notice that since G̃(s) is stable, it can be approximated
by a simple delay-based controller ˆ̃G(s). As a result, every
stabilizing unstable controller G(s) can be approximated by
a feedback controller with the unity feedback whose forward
path is a delay-based controller.

D. Distributed Control Systems
Assume that G(s) is a matrix corresponding to a multi-input

multi-output (MIMO) system P (s). To approximate G(s) by

(a)

(b)

Fig. 5. Figures (a) and (b) show an unstable controller and its equivalent
feedback representation, respectively, where the forward path controller G̃(s)
is stable.

a simple delay-based controller, two approaches can be taken
as follows:

• Each of Methods 1, 2 and 3 stated earlier is valid for
the MIMO case and the only difference is that g(t)
should be regarded as a matrix, as opposed to a scalar.
The disadvantage of this method is that all SISO entries
(transfer functions) in G(s) will be approximated by the
same set of delays, which may give rise to requiring many
delays for a good approximation in case of a large matrix
G(s).

• Each SISO element of G(s) is approximated by a SISO
delay-based controller separately. The overall set of de-
lays will be the union of the sets of delays obtained for
different elements of G(s). The drawback of this method
is that this union may lead to a large set.

It can be deduced from the above discussion that in the case
when G(s) is a large matrix, a delay-based controller may
need several delays. Nevertheless, an important application
of this work is in the distributed/decentralized control of an
interconnected system. For such an application, G(s) can
be partitioned into a number of blocks where each block
represents the local controller of a control channel/agent. Then,
disparate blocks of G(s) can have their own delay sets as they
correspond to separate control agents. As a result, each agent
need not use many (unnecessary) delays.

E. Stability Issue
Recall that the approximating controller Ĝ(s) obtained

using Method 2 or Method 3 includes one or two integrators.
Hence, it may be speculated that Ĝ(s) has a pole at the
origin, whereas G(s) has no pole in the closed right-half
complex plane. However, it can be shown that Ĝ(0) is finite
in both cases, as a pole-zero cancellation occurs. Since this
cancellation cannot take place perfectly in practice, an extra
pole at zero will be introduced using Methods 2 and 3.
Although this new pole may not affect the stability of the
closed-loop system, in the case when a stable approximating
controller is sought, one can resolve the issue easily. To present
the main idea, consider Method 2 which approximates g(t) by
a step-like function, namely

ĝ(t) =
{

g(τi) t ∈ [τi, τi+1], i = 1, 2, ..., k − 1
0 t < τ1 or t > τk

(32)

Let ĝ(t) be modified as below:

ĝ(t) =
{

g(τi)e−α(t−τi) t ∈ [τi, τi+1], i = 1, 2, ..., k − 1
0 t < τ1 or t > τk

(33)

7

where α is a (small) positive number. As before, define Ĝ(s)
to be the Laplace transform of ĝ(t). It is easy to show that
Ĝ(s) can be implemented using k delay terms along with the
stable low-pass filter 1

s+α as opposed to an integrator.

F. Stability and Robustness
It was shown in the preceding section how to approximate

a nominal controller G(s) by a delay-based controller with
possibly a unity feedback (in the case of an unstable G(s)).
The resultant controller may not stabilize the plant P (s)
due to the approximation error not being sufficiently small.
Thus, a stability analysis is required to guarantee the closed-
loop stability of the system. To this end, consider a general
controller G(s) (which could be stable or unstable) which is
approximated by a unity feedback, as depicted in Figure 5,
with a delay-based sub-controller ˆ̃G(s) in the forward path.
Note that the case of a stable controller G(s) is a special
case of this setting by letting F be zero. This subsection
develops some results for the SISO case, which can be easily
generalized to the MIMO case. Notice that ˆ̃G(s) is an approx-
imation of the sub-controller G̃(s), and that the error between
these two controllers can be best modeled by both additive
and multiplicative terms. Therefore, let ∆1(jω) ∈ C2×2 and
∆2(jω) ∈ C2×1 be matrix functions such that

ˆ̃G(jω) = (I2 + ∆1(jω))G̃(jω) + ∆2(jω), ∀ω ∈ " (34)

(where C denotes the set of complex numbers). It can be
shown that the closed-loop control system (with the approxi-
mating controller designed) is stable if

∥∥∥∥∥
P̄ G̃

1 + P̄ G̃

∥∥∥∥∥
∞

|∆1(jω)| +
∥∥∥∥

P̄

1 + P̄ G̃

∥∥∥∥
∞

|∆2(jω)| < 1 (35)

for all ω ∈ ", where P̄ (s) =
[

P (s) 1
]
. The above in-

equality provides a means to check the stability of the closed-
loop system for a designed Ĝ(s), or even to design Ĝ(s) by
first finding the permissible uncertainties ∆1(jω),∆2(jω) and
then obtaining delays so that the above inequality is satisfied.

A question arises: how sensitive is the designed controller
to the delay values? This question is of a great importance due
to the fact that it may not be possible to have a perfect delay
block in practice. To investigate this issue, consider Method 1.
Let the delay values τ1 + δτ1, τ2 + δτ2, ..., τk + δτk be used
instead of the nominal values τ1, τ2, ..., τk. This means that
the approximating controller

Ĝ(s) =
k−1∑

i=1

g(τi)(τi+1 − τi)e−τis (36)

will be perturbed as follows:

Ĝ(s) + ∆Ĝ(s) =
k−1∑

i=1

g(τi)(τi+1 − τi)e−(τi+δτi)s. (37)

It is easy to observe that ∆Ĝ(jω) is negligible for small
values of ω; in particular, ∆Ĝ(0) = 0. However, ∆Ĝ(jω)
may become large for a high frequency ω. In other words, a
perturbation in the delays would affect the transfer function

g(t)

ĝ(t)

(a)

g(t)

ĝ(t)

(b)

Fig. 6. (a) The time-domain signals g(t) and ĝ(t) in the interval [0, 3]; (b)
the time-domain signals g(t) and ĝ(t) in the interval [3, 20].

G(s) Ĝ(s)

G(s) Ĝ(s)

Fig. 7. The Bode plots of the controllers G(s) and Ĝ(s) for the example
given in Section VI.

of the controller only at high frequencies, which is not a big
issue for Methods 2 or 3 due to the presence of at least one
integrator (that acts as a low-pass filter).

VI. NUMERICAL EXAMPLE

Consider the 8th order unstable plant P (s) = P1(s)
P2(s)

, where

P1(s) :=0.0064s5 + 0.0024s4 + 0.071s3

+ s2 + 0.1045s + 1,

P2(s) :=s8 + 0.161s7 + 6s6 + 0.582s5 + 9.984s4

+ 0.407s3 + 3.9822s2.

(38)

This system has been a benchmark example for the strong sta-
bilization problem (see [24], [25] and the references therein).
One can design an LQG controller for this system with the
weighting matrices Q = I and R = 1 (the noise covariance is
assumed to be I) to obtain a stable controller G(s) = G1(s)

G2(s)
,

where
G1(s) :=15.76s7 − 3.896s6 + 60.68s5 − 9.68s4

+ 34.99s3 − 2.064s2 − 12.39s + 0.2986,

G2(s) :=s8 + 8.684s7 + 41.18s6 + 115.3s5 + 208.8s4

+ 250.9s3 + 197.9s2 + 111.1s + 26.64.
(39)

We use a variant of Method 3 to approximate G(s) by a
simple delay-based controller consisting of a number of delay
blocks and at most two integrators (see the remark given after
Theorem 3). The impulse response of the controller G(s),
plotted in Figure 6, is an oscillatory signal. This makes it
impossible to find a good piecewise-linear approximation of
this function with only a few breakpoints, because there are

8

several dominant peaks in the signal g(t) that should be all
chosen as breakpoints. Based on the peaks of the signal g(t),
a vector of breakpoints τ was obtained as

τ =
[

0 0.2 0.375 1.03 2 3.15 4.7 6.7
10.1 13.55 17.11 20

]
.

(40)

The method proposed in Subsection V.A can be used to find
the best piecewise linear approximation of g(t) with its knots
given by the vector τ . Note that the corners of the obtained
approximating function ĝ(t) do not necessarily lie on the
function g(t). The corresponding signal ĝ(t) is plotted in
Figure 6. The Bode plots of the controllers G(s) and Ĝ(s)
are compared in Figure 7, which illustrate that Ĝ(s) is a good
approximation of G(s). Let G̃(s) denote a 6th order reduced
model of G(s) obtained using the balanced model-reduction
technique. To compare Ĝ(s) with G̃(s), notice that:

max
ω∈[0,1]

|Ĝ(jω)−G(jω)| * 0.03,

max
ω∈[0,1]

|G̃(jω)−G(jω)| * 0.33.
(41)

This implies that an LTI approximation of G(s) that performs
as well as Ĝ(s) requires at least 7 integrators, whereas Ĝ(s)
can be implemented using 2 integrators and 11 delay blocks.

VII. CONCLUSIONS

Motivated by biological systems, this paper studies the pos-
sibility of designing controllers whose implementation mainly
requires delay blocks, as opposed to integrators. This problem
is particularly important for large-scale systems whose con-
trol using conventional techniques needs many integrators. It
is shown that every stabilizing continuous-time linear time-
invariant controller can be approximated arbitrarily precisely
by a simple delay-based controller comprising delay blocks
and at most two integrators. Finding the optimal number of
delay blocks, finding the optimal values of the delays, and
studying the robustness of the designed controller are also
discussed in the present work. Studying what class of LTI
controllers can be approximated by delay-based controllers
with a small number of delays remains a subject of future
research.

ACKNOWLEDGMENT
This research was supported by ONR MURI N00014-08-

1-0747 “Scalable, Data-driven, and Provably-correct Analysis
of Networks,” ARO MURI W911NF-08-1-0233 “Tools for the
Analysis and Design of Complex Multi-Scale Networks,” and
the Army’s W911NF-09-D-0001 Institute for Collaborative
Biotechnology.

REFERENCES

[1] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control, Prentice-
Hall, 1996.

[2] G. E. Dullerud and F. G. Paganini, A course in robust control theory:
A convex Approach, Springer, 2000.

[3] P. Ioannou, B. Fidan, Adaptive control tutorial, SIAM, Advances in
Design and control, 2006.

[4] R. Murphey and P. M. Pardalos, Cooperative control and optimization,
Springer, 2002.

[5] T. Katayama, Subspace methods for system identification, Springer,
2005.

[6] R. W. Brockett, “Reduced complexity control systems, in Plenary
Papers, Milestone Reports, & Slected Survey Papers, Myung Jin Chung
and Pradeep Misra, Eds., 17th IFAC World Congress, 2008.

[7] K. Gu, V. Kharitonov, and J. Chen, Stability of time-delay systems,
Birkhäuser, 2003.

[8] S. I. Niculescu and K. Gu, Advances in time-delay systems, Springer,
2004.

[9] Q. C. Zhong, Robust control of time-delay systems, Springer, 2006.
[10] S. I. Niculescu, “Delay effects on stability,” In Lecture notes in control

and information sciences, Berlin: Springer, Vol. 269, 2001.
[11] D. Bratsun, D. Volfson, L. S. Tsimring, and J. Hasty, “Delay-induced

stochastic oscillations in gene regulation,” Proceedings of the National
Academy of Sciences, vol. 102, no. 41, pp. 14593-14598, 2005.

[12] K. Watanabe, E. Nobuyama, and A. Kojima, “Recent advances in control
of time delay systems: a tutorial review ,” in Proceedings of the 35th
IEEE Conference on Decision and Control, pp. 2083-2089, 1996.

[13] C. Abdallah, P. Dorato, J. Benites-Read, and R. Byrne, “Delayed positive
feedback can stabilize oscillatory systems ,” in Proceedings of 1993
American Control Conference, pp. 3106-3107, 1993.

[14] G. Orosz, J. Moehlis, and R. M. Murray, “Controlling biological
networks by time-delayed signals,” Philosophical Transaction of the
Royal Society A, 2009, submitted.

[15] R. A. Mao, K. R. Keller, and R. W. Ahrons,“Integrated MOS analog
delay line,” IEEE Journal of Solid-State Circuits, vol. 4, no. 4, pp. 196-
201, 1969.

[16] A. Chamarti and K. Varahramyan,“Transmission delay line based ID
generation circuit for RFID applications,” IEEE Microwave and Wireless
Components Letters, vol. 16, no. 11, pp. 588-590, 2006.

[17] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,
Molecular biology of the cell, Fourth edition, Garland Science, 2002.

[18] F. Rena and J. Cao, “Asymptotic and robust stability of genetic regula-
tory networks with time-varying delays,” Neurocomputing, vol. 71, no.
4-6, pp. 834-842, 2008.

[19] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, no. 20, pp. 335-338, 2000.

[20] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic
toggle switch in escherichia coli,” Nature, vol. 403, no. 20, pp. 339-342,
2000.

[21] A. Moini, K. Eshraghian, and A. Bouzerdoum, “The impact of VLSI
technologies on neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Neural Networks, pp. 158-163, 1995.

[22] S. L. Hakimi and E. F. Schmeichel, “Fitting polygonal functions to a set
of points in the plane,” Graphical Models and Image Processing, vol.
53, no. 2, pp. 132-136 , 1991.

[23] Y. S. Chou, T. Z. Wu and, J. L. Leu, “On strong stabilization and
H∞ strong stabilization problems,” in Proceedings of the 42nd IEEE
Conference on Decision and Control, pp. 5155-5160, 2003.

[24] D. U. Campos-Delgado and K. Zhou, “H∞ strong stabilization,” IEEE
Transactions on Automatic Control, vol. 46, no. 12, pp. 1968-1972 ,
2001.

[25] S. Gumussoy and H. Ozbay, “Remarks on strong stabilization and stable
H∞ controller design,” IEEE Transactions on Automatic Control, vol.
50, no. 12, pp. 2083-2087 , 2005.

