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General Fierz-type identities are examined and their well-known connection with completeness
relations in matrix vector spaces is shown. In particular, I derive the chiral Fierz identities in a
simple and systematic way by using a chiral basis for the complex 4�4 matrices. Other
completeness relations for the fundamental representations of SU�N� algebras can be extracted using
the same reasoning. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

The Fierz identities1 are frequently used in particle physics
to analyze four-fermion operators2 such as current-current
operators. These reordering identities are used to write a
product of two Dirac bilinears3 as a linear combination of
other products of bilinears with the four constituent Dirac
spinors in a different order. Because Fierz identities relate
Dirac bilinears, which are objects with well defined transfor-
mation properties under the Lorentz group, and Dirac gamma
matrices form a representation of the Lorentz group genera-
tors, it is not surprising that Fierz identities imply the exis-
tence of a basis of four-vectors formed by Dirac bilinears and
guarantee its orthogonality and completeness properties.4

The converse is also possible, that is, recovering the spinor
from that basis, which reveals the equivalence between
spinor and tensorial representation of various quantities.

Fierz identities are only a particular set of matrix identi-
ties, valid for the Dirac bilinears which span the space of
4�4 complex matrices. General Fierz-type identities can be
found for any N�N real or complex square matrices. The
primary aim of this article is to show that any Fierz-type
relation can be deduced using just a few ingredients such as
the notion of a basis in a vector space and its properties of
orthogonality and completeness. The relevant vector space in
this case is the vector space of square matrices. For such a
vector space, a basis and the orthogonality property between
its elements can be defined through an inner product. These
ideas are explained in detail in Sec. II for general square
matrix vector spaces. Some particularly useful examples in-
volving Pauli matrices �SU�2� algebra�, Gell-Mann matrices
�SU�3� algebra�, and fundamental representations of general
SU�N� algebras are given.

As a particular nontrivial application of these ideas, we
will find a straightforward way to deduce the chiral Fierz
identities, that is, Fierz identities involving bilinears contain-
ing left/right chiral projectors. One way to obtain the chiral
Fierz identities is to use the original Fierz identities; one can
find very general Fierz identities for usual bilinear in Ref. 4.
However, this procedure may become quite lengthy because
it requires expanding the left/right projected bilinears in
terms of the usual bilinears, performing Fierz reorderings,
and then rewriting them as projected bilinears. Such an ap-
proach was adopted in Ref. 5, but will not be pursued here.
Instead, the chiral Fierz identities will be deduced by red-
eriving the Fierz identities using appropriate left/right pro-
jected bilinears as a basis �Sec. IV�. The simple form of
certain chiral Fierz identities is already an indication that a

much simpler procedure should exist to derive them.
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To exemplify the practical importance of chiral Fierz iden-
tities, I will show a situation where the reordering permitted
by chiral Fierz identities can help us to better understand and
more simply describe a physical system. The obvious area
where the chiral Fierz identities can be important is the phys-
ics involving the weak interaction, which is a mainly left-
handed interaction. The particular physical system concerns
the neutrinos propagating through ordinary matter. Because
ordinary matter contains electrons but is absent of muons and
tauons, only the electron neutrinos interact with the electrons
in matter through the charged-current effective interaction
Lagrangian6

4GF

�2
�̄e�x���L��e

�x��̄�e
�x���L�e�x� , �1�

where �e ,��e
are the fields for the electron and the electron

neutrino, respectively, and L= �1−�5� /2 is the projector for
left chirality. Using a chiral Fierz identity we can rewrite
Eq. �1� in the form

4GF

�2
�̄�e

�x���L��e
�x��̄e�x���L�e�x� . �2�

This reordered form enables us to describe the influence of
nonrelativistic electrons in matter by their average density

2��̄e�x���L�e�x�����0ne. Such a term leads to an effective
interaction acting on electron neutrinos that is different from
the interactions acting on other types of neutrinos. Ulti-
mately, it leads to a significant modification of the descrip-
tion of neutrino oscillations,6 the phenomenon responsible
for the missing solar neutrino problem.7

Before we get into the details, let us consider the differ-
ence between the expressions in Eqs. �1� and �2� to under-
stand better the nonintuitive nature of the Fierz identity. The
spinor fields �e and ��e

can be written as complex 4�1

matrices, while �̄e and �̄�e
are complex 1�4 matrices. The

factors between them are 4�4 matrices and the result is a

scalar. In Eq. �1�, there is a 4�4 matrix between �̄e and ��e

and another between �̄�e
and �e for each �=0,1 ,2 ,3. What

the Fierz identities assure you is that any expression of the

form �̄1A�2�̄3B�4 is equal to �̄1C�4�̄3D�2 or a sum of simi-
lar terms, with A ,B�C ,D in general. Amazingly, the same
combination of matrices that enters into Eq. �1� also enters

into Eq. �2� as a consequence of a Fierz identity.
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II. MATRIX VECTOR SPACES
AND COMPLETENESS RELATIONS

A vector space V is a set of elements endowed with two
operations:8 A sum between elements and a multiplication by
numbers �elements of a ring, in mathematical language� such
as the real and complex numbers. This vector space is re-
quired to be closed under such operations.9 The usual
N-dimensional real space, RN, and its complex extension, CN,
are examples of vector spaces.

As is well known, any element of a vector space can be
expanded in terms of a basis 	ei
, a set of N=dim V elements.
In addition, the vector space can be equipped with an inner
product � , � that defines the notion of norm and orthogonal-
ity. By using such an inner product, an orthonormal basis 	ei

can be defined by

�ei,ej� = �ij . �3�

The canonical �column vector� representation for the ortho-
normal basis is

�ei� j = �ij , �4�

where the index j outside the parenthesis is the vector index.
In matrix notation the orthogonality relation �3� can be writ-
ten as

ei
Tej = �ij , �5�

where T denotes the transpose. In canonical form, the com-
pleteness relation

�
i

N

eiei
T = 1 , �6�

is obvious. Also, Eq. �6� is invariant under an orthogonal
O�N� �unitary U�N�� transformation of a basis for V
=RN�CN�.

Once the properties of vector spaces are given, it is easy to
show that the set of all N�N square matrices over the reals,
MN�R�, or over the complex numbers, MN�C�, form a N2

dimensional vector space.10 In these vector spaces a canoni-
cal basis 	eij
 is given by the matrices

�eij�kl = �k
i �l

j �i, j,k,l = 1, . . . ,N� , �7�

and hence, any N�N matrix can be expanded as

M = Mije
ij , �8�

where the expansion coefficients Mij = �M�ij are the elements
of the matrix M.

In MN�R� we can define the �positive definite� inner prod-
uct

�A,B� � Tr�ABT� , �9�

for which the canonical basis satisfies

Tr�eijekl T� = �ik� jl. �10�

For MN�C� the transpose operation � �T has to be replaced by
the hermitian conjugation operation � �†.

An equivalent approach is to define a bilinear function on
MN�R� without the positive definiteness requirement of an
inner product. Thus, instead of defining Eq. �9�, we can dis-
card the transpose operation in the definition and regard sim-

ply the trace of the product as the relevant bilinear function.
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The missing transpose operation can be transferred to the
definition of a dual basis 	eij
: eij �eji=eijT. Then the dual
basis is the orthogonal counterpart of the basis 	eij
 through
the trace bilinear. An equivalent way is to regard the trace
bilinear between two elements of 	eij
 as defining a metric
that can be used to lower and raise indices and to interchange
the basis with its dual; an analogous construction is found in
special relativity when contravariant and covariant four-
vectors are defined. An inner product defines, with an appro-
priate basis, a metric that is the identity matrix. In general
there can be nondiagonal or nonpositive definite metrics.
This approach will be used to derive the Fierz identities in
Sec. III and chiral Fierz identities in Sec. IV.

We use this dual basis to express the expansion coefficient
in Eq. �8� as

Mij = Tr�Meij� . �11�

If we substitute Eq. �11� into Eq. �8� and take the respective
elements of the matrix, we obtain the trivial relation

�km�nl = �eij�kl�eij�nm, �12�

where the summation convention of repeated indices is used
here and in the following. This relation follows directly from
Eq. �4� and is a completeness relation analogous to Eq. �6�.
Equation �12� represents an identity in the space of general
linear transformations over MN�R�. This entire discussion is
also valid for MN�C� if one extends the ring from R to C.
Because any linear transformation over MN�R� can be given
as a linear combination of transformations of the form

M → �A � B�M � AMBT = �A�ij�B�lk�M� jke
il, �13�

Eq. �12� implies that

�eij � eij�M = �eij
� eij�M = M . �14�

Although trivial with this choice of basis, a completeness
relation like Eq. �12� is all that is needed to deduce Fierz-
type identities.

To obtain nontrivial relations, let us take the example of
SU�2� and SU�3� algebras in the fundamental representation.
The commonly used representations for these algebras are
the Pauli matrices 	�i
 and the Gell-Mann matrices 	�a
.11,12

They form vector spaces and satisfy the orthogonality rela-
tions

Tr��i� j� = 2�ij �i, j = 1,2,3� , �15�

Tr��a�b� = 2�ab �a,b = 1, . . . ,8� . �16�

Because they are already orthogonal and are Hermitian ma-
trices, there is no need to define a dual basis. However, to
span M2�C� and M3�C� the respective identity matrices are
needed, because N2 basis vectors are required and the Pauli
and Gell-Mann matrices are traceless. Then the set 	1 ,�i

spans M2�C�, which means any 2�2 complex matrix can be
expanded in terms of

X = X01 + Xi�
i, �i = �i, �17�

where

X0 = 1
2 Tr�X�, Xi = 1

2 Tr�X�i� . �18�

We substitute Eq. �18� into Eq. �17� and take the general

elements
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�X�ij = 1
2 �X�kk�ij + 1

2 �X�lk��m�kl��m�ij , �19�

and obtain from the coefficients of �X�lk, after properly in-
serting Kronecker deltas, the completeness relation

�il�kj = 1
2�ij�kl + 1

2 ��m�ij��m�kl. �20�

Equation �20� is the identity used to deduce the Fierz iden-
tities to Weyl spinors: ��	�ij��̃	�kl=2�il�kj, where �	

= �1 ,��, and �̃	= �1 ,−��; the lowering and raising of 	 in-
dices follows the Minkowski metric.

For the Gell-Mann matrices we have similarly,
1
2 ��a�ij��a�kl + 1

3�ij�kl = �il�kj . �21�

For any fundamental representation of SU�N� algebra 	Ta

satisfying Tr�TaTb�=C�ab, we have the completeness relation

1

C
�Ta�ij�Ta�kl +

1

N
�ij�kl = �il�kj . �22�

For the O�N� groups there is no simple relation similar to
Eq. �22� because the algebra is formed by N�N antisymmet-
ric matrices, and thus all symmetric matrices are needed to
span MN�R�.

Before introducing Dirac matrices to deduce the Fierz
identities, it is better to introduce a clearer notation due to
Takahashi,4 where we replace the matrix indices by paren-
theses � � and brackets � �, such that each parenthesis/bracket
represents a different index in an unambiguous way. For ex-
ample, using this notation the relation �22� reads

1

C
�Ta��Ta� +

1

N
� �� � = � �� � , �23�

where the blank entry means the identity matrix. This nota-
tion clearly shows the reordering property.

III. FIERZ IDENTITIES

The starting point to derive the usual Fierz identities is the
orthogonality relation among the 16 Dirac bilinears13 that
span M4�C� over C. The 16 Dirac bilinears are usually clas-
sified into distinct classes according to their properties under
Lorentz transformations3 as

	
A
 = 	1,�5,�	,�5�	,�	�
 �	,� = 0,1,2,3� , �24�

where 	�� in �	� to avoid redundancy. Here the conven-
tion used by Itzykson and Zuber15 is employed for the
gamma matrices:

	�	,��
 = 2g	�, �25�

�	� =
i

2
��	,��� , �26�

�5 = �5 = i�0�1�2�3, �27�

�5�	� =
i

2
�	����, �28�

where �0123=1=−�0123 and g	�=diag�1,−1,−1,−1� is the
Minkowski metric.

Then, defining a basis 	
A
 dual to Eq. �24� as the respec-
tive gamma matrices with space-time indices lowered by

14
Minkowski metric, the orthogonality relation holds:
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Tr�
A
B� = 4�A
B. �29�

This relation allow us to expand any complex 4�4 matrix X
in terms of the basis �24� as

X = XA
A, XA = 1
4 Tr�X
A� . �30�

We combine Eqs. �29� and �30�, extract each element of
the matrix, and find a completeness relation analogous to
Eq. �23�:

� �� � = 1
4 �
A��
A� = 1

4 �
A��
A� . �31�

This identity is sufficient to reproduce all possible Fierz
identities by appropriately multiplying identity matrices by
general matrices X ,Y as

�X��Y� = �X1��1Y� =
1

4
�X
CY��
C�

=
1

42 Tr�X
CY
D��
D��
C� . �32�

In particular, if X=
A and Y =
B, Eq. �32� leads to the Fierz
identities

�
A��
B� =
1

42 Tr�
A
C
B
D��
D��
C� . �33�

The only remaining task is to calculate the expansion coef-
ficients which are straightforward gamma matrix traces.15

The usual textbook Fierz identities �see, for example,
Ref. 11, p. 160� can be found when 
A and 
B in Eq. �33� are
chosen to form scalar quantities �under the full Lorentz trans-
formations, including parity� such as ��	���	� or Eq. �31�
itself. An additional minus sign arises in the Fierz identities
�33� when we insert anticommuting fermion fields instead of
numerical spinors.

IV. CHIRAL FIERZ IDENTITIES

The Fierz identities derived in Sec. III are not quite appro-
priate when treating chirally projected combinations such as

�R�	��L�	� , �34�

where the two chiral projectors are R= 1
2 �1+�5� and L= 1

2 �1
−�5� because the expansion �32� applied to Eq. �34� still
have some non-null coefficients to be calculated. For nonsca-
lar combinations such as �R�	���R���, the number of coeffi-
cients to be calculated may become large. Moreover, the
relatively simple form of certain chiral Fierz identities such
as the form invariants16

�R�	��R�	� = − �R�	��R�	� , �35a�

�L�	��L�	� = − �L�	��L�	� , �35b�

suggests a simpler procedure should exist.
A better way to perform Fierz transformations for combi-

nations such as Eq. �34� consists of rederiving Fierz identi-
ties using a chiral basis

	
A
 = 	R,L,R�	,L�	,�	�
 �	,� = 0,1,2,3� , �36�
where 	��, and its respective dual basis

1162C. C. Nishi
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A
 = 	R,L,L�	,R�	, 1
2�	�
 �	,� = 0,1,2,3� , �37�

where 	��. Notice that because of the anticommuting na-
ture of �	 with �5 and projector properties, the dual of R�	 is
L�	. The orthogonality property between the bases �36� and
�37� is

Tr�
A
B� = 2�A
B, �38�

which implies the completeness relation

� �� � = 1
2 �
A��
A�

= 1
2	�R��R� + �L��L� + �R�	��L�	�, + �L�	��R�	�

+ � 1
2�	��� 1

2�	��
 , �39�

where the extra 1 /2 in the �	� expansion is inserted to ac-
count for the double counting due to the implicit 	 ,� sum-
mation over all values and �	�=−��	. Such a completeness
relation directly leads to the chiral Fierz identities

�
A��
B� = 1
4 Tr�
A
C
B
D��
D��
C� . �40�

To illustrate the usefulness of the chiral Fierz identities,
we apply them to calculate the Fierz transform of the com-
bination �34�,

�R�	��L�	� = 1
4 Tr�R�	
CL�	
D��
D��
C�

= 1
4 Tr�R�	LL�	R��R��L� = 2�R��L� , �41�

where the gamma matrix properties15 �	�	=4�1,
�	���	=0, and the trace cyclic property were used. More
difficult examples can be worked out, for instance,

�R�	���R��� = 1
4 Tr�R�	�RR��L����R����R�

+ 1
4 Tr�R�	�

1
2��R��L����R���� 1

2���
= 3

2 i�R�	��R� + 1
2 �R����R��	� . �42�

Some labor can be saved by using the trace relation

Tr�R�	���� = 2�g	�g� − g	g�� + i�	��� , �43a�

Tr�L�	���� = 2�g	�g� − g	g�� − i�	��� . �43b�

One can check the coefficients for the cases �	��= ��� and
�	���= �0123�.

Moreover, the combination of chiral Fierz identities �40�
with other completeness relations such as Eq. �21� can be
used to decompose four-quark operators carrying other quan-
tum numbers like SU�3� color.2

The simplicity arises because only a few expansion coef-
ficients are nonzero due to the projector properties of R /L
and the commuting or anticommuting character of the bilin-
ears with �5. Equivalently, R /L projectors reduce the spinor
vector space and the resulting projected spinors have to be
the same on the two sides of the chiral Fierz identities.

V. SUMMARY

The well-known result that the Fierz identities are a con-
sequence of the completeness of the Dirac bilinears as a basis
1163 Am. J. Phys., Vol. 73, No. 12, December 2005
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spanning the complex 4�4 complex matrices was reviewed.
Recognizing that bases other than Dirac bilinears are equally
possible permitted us to develop a better procedure to calcu-
late the chiral Fierz identities by choosing chirally left/right
projected matrices as a basis. The generality of the procedure
was stressed and illustrated using the canonical basis of ma-
trix vector spaces, which led to trivial relations in this case.

The usefulness of Fierz-type relations depends on the par-
ticular choice of basis and how nearly complete is the set of
matrix objects �representations� of interest. The same unified
framework was used to derive completeness relations for the
generators of the SU�N� group in the fundamental represen-
tation. Other matrix representations or other algebras can be
analyzed as well, although they may not be complete and
hence the corresponding Fierz-type identities may not be as
useful as those presented here.
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