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Simple descriptor derived from symbolic
regression accelerating the discovery of new
perovskite catalysts
Baicheng Weng1,2,3,6, Zhilong Song2,6, Rilong Zhu4, Qingyu Yan4, Qingde Sun2, Corey G. Grice1,

Yanfa Yan 1✉ & Wan-Jian Yin 2,5✉

Symbolic regression (SR) is an approach of interpretable machine learning for building

mathematical formulas that best fit certain datasets. In this work, SR is used to guide the

design of new oxide perovskite catalysts with improved oxygen evolution reaction (OER)

activities. A simple descriptor, μ/t, where μ and t are the octahedral and tolerance factors,

respectively, is identified, which accelerates the discovery of a series of new oxide perovskite

catalysts with improved OER activity. We successfully synthesise five new oxide perovskites

and characterise their OER activities. Remarkably, four of them, Cs0.4La0.6Mn0.25Co0.75O3,

Cs0.3La0.7NiO3, SrNi0.75Co0.25O3, and Sr0.25Ba0.75NiO3, are among the oxide perovskite

catalysts with the highest intrinsic activities. Our results demonstrate the potential of SR for

accelerating the data-driven design and discovery of new materials with improved properties.
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M
achine learning (ML) is increasingly used in the field of
materials informatics as an effective tool for discovering
quantitative structure— or composition—property

relationships that can accelerate materials design1–5. However,
the black-box model of ML is often criticized not able to provide
new “physical laws”, which limits its potential in certain cases6,7.
Symbolic regression (SR) is an approach of interpretable machine
learning that simultaneously searches for the optimal mathema-
tical formula of a function and set of parameters in the func-
tion1,8. Therefore, SR is capable to deliver interpretable
mathematical formulas that may provide direct guidance for
materials design. Despite the great potential, the application in
the field of material science is still limited.

In this communication, we demonstrate that SR can construct
a simple descriptor that enables the acceleration of the materials
discovery for oxide perovskite catalysts. Oxide perovskites
(ABO3) are an important family of catalysts for OER applica-
tions9,10, which are in high demand for renewable energy pro-
duction and storage, such as hydrogen production from water-
splitting11 and rechargeable metal-air batteries12, because of their
structural flexibility, compositional versatility, and chemical sta-
bility13. Moreover, oxide perovskites have recently been extended
to the bifunctional application of OER and oxygen reduction
reaction14,15. The catalysis activities of oxide perovskite catalysts
can be described by descriptors, as demonstrated by various
studies over the past sixty years. Several descriptors, such as the
reaction free energy16,17 and eg occupancy9,18, have been suc-
cessfully used to understand the trend of OER activity and
achieved great success in this regard. Nevertheless, those
descriptors require prior knowledge based on density functional
theory (DFT) calculations therefore bear limited applicability to
design new materials, where DFT-calculated values are unknown
a priori and highly dependent on the used methodologies19.
Meanwhile, it is difficult for DFT calculation to accurately
determine eg occupancy where the surface spin state is not well
known20. A good descriptor should be simple and yet provide
physical insight21, which will guide and accelerate the discovery
of new perovskite oxide OER catalysts. In this work, we propose
that SR is perfectly suitable for identifying suitable descriptor to
accelerating the discovery of new perovskite catalysts.

Figure 1 shows the workflow diagram of this study. SR analysis
may not require massive datasets, if the datasets used are

consistent and reliable1,22. Therefore, we firstly synthesise 18
well-studied oxide perovskite catalysts to produce consistent and
comparable datasets of OER activity for SR analysis. A descriptor
with the balance of simplicity and accuracy is then chosen and
help develop strategies to accelerate the discovery of new oxide
perovskites. The generality of the descriptor is confirmed by
analysing data reported independently by other research groups.
Based on this descriptor, materials screening is conducted to
search for new oxide perovskite catalysts with improved OER
activities. To validate the predictions, a few numbers of new oxide
perovskites with potentially high OER activity are synthesised and
their OER activities are characterised and compared with their
predicted values and those of current state-of-the-art oxide per-
ovskite catalysts.

Results
Data acquisition. Comparable training data used in SR analysis
are of crucial importance for SR in order to produce useful
mathematical formulas23. Since the first discovery of oxide per-
ovskite LaNiO3 as OER catalyst in 1970s24, the chemical man-
agement of A- or B-site cations has been used to tune the OER
activity, permitted by the structural and chemical flexibility of
perovskite structures. The results reported by different groups
and produced under different experimental conditions over a
period of half a century are summarised in a recent review arti-
cle13. However, the comparability of those data is doubtful due to
different environments of experiments and measurements. To
ensure meaningful and valuable SR analysis, we synthesised
eighteen known oxide perovskite catalysts (Supplementary Fig. 1;
Supplementary Table 1). Four samples were made for each per-
ovskite and OER measurement was conducted three times under
the same conditions with freshly made catalyst inks. Four each
measurement, the VRHE values at five current densities of 50 µA
cm−2, 5 mA cm−2, 10 mA cm−2, 15 mA cm−2 and 20 mA cm−2

in linear sweep voltammetry (LSV) curve were adopted for SR
analysis. Therefore, there are totally 18 perovskites × 4 samples ×
3 measurements × 5 current densities= 1080 data points
(Fig. 2a). The values were then normalised by the catalyst loading
concentration and Brunauer–Emmet–Teller (BET) surface area
(Supplementary Table 2) and shown in Fig. 2a and Supplemen-
tary Data 1–5. Details of the materials synthesis, along with the
structural and OER characterisation, can be found in the
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Fig. 1 Workflow diagram. It contains four major parts: dataset generation (blue), SR (red), materials design and screening (green) and experimental

verification (brown).
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“Methods”. Seven of these oxide perovskite catalysts were also
reported by Suntvich et al.9 and the results from both groups
showed the same trend in VRHE values (Supplementary Fig. 2),
although the absolute values are slightly different.

SR training. With the available experimental data shown in
Fig. 2a, SR was then adopted to construct mathematical formula
linking the materials parameters and VRHE. To ensure that the SR
analysis determines mathematical formulas that are useful for our
purpose, it is critical to select relevant parameters to be included
in the mathematical formulas based on prior knowledge1. Con-
sidering the importance of previous descriptors3,9,12,13,25,26, we
chose electronic parameters such as the number of d electrons for
TM ions (Nd), electronegativity values χA and χB, and valence
states QA, as well as structural parameters such as ionic radii RA,
the tolerance factor t, and the octahedral factor μ, where A and B
refer to the A- and B-site cations, respectively (Table 1). The

tolerance factor t, defined as
rAþrO
ffiffi

2
p

ðrBþrOÞ
and octahedral factor μ,

defined as rB/rO, are commonly used features in ML studies of
perovskites23,27,28.

The mathematical formulas were then generated and selected
by using SR with genetic programming (GPSR) as implemented
in gplearn code29. The flowchart of GPSR process in this work is
described in Fig. 2b. In this work, SR initially builds a population
of random mathematical formulas with these parameters as
variables. Then, these mathematical formulas breed, mutate, and
evolve to form new ones via genetic programming. The derived
mathematical formulas compete to model experimental data by
evaluating the mean absolute errors (MAEs) between the
predicted and experimental VRHE. A grid search of hyper-
parameters resulted in ~8640 mathematical formulas (descrip-
tors), which were characterised by their MAE’s and complexities,
as described in Fig. 3a. The hyperparameters setup can be found
in Method part and extended information about GPSR can be
found in Supporting Information.

Descriptor generation and analysis. Of the produced descrip-
tors, only those with low MAE (high accuracy) and low com-
plexity are suitable for guiding the discovery of new oxide
perovskite catalysts. The nine mathematical formulas at the
Pareto front [marked as A–I in Fig. 3a] that met the criteria of
simplicity and accuracy among the 43,200,000 candidates are
shown in Table 2. Among them, μ/t is the best compromise
between complexity and accuracy. To clearly show the correla-
tion, the VRHE at current densities of 5 mA cm−2 are shown in
terms of μ/t in Fig. 3b. For each perovskite, the average values and
error bars are the experimental uncertainties from 12 measure-
ment data (4 samples with each 3 measurements). Interestingly, it
shows a linear and monotonic behaviour instead of prevalent
volcano shape for conventional descriptors. Such linear correla-
tions remain at other current densities, i.e. 50 µA cm−2, 10 mA
cm−2, 15 mA cm−2 and 20 mA cm−2 as shown in Supplementary
Fig. 3. To further verify the generality of this descriptor, we used
μ/t to fit the experimental work9 originally reporting the volcano
shape for descriptor eg (Fig. 3c). As shown in Fig. 3d, μ/t provided
a clear linear and monotonic correlation with VRHE, with MAE
comparable to the volcano shape for descriptor eg. Apart from the
seminal work of ref. 9, the generality of μ/t can be also confirmed
by recent works30–32 as their data reorganized in Supplementary
Fig. 4. For experimental data spanning over sixty years from
different groups (Table 6 of ref. 13), their VRHE values are reor-
ganized according to their μ/t values; despite some discrepancies,
a roughly linear correlation was observed for the majority of the
data points (Supplementary Fig. 5). Such good correlation reveals
that the SR-derived descriptors, e.g., μ/t indeed provide mean-
ingful insights for OER activity of oxide perovskites.

The descriptor μ/t reveals that the OER activity of oxide
perovskite catalysts is closely related to the structural factors of
the catalysts; i.e. a smaller μ and a larger t should lead to higher
OER activity. Such a simple descriptor is superior to conventional
descriptors since it does not require additional DFT calculations
and can be directly used for materials design. Accordingly, we
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Fig. 2 Data collection and process. a The landscape of all VRHE data produced by experiments, including eighteen conventional and five new perovskites

(totally twenty-three perovskites listed as ‘Materials index’ with sequence shown in Table 1). Each perovskite has been made four samples and each sample

has been measured three times (totally twelve measurements listed as ‘No. of measurements’). For each measurement, we adopted VRHE values at five

current densities of 50 µA cm−2, 5 mA cm−2, 10 mA cm−2, 15 mA cm−2, and 20mA cm−2. The exact values of those data points are provided in

Supplementary Data 1–5. b The flowchart of symbolic regression based on genetic programming (see more details of this flowchart and SR in

Supplementary Information).
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Table 1 Key materials parameters of 23 selected oxide perovskites.

No. Materials t μ RA(Å) χA χB QA Nd μ/t

Conventional Perovskites
1 LaMnO3 0.993 0.430 1.36 1.1 1.55 3 4 0.433
2 LaMn0.5Ni0.5O3 0.998 0.422 1.36 1.1 1.73 3 5.5 0.423
3 LaNiO3 1.003 0.415 1.36 1.1 1.91 3 7 0.413
4 LaMn0.5Cu0.5O3 0.988 0.437 1.36 1.1 1.725 3 6 0.442
5 LaNi0.9Fe0.1O3 1.004 0.414 1.36 1.1 1.902 3 6.8 0.413
6 LaNi0.8Fe0.2O3 1.004 0.413 1.36 1.1 1.894 3 6.6 0.412
7 LaFeO3 1.009 0.407 1.36 1.1 1.83 3 5 0.404
8 La0.5Pr0.5FeO3 1.010 0.407 1.365 1.115 1.83 3 5 0.403
9 PrFeO3 1.012 0.407 1.37 1.13 1.83 3 5 0.402
10 LaCoO3 1.011 0.404 1.36 1.1 1.88 3 6 0.399
11 La0.5Ca0.5CoO3 1.011 0.398 1.35 1.05 1.88 2.5 5.5 0.394
12 La0.8Sr0.2CoO3 1.019 0.401 1.376 1.07 1.88 2.8 5.8 0.394
13 Sr0.25La0.75Fe0.5Co0.5O3 1.020 0.401 1.38 1.063 1.855 2.75 5.25 0.393
14 La0.4Sr0.6CoO3 1.034 0.397 1.408 1.01 1.88 2.4 5.4 0.384
15 La0.2Sr0.8CoO3 1.042 0.395 1.424 0.98 1.88 2.2 5.2 0.379
16 SrCoO3 1.049 0.393 1.44 0.95 1.88 2 5 0.374
17 Ba0.5Sr0.5Co0.8Fe0.2O3 1.082 0.391 1.525 0.92 1.876 2 4.8 0.361
18 BaFeO3 1.119 0.385 1.61 0.89 1.83 2 4 0.344
New Perovskites
19 Cs0.25La0.75Mn0.5Ni0.5O3 1.064 0.398 1.49 1.023 1.73 2.5 5 0.374
20 Cs0.4La0.6Mn0.25Co0.75O3 1.095 0.395 1.568 0.976 1.798 2.2 4.7 0.361
21 Cs0.3La0.7NiO3 1.088 0.379 1.516 1.007 1.91 2.4 6.4 0.348
22 SrNi0.75Co0.25O3 1.071 0.365 1.44 0.95 1.903 2 5.75 0.341
23 Sr0.25Ba0.75NiO3 1.127 0.356 1.568 0.905 1.91 2 6 0.315

The key materials parameters include the tolerance factor (t), octahedral factor (μ), ionic radii of A-site (RA) and B-site (RB), electronegativity of A-site (χA) and B-site (χB), valence state of A-site (QA),

and number of d electrons on TM B-site (Nd). The materials are ordered by the value of μ/t in each dataset of conventional and new perovskites.(See Supplementary Table 7 for calculation details.).
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used a rational strategy to accelerate the screening process:
adopting large cations on the A site (increasing t) and small
cations on the B site (decreasing μ). Previously, the commonly
used A-site cations in oxide perovskite catalysts are group IIA
(Ca, Sr, Ba) and group IIIB (La, Ce, Pr) elements13. Based on the
insight of the new descriptor developed here, we considered
incorporating large group-IA elements (K, Rb, Cs) onto the A site
to increase t. Among the TM ions that can form perovskite
oxides, 3d TM ions have the smallest ionic radii, which is
consistent with the fact that all existing active oxide perovskite
catalysts contain Mn, Fe, Co, and Ni cations (the smallest among
the 3d TM ions) on the B site. 4d/5d TM oxide perovskites are
catalytically less active, despite having similar d electron
configurations. Therefore, we considered that the A site contains
up to two ions from (K1+, Rb1+, Cs1+, Ca2+, Sr2+, Ba2+, La3+,
Ce3+, Pr3+) and the B site contains up to eight ions from (Mn3+,
Mn4+, Fe3+, Fe4+, Co3+, Co4+, Ni3+, Ni4+) with variation in an
increment of 0.25 for the A and B ionic ratio. Note that the
actual stoichiometric ratios depend on the synthesis
conditions and the formability of the target perovskites. Subject
to the requirement of charge balance, 3,545 oxide perovskites
were obtained and their μ/t values were calculated. These oxide
perovskites are listed in Supplementary Data 6 in order of
increasing μ/t value. There are many new oxide perovskites with
μ/t values smaller than those of materials reported in the
literature, revealing a new and large group of previously
unexplored OER catalysts.

Screening, synthesis and characterisation of new oxide per-
ovskite catalysts. The formability and stabilities of 3545 oxide
perovskites have not been verified. Therefore, we selected thirteen
new oxide perovskites in the smallest μ/t values (the topmost
region in Supplementary Data 6) with an increment of ~0.015 in
μ/t values to consider sufficient elemental and compositional
diversity for experimental verification. These thirteen
perovskite oxides are: Ba0.75 Sr0.25NiO3, Cs0.4La0.6Mn0.25Co0.75O3,
SrNi0.75Co0.25O3, Cs0.3La0.7NiO3, Cs0.25La0.75Mn0.5Ni0.5O3,
Cs0.5La0.5Mn0.5Ni0.5O3, Sr0.25La0.75Mn0.5Fe0.5O3, Ba0.75Pr0.25-
Ni0.5Fe0.5O3, Cs0.6La0.4Mn0.75Co0.25O3, Cs0.5La0.5MnO3,
Cs0.5La0.5Mn0.25Co0.75O3, Cs0.5La0.5Mn0.5Co0.5O3, and
Cs0.25Pr0.75Mn0.25Fe0.25Co0.25Ni0.25O3. The synthesis method is
described in detail in the Methods section. We found that eight of
them contained significant amounts of impurity or
secondary phases, as indicated by the asterisks in the powder
X-ray diffraction (PXRD) patterns (Supplementary Fig. 6).
For example, Cs0.5La0.5Mn0.5Ni0.5O3, Cs0.6La0.4Mn0.75Co0.25O3,

Cs0.5La0.5MnO3, Cs0.5La0.5Mn0.25Co0.75O3, and Cs0.5La0.5Mn0.5-
Co0.5O3 showed an impurity phase of MnO4+δ (main diffraction
peaks at 12° and 24°). Ba0.75Pr0.25Ni0.5Fe0.5O3 contained Pr2O3

and NiO impurity phases. Five compounds including
Cs0.4La0.6Mn0.25Co0.75O3, Cs0.3La0.7NiO3, Cs0.25La0.75Mn0.5-
Ni0.5O3, Sr0.25Ba0.75NiO3, and SrNi0.75Co0.25O3, formed pure
perovskite phases, as by confirmed PXRD (Supplementary Fig. 6).
The OER activities of these five new pure oxide perovskites were
then characterised (Fig. 4a–c). Cs0.4La0.6Mn0.25Co0.75O3,
Cs0.3La0.7NiO3, SrNi0.75Co0.25O3, and Sr0.25Ba0.75NiO3 showed
lower VRHE values (higher OER activity) than BSCF did. The
specific activities are also compared with the state-of-the-art
perovskite oxide catalysts20. We found that our materials are
among the oxide perovskite catalysts with the highest specific
activities10 (Supplementary Fig. 7). Remarkably, the experimental
VRHE values of these new oxide perovskite catalysts follow the
same trend of SR-derived descriptor, μ/t, as shown in Fig. 3b. To
further verify the descriptor, the SR procedure is repeated with
the inclusion of five new predicted perovskites. Most of derived
mathematical formulas that had been residing near the Pareto
front (Fig. 3a), including μ/t, remain (Supplementary Fig. 8 and
Supplementary Table 3); this persistence shows that the addition
of more training examples does not generate a significant
alteration in the model’s response, indicating that the model
remained predictive with these new perovskites. It is worth noting
that we have selected a very limited number of compositions for
experimental synthesis and characterisation because of limited
resources. It is highly anticipated that more of these predicted
oxide perovskite catalysts with high OER activities can be
experimentally synthesised and their OER activities will be
verified.

The stability of the four new oxide perovskite catalysts with
OER activities higher than previously reported oxide perovskite
catalysts were tested galvanostatically at 10 mA·cm−2 disk current
(Fig. 4d). We selected a higher disk current density for stability
testing to verify the activity decay under strong polarisation
conditions. Cs0.4La0.6Mn0.25Co0.75O3, Cs0.3La0.7NiO3, SrNi0.75-
Co0.25O3, and Sr0.25Ba0.75NiO3 showed lower activity degradation
than BSCF. In particular, the Sr0.25Ba0.75NiO3 electrode main-
tained a stable VRHE over 12 h of stability testing without
significant decay. Under the same conditions, the BSCF sample
showed a much faster degradation rate, with only 90% retention
after 9 h. After OER durability tests, the Sr0.25Ba0.75NiO3 electrode
maintained its original morphology. Scanning transmission
electron microscopy (STEM) and high-resolution transmission
electron microscopy images revealed no significant surface
amorphization. The surfaces of the Sr0.25Ba0.75NiO3 particles
maintained good crystallinity after stability tests, as confirmed by
clear observation of the same lattice spacings (Fig. 5) and
elemental analysis (Supplementary Table 4). Recent work has
shown that increasing the valence states of 3d-TMs such as Ni
and Co from 2+/3+ to 3+/4+ can boost the OER activities
of LaCoO3 and LaNiO3

33. Interestingly, apart from increasing
t, Cs1+ substitution on the A site is a viable route to enhance the
valence states of TM B-site ions in oxide perovskites. This
correlates with the SR-derived descriptor, μ/t, since increasing the
valence states inevitably reduces the ionic radii of TMs, which in
turn reduces the μ value, and, therefore, reduces μ/t. Meanwhile,
recent theoretical reports predicted that SrNiO3 should have high
OER activity34. Unfortunately, the hexagonal close packing of Sr
and O atoms prevents the formation of the perovskite structure.
To mitigate this issue, La was proposed to partially substitute Sr.
However, partial La substitution leads to the formation of a
Ruddlesden–Popper crystal structure instead of perovskite
structures31. Interestingly, the descriptor μ/t suggests that partial
substitution of Sr using larger Ba atoms can enhance catalytic

Table 2 The nine mathematical formulas at the Pareto front
in Fig. 3a.

Point Formulas MAE (eV) Complexity

A 1:751
t

0.0286 1
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� �0:5
0.0279 2

C 1:554
μ

t
þ 1:092 0.0253 3

D tþ 0:289 þ Q0:5
A

� �0:5
0.0252 5

E 1:282 þ Q0:5
A

� �0:50:5

þ μ 0.0244 6

F Q0:5
A

χB
þ 1:034 þ χ

0:5
A

� �0:5
0.0232 8

G QA
t

0:5

χB
þ 1:034 þ χ

0:5
A

� �0:5
0.0225 10

H Q0:5
A

χB
þ 1:034 þ ðQAμÞ

0:50:5
� �0:5

0.0224 11

I Q0:5
A

χB
þ 1 þ 0:34μ þ

μ

t

� �0:5
� �0:5

0.0220 12
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activity. Our experiments showed that Ba0.75Sr0.25NiO3 can be
synthesised with the perovskite structure and its OER activity is
even higher than BSCF (Fig. 5), demonstrating the usefulness of
the SR-derived descriptor.

Discussion
Those results show that even with a small dataset, the SR
analysis could provide simple and meaningful descriptors that
enabled us to discover new oxide OER catalysts with improved
activities, which is consistent with successful application of
small data in materials design by adaptive ML4,5. The descriptor
of μ/t implies that the catalytic activity of oxide perovskites is
closely related to their structural stability, i.e. a lower stability
leads to a high activity. Feature analysis in SR process shows
that μ, t, and QA correlate with the catalytic activity more than
RA, Nd, χA, and χB (Supplementary Fig. 9). Considering the t
and μ are functions of rA and rB, we also trained SR model
based on the parameters of rA, rB, Nd, χA, χB, QA without t, μ.
The results are shown in Supplementary Fig. 13 and Supple-
mentary Table 5. However, the MAE of descriptors at the same
complexity on Pareto front are mostly larger than the
descriptors discovered based on μ, t, rA, Nd, χA, χB, QA. The
oxide perovskites showing improved OER activity had t > 1
(Table 1 and also Table 6 in ref. 13), which were considered
unstable perovskites35. However, we found that these per-
ovskites could be synthesised under suitable conditions. Nota-
bly,, we exhaustively searched Inorganic Crystal Structure
Database(ICSD) and found that the existing oxide perovskites
mostly have t < 0.95 and µ > 0.55 (Supplementary Fig. 14).
However, oxide perovskites reported to be catalyst in the last
forty years lie in a small confined range (t > 0.95 and µ < 0.55).
According to the descriptor of μ/t, most of oxide perovskites are
less catalytically active, which seems consistent with existing
experimental results that oxide perovskite catalysts are limited
in a few types of perovskites10. More in-depth understanding of

correlation among μ/t, catalysis activity and structural stability
is out of scope of current research but deserves further study.

In summary, we used SR to identify a simple descriptor for
describing the OER activity of oxide perovskite catalysts. This
simple descriptor quantitatively predicted the OER activity of
oxide perovskites and enabled us to rapidly discover a series of
new oxide perovskite catalysts with improved OER activities. For
proof of concept, we successfully synthesised five oxide per-
ovskites and four of them exhibited OER activities surpassing
those of existing oxide perovskite catalysts reported in the lit-
erature. We anticipate that more of the predicted new oxide
perovskite catalysts can be synthesised and their OER activities
verified. Our results demonstrate that SR is a powerful ML
technique to discover physically meaningful descriptors when
sufficient comparable data is available. This work suggests a new
direction for discovering functional materials with improved
activities.

Methods
Symbolic regression. Symbolic regression analysis using a genetic algorithm was
performed using gplearn29, a Python library that extends scikit-learn, a machine
learning tool, for symbolic regression. The hyper-parameters setup for gplearn is
listed in Table 3. The explanation of each hyper-parameter in Table 3 are following:

The meanings of genetic operations of pc, ps, ph, and pp above can be found in
Supplementary Fig. 10. The grid search method was used for pc, ps, and parsimony
coefficient. As shown in the Table 3, there are 18 pc values from 0.5 to 0.95 with
step of 0.025, 8 ps values and 3 parsimony coefficients. Therefore, a grid search
contains 18 × 8 × 3= 432 hyper-parameters. More information about SR can be
found in the Supplementary Information.

Experimental synthesis of oxide perovskites. The oxide perovskites were syn-
thesised using a modified Pechini method following by thermal calcination at
850–1000 °C under dry air/oxygen atmospheres. Briefly, the acetate or nitrate
precursors of the perovskite oxides (4 mmol) were mixed in methanol/H2O (10 mL,
2:1 v:v), and citric acid (10 mmol) was added to obtain a clear sol. The mixture
was dried at 120 °C and the remaining solid was calcinated at 500 °C for 1 h
in air. Then, the obtained powder was ground into fine powder and pressed
into pellets with a diameter of 15 mm using a hydraulic press at 20MPa. Finally,
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the pellets were calcinated at 850–1000 °C for 6 h under dry air/oxygen
atmospheres.

Crystal structure characterisation. The structure and phase of the synthesised
materials were examined by PXRD (Ultima III, Rigaku, Japan) and Raman spec-
troscopy (Bruker FT Raman Spectrometer with a laser wavelength of 532 nm). The
morphology of the films was characterised using transmission electron microscopy
(TEM; JEOL 3011, Japan), scanning transmission electron microscopy (STEM;
Hitachi HD-2300A, Japan), and high-resolution TEM (HRTEM; Hitachi HD-
3010A, Japan). Elemental compositions were determined using energy-dispersive
X-ray spectroscopy (EDS; Oxford Instruments, UK) and inductively coupled
plasma mass spectrometry (ICP-MS; Thermo Scientific XSeries 2 ICPMS, USA).
The catalyst surface area was determined using Brunauer–Emmet–Teller (BET)
analysis, using a BELSORP-mini II (BEL. Japan Inc.) under a flow of N2 gas.

OER characterisation. OER characterisation was performed on a glassy carbon
rotating disk electrode. First, 2 mg of catalyst was dissolved in 2 mL ethanol and
100 μL Nafion solution was added. Then, the mixture was sonicated for 30 min to
form a homogenous mixture. Subsequently, 90 μL of the slurry was loaded onto the
surface of a glassy carbon electrode (GCE; 0.196 cm2) and the electrode was dried
at room temperature. The electrolyte was purified to remove trace Fe using Ni
(OH)2 powder. The OER measurements were performed using a Voltalab PGZ-301
potentiostat/galvanostat (Radiometer Analytical, France), with a Pt foil and a Ag/
AgCl electrode used as the counter and reference electrodes, respectively. The
loading amount of the catalysts was 0.168 mg cm−2. All potentials were plotted
versus the reversible hydrogen electrode (RHE) as E(RHE)= E(Ag/AgCl)+ 0.197+
0.0591 × pH. All linear sweep voltammetry measurements were performed at a
scan rate of 5 mV s−1. All OER measurements were iR-compensated (98%). Each
measurement was conducted three times under the same conditions. The error
bars denote variations observed from sample synthesis and OER measurements.
The stability test was performed using the controlled current electrolysis method.
PXRD measurements verified that all the obtained materials had the perovskite
structure.

To evaluate the intrinsic activities, the current densities were normalised by the
loading amount and the BET surface areas in order to exclude the increase in
current as a result of high loading content and higher surface area.
Normalisation was performed according to the expression: i (mA cm−2 oxide
current)= i (mA cm−2 disk current) ÷ (loading amount (g cm−2) × BET surface
area (cm2 g−1)). Here, i (mA cm−2 oxide current) was denoted as the normalised
specific activity, while i (mA g−1 oxide current)= i (mA cm−2 disk current) ÷
(loading amount (g cm−2)) refers to the mass activity.

Data availability
The data of measured VRHE values for all oxide perovskites and 3545 potential oxide

perovskites listed by the amount of μ/t are provided online.
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