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Simple Econometrics of Pesticide Productivity

Introduction

Productivity is central to policy debates about pesticides. The answers to questions such

as whether restrictions on pesticide use are warranted, whether taxes should be used instead of

current direct regulations, how reduction or elimination of pesticide use would affect national

income, soil erosion, and other aspects of environmental quality—all hinge on the role pesticides

play in production.

Economists have made only limited contributions to the discussion of these issues. The

few studies that estimate the effects of broad-scale usage restrictions on national income (Knutson

et al.; Zilberman et al.; Osteen and Kuchler) have relied on Crop scientists' estimates of average

productivity effects on different crops. Econometric evidence about pesticide productivity,

substitution possibilities between pesticides and other inputs, and the determinants of pesticide

demand has been limited to a handful of crops in a few production regions (see for example

Carlson; Campbell; Lee and Langham; Pingali and Carlson; Babcock, Lichtenberg and Zilberman.

Headley, Clark and Carlson, and Carrasco-Tauber and Moffitt provide aggregate analyses) and

has not been used for policy analysis. Instead, economic analyses have relied on crop scientists'

assessments of pesticide productivity, which are formulated in terms of averages in a few discrete

technological packages rather than in more economically relevant marginal terms. Lacking the

flexibility and the stress on substitution relationships characteristic of an .economic production

model, these assessments are likely to miss important information about actual production

practices as they occur in practical circumstances when farmers simultaneously make both

economic and technical decisions. Thus, sound empirical methods for estimating pesticide

productivity from actual (versus experimental) data are sorely needed.
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Lichtenberg and Zilberman (LZ) have proposed a framework for econometric estimation

of pesticide production functions based on a recognition of the particular role pesticides play as

damage-control agents. Advantages of this framework include separate representations of the

damage control and pure productivity effects of inputs used for multiple purposes (e.g.,

cultivation or pruning) and implicit estimation of pest damage that can be used to validate the

assessments of crop scientists. LZ also argue that more traditional specifications produce

overestimates of pesticide productivity. Babcock, Lichtenberg and Zilberman applied the LZ

damage control framework to North Carolina apple production using an exponential

representation of damage. Carrasco-Tauber and Moffitt compared a Cobb-Douglas production

function with exponential, logistic, and Weibull damage specifications in estimating pesticide

productivity in aggregate U.S. crop production.

This paper develops a dual representation of damage control technology and illustrates its

- use in estimating pesticide productivity using aggregate U.S. data. Our first contribution is to

develop a multioutput generalization of the original LZ contribution. The dual version of the

generalized LZ model is then shown to be conditionally additive in the prices of abatement

activities and other prices. An econometric procedure for estimating the dual technology is then

developed and illustrated by applying it to an aggregate U.S. agricultural data set.]

The Dual Structure of Pesticide Technologies

The theoretical development is for a multiple-output technology represented by a

production possibilities set T g Rm+n+ X 3) where 3) = [0,1]:

T = ((x,g,y): (x,g) can produce y}.

2
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Here x E Rn4. is a vector of inputs, g E I) is a single input which we shall refer to as abatement,

and y E Rn: is a vector of outputs. T is a nonempty, closed, convex set that satisfies free

disposability of both inputs and outputs (Chambers, Chapter 7).

Abatement is an intermediate or aggregate input produced by combining different forms

of pesticides and other preventive inputs. This intermediate production process is represented by

the nondecreasing, concave function G: 93,

g = G(z),

where z E 11.: is a vector of inputs that affect only abatement. As LZ note, abatement cannot

exceed potential output (output in the absence of damage). Thus, abatement can be scaled to lie

between 0 (no abatement) and 1 (perfect abatement and thus no damage), hence, the choice of

the domain for G.

The first step in representing the dual pesticide technology is to characterize the cost of

abatement function c: lit:x7.-->11., defined by

c(v,g) = Minz {vz: G(z) g},

where v E R: is a vector of preventive-input prices. Apart from the restricted domain of g, c(v,g)

is a standard single-output cost function with the following properties: positive linear

homogeneity and concavity in v, nondecreasing in v, nondecreasing and convex in g. Moreover,

it satisfies Shephard's lemma: If a unique solution exists to this minimization problem it can be

recaptured by differentiating c(v,g) with respect to v. Hence, the derived demands for a given

abatement level are

,g) =

Where the subscript denotes the gradient of the subscripted function.

Assuming that farmers are profit maximizers, the profit function is defined by

,3



_.
-

_

..

_

.,

it

-

.

r
.

_.
.



it(p,w,v) = Max„ {py - wx - vz: (x,G(z),y) E T1.

Here p E Rni". is a vector of output prices and w E R is a vector of input prices for x

n(p,w,v) is positively linearly homogenous and convex in all prices, nondecreasing in p, and

nonincreasing in w and v. If a unique solution to the optimization problem exists it can be

recaptured by differentiation of the profit function via the Hotelling-Shephard lemma.

The specialized nature of T allows further inferences about the structure of n(p,w,v) that

prove econometrically useful in modelling the production technology. Notice that

(1) it(p,w,v) = Maxy„ {py - wx - vz: (x,G(z),y) E T}

= Maxy,4 (py - wx - Mini (vz: G(z) ?_ gl: x,g,y) E T}

= Max (py - wx - c(v,g): (x,g,y) E T}

= Maxg (Maxy, (py - wx:(x,g,y) E T1 - c(v,g)}

= Maxg {R(p,w;g) - c(v,g)}.

R(p,w;g) is a restricted (short-run) profit function defined for a given abatement level. It

represents the maximum restricted profit, i.e., exclusive of pesticide costs, given abatement. Its

properties include: positive linear homogeneity and convexity in prices, nondecreasing in p,

nonincreasing in w, and nondecreasing and concave in g (Chambers, Chapter 7). R(p,w;g) also

satisfies the Hotelling-Shephard lemma, so that if it is differentiable its restricted-profit

maximizing supply vector for a given abatement level is

y(p,w;g) = Rp (p,w,g)

while its restricted-profit maximizing derived demands are

x(p,w;g) = -R (p,w,g).

Several comments should be made about R(p,w;g). First, the maximum restricted profit

available for prices (p,w) is R(p,w;1). Second, the minimum restricted profit available for prices

4
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(p,w) is R(p,w;0). This follows because R(p,w;g) is nondecreasing in g. One might naturally

suppose that the maximum amount of the ith output that a profit maximizing farmer would

produce for prices (p,w) is given by aR(p,w;1)/api. This may not be true because there is no

reason, a priori, for all outputs to be nondecreasing in abatement. For the scalar output case,

however, Rp(p,w;1) represents the maximum output a restricted profit maximizing firm will

produce and Rp(p,w;0) represents the minimum. Finally, the derivative R (p,w;g) is the shadow

value of abatement activities to the farmer.

rt(p,w,v) is conditionally additive in (p,w) and v, that is, the optimization problem can

always be viewed as solving the first-order condition for the last equality in (1):

(2) Rg(p,w;g) = cg(v,g).

Abatement is chosen to equate its marginal return to its marginal cost. The curvature properties

of R(p,w;g) and c(v,g) guarantee that any solution to (2) is a global solution to (1).1 In what

follows denote the solution to (2) as g(p,w,v).

The terminology 'conditionally additive' means that given g, the profit function has (p,w)

additively separable from v and vice versa. To see the economic consequences of conditional

additivity, apply the Hotelling-Shephard lemma and use the envelope theorem with (1) to get the

following expressions for the profit-maximizing supply vector, the profit maximizing x vector,

and the profit maximizing z vector, respectively:

y(p,w,v) = itp(p,w,v) = Rp(p,w;g(p,w,v))

x(p,w,v) = -it(p,w,v) = -R(p,w;g(p,w,v))

z(p,w,v) = -Tc„(piw,v) = c,(v, (p,w,v)).

The conditionally additive structure of the pesticide technology insures that the effects of

perturbations in v manifest themselves on y and x only through adjustments in abatement.
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Similarly, changes in p and w only manifest themselves on z in the form of induced adjustments

to changes in abatement.

An Econometric Approach for Estimating the Technology

LZ's main criticism of previous econometric approaches is that they ignored the biological

role that pesticides play in agricultural, production technologies. This results in a loss of

econometric efficiency and presumably in frequently implausible estimated agricultural

technologies. In a dual context, a similar mistake is made by pursuing a standard approach to

estimation, i.e., specifying a flexible form for n(p,w,v) and then using the following version of

the Hotelling-Shephard Lemma as a basis for estimation:

y(p,w,v) = itp(p,w,v)

x(p,w,v) = -7c(p,w,v)

z(p,w,v) = -ity(p,w,v).

Suppose that a generalized-Leontief profit function were specified and that these equations were

converted to stochastic form to be used as the basis for estimating the parameters of the

generalized-Leontief profit function. One might achieve statistically plausible estimates, but such

a system does not capture the full richness of the unique role that abatement activity plays in the

LZ biological production model and thus can result in implausible results. For example, in this

formulation it is not uncommon to encounter empirically estimated pesticide demand equations

which are positively sloped (Chambers and Pope).

R(p,w;g) and c(v,g) are sources of information on the technology, so using them in

estimation should increase estimation efficiency. Once characterized econometrically, R(p,w,g),

c(v,g), and (1) can be used to generate rt(p,w,v).
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Our econometric approach rests on specifying suitably flexible versions of R(p,w;g) and

c(v,g), and then basing estimation on the following version of the Hotelling-Shephard Lemma:

(3) y(p,w,v) = Rp(p,w;g(p,w,v))

x(p,w,v) = -R„(p,w;g(p,w,v))

z(p,w,v) = cv(v, g(p,w,v)).

Given observations on y(p,w,v), x(p,w,v), z(p,w,v), and g(p,w,v), equations (3) can support

estimation of the parameters of R(p,w;g) and c(v,g). Unfortunately, observations on damage or

abatement are rarely available. Typically, therefore, one must specify a parametric representation

of G, and then substitute G(z(p,w,v)) into the right-hand side of (3) to get:

(3') y(p,w,v) = Rp(p,w; G(z(p,w,v)))

x(p,w,v) = -R(p,w.,G(z(p,w,v)))

z(p,w,v) = cv(v, G(z(p,w,v))).

After specifying a suitable error structure, (3') can be used to estimate the parameters of

R(p,w;g), c(v,g), and G(z).

Several problems must be addressed. Expressions (3') have z(p,w,v) on both sides of the

equalities. z(p,w,v) represents a vector of choice variables and hence must be treated as

endogenous for econometric purposes. Thus, simple multivariate regression techniques cannot

be applied to (3'). Second, because c(v,g) and G(z) are dual relations, they contain the same

information, so the last set of equations in (3') can be redundant. This can be seen by

considering the case of scalar z, where the last equation in (3`) degenerates to an identity which

adds no information in econometric estimation. (For a single-input, abatement function c(v,g) .

is the reciprocal image of G(z).)

•

•





A consistent approach is to develop an instrumental regression of observed z on p,w, and

v from the relationship,

z(p,w,v) = cv(v,g(p,w,v)).

Because g(p,w,v) depends upon the parameters of R(p,w;g), the parameters of either c(v,g) or

R(p,w;g) usually cannot be identified from this regression, but. a consistent estimate of z(p,w,v)

is available. An obvious choice is to approximate this reduced form with a suitably flexible

functional form. Once this regression has been fit, then predicted values for the z(p,w,v) can be

fit and inserted into the first m+n equations in (3') which can then be used to estimate the

parameters of R(p,w;g) and G(z) jointly. The cost correspondence can then be used to generate

c(v,g).

Another approach relies on recognizing that g(p,w,v) solves

(4) Rg(p,w;g(p,w,v)) = cg(v,g(p,w,v)),

which is the first-order condition for (1). If a closed form solution to (4) exists, it can substitute

into the right-hand side of (3). Two things should be noted about this approach. First, g(p,w,v)

will depend upon the parameters of both R(p,w;g) and c(v,g). Thus, even if these functions are

linear in parameters, nonlinear regression techniques will be necessary. Second, because this

approach uses all available information it should be efficient econometrically for given R(p,w;g)

and c(v,g). An important drawback, however, is computational complexity.

A third alternative, which we pursue and is fully explained below, is to use the solution

to (4) in an instrumental-variable regression to estimate only the parameters of c(v,g). Once this

is done, an estimate of G(z) can be created and used in (3).

Before leaving this section it is worthwhile to consider the standard approach for dealing

with intermediate and aggregate inputs .(e.g. Ball (1988)). Empirically, separable structures are

8



usually used to justify the creation of aggregate inputs and aggregate input prices. This approach

also presumes the input aggregators are homothetic. Suppose that G(z) is homothetic. Then the

abatement cost function must assume the general form h(g)c(v) (Chambers, Chapter 2), where

c(v) is a cost function for a linearly homogeneous technology. Hence,

n(p,w,v) = Maxg(11(p,w;g) - c(v,g))

= Maxg(R(p,w;g) -c(v)h(g))

=

where it*(p,w,c(v)) satisfies all the properties of profit functions in p,w, and c(v). Thus, c(v) can

be treated exactly as if it were an input price. Unfortunately, our a priori knowledge of G(z)

implies that it cannot be homothetic, so this construct is not available here.

An Empirical Specification

To illustrate the procedures discussed above, we use an aggregate, time-series (1949-1990)

data set for the United States agricultural production sector that has been the basis for a number

of other empirical studies of supply-response in U.S. agriculture (Ball (1985); Ball (1988);

Chavas and Cox; Chambers and Pope) using a variety of empirical techniques. These data were

graciously supplied by V. Eldon Ball of the Economic Research and are described in detail in

Ball (1985) and Ball (1988). Aggregate U.S. agricultural production (Y) is presumed to depend

upon six aggregate inputs: land (A), labor (L), pesticides (Z), fertilizer (F), materials (M), and

capital (K). The aggregate technology is described by a concave production function in which

abatement activity enters multiplicatively as in Babcock, Lichtenberg and Zilberman and

Carrasco7Tauber and Moffitt:

Y = G(Z)H(L, F, M, K, A; t).



Here t stands for time and indexes the state of the technology at time t. It is included because

our data are time series in nature. This specification requires production to be zero when

abatement is zero. When abatement equals one, maximum agricultural output is given by H(L,

F, M, K, A, t). However, abatement is not necessarily zero when Z is zero, i.e., G can be

specified so that G(0) > 0. In this case, G(0)H(L, F, M, K, A, t) gives output in the absence of

- pesticides.

Our main assumption here is that the abatement model applies at the aggregate level. We

do not presume that the production structure specified above and estimated below emerges from

the consistent aggregation of microeconomic entities to the macro level. Indeed, this presumption

is untenable in the context of the abatement model specified above. To see why consider the

following thought experiment: Suppose that there are N firms each of which uses the same

amount of L, F, M, K, and A but different amounts of pesticides. Using a subscript i to denote

the ith firm, the 
th 
firm's output is then: •

Yi = G(Z)1-1(L, F, M, K, A; t)

and total output is

Y = = ZG(Zi)H(L, F, M, K, A; t).

To be able to construct a model of aggregate output one must have observations on each firm's

use of pesticides. Our data is for aggregate pesticide utilization. Thus, if our above specification

were to result from consistent aggregation of these microeconomic entities it must be true that

G(Z) =

where we remind the reader that Z now stands for aggregate pesticide usage, zz. This last

equation is known as Cauchy's equation and it is well known (Aczel) that it can only apply if

10



G(z) is linear, i.e., G(z) = gz. But as pointed out above, linearity of G(z) violates the basic

abatement properties because a linear function cannot be constrained to lie in the unit interval.

Another problem with assuming that the aggregate production structure results from the

consistent aggregation of profit maximizing entities is the impossibility result reported in Pope

and Chambers which demonstrates that one cannot create quantity aggregates for profit

maximizers which are the sum of micro quantities and still satisfy the homogeneity properties for

each of the individual profit maximizers. Because we intend to estimate a restricted-profit

function, the Pope-Chambers impossibility result applies. Thus, we follow standard practice in

the aggregate empirical production literature (Antle, Ball (1986), Lee and Chambers, Ball (1988),

Capalbo and Denny, Chavas and Cox) and assume that the theory deduced for microeconomic

entities applies at the aggregate level. This assumption has well-known limitations and the usual

caveats apply here. However, this assumption also has served as the basis of much of the

existing empirical literature in applied production and consumption analysis. In fact, much of

our empirical knowledge of supply-response systems, the conventional wisdom so to speak, is

based upon models which fail the Pope-Chambers impossibility criterion.

Besides the aggregation-across-firms problem, there also exists the problem of using a

single scalar measure of pesticide applications. Our theory has been derived for the case where

z is a vector. Our empirical application utilizes a single implicit Tornqvist quantity index of all

pesticides (see Ball (1985) for a discussion of its derivation). Other aggregate analyses of

pesticides use different measures of aggregate pesticide use. Clark and Carlson used total pounds

of insecticides, fungicides and herbicides, which has the advantage of separating types of

pesticides, but does so only to a limited extent and which has the disadvantage of aggregating

chemicals of differing effectiveness. Carrasco-Tauber and Moffitt, following Headley, used

P
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average per-farm expenditures on all pesticides, a measure that confounds price and quantity

effects and, hence, cannot be strictly interpreted as an input. Moreover, more effective pesticides

both are used in smaller quantities and tend to be more expensive, so it is unclear whether

expenditures capture variations in quality. Our measure is thus preferable to using expenditures

or sums of raw quantities on conceptual grounds. However, use of any single measure of

pesticide use inevitably implies the loss of precision and reality in estimation and thus must

dictate caution in the interpretation of our results.

The problem of aggregation is not unique to pesticides, but applies to all indexes and

aggregates of both input and output quantities derived by combining disparate inputs and output.

Thus virtually all applied production models, even many cross-sectional ones, suffer from this

problem. This shortcoming may be less apparent in traditional production analyses because they

do not focus on the roles that specific inputs play in the production process, but it is none the

less real.

These considerations suggest that the development of aggregate data sets and notions of

aggregation which circumvent these difficulties is an important area for future research. They

also suggest that our dual representation of the LZ specification can be only be fully accepted

after it has been thoroughly tested using appropriately aggregated data sets and cross-sectional

data sets. Both of these are major research tasks in their own right and go far beyond the scope

of the present paper which is to develop a generalization of the LZ representation, develop the

dual implications of the generalization, and present an empirical illustration of how to apply the

new methodology implied by the latter developments. Our future research will address both the

aggregation issue and consider cross-sectional tests of the generalized model presented in the first

section.

12
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Because our data are predicated upon the assumption of constant returns to scale (Ball

(1988)), we impose constant returns in all inputs but time. Hence,

Y' = G(Z/A)H(L/A, F/A, M/A, K/A, 1; t) = G(r)h(L', F', 1\41,IC;t)

where primes ( ) denote per-acre amounts.

We consider two representations of abatement, an exponential and a logistic, both of

which have closed-form solutions for pesticide demand.2 The exponential specification is:

G(Z') = 1 - exp(a - AZ')

where a and X are parameters. If > 0, this abatement function is both nondecreasing and

concave as required. Dual to this abatement function is

c(v,g) = v[a - in (1-g)]/

- which satisfies all the standard properties of cost functions. The logistic specification is:

G(r) = 1/[1 + exp(0 - wr)]

where Q .and Ni are parameters. Dual to this abatement function is

c(v,g) = v[0 - ln((1-g)/g)1/111,

which satisfies the standard properties of cost functions for g > 1/2.

Dual to the production function is the restricted profit function (land held fixed):

R*(p,w; A, g, t) = MaxLzwx{pgH(L, F, M, K, A,t) - LL - wFF - wmM - K}

= Maxu.p.wic,A{pgh(L', F', M',K';t) -

wKK'l

= A R°(p

where p* = pg, and

• R°(p*, wL, wF, Wm, WK;

WL, WF, Wm, W160

wLL - - wFF' -

= Max {p*h(L', N41,1V; ) - wLL' - wmM - w Fe -wicK')

13
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is a restricted profit function and is appropriately interpreted as the marginal (average) land rent.

R°(p*, w , w , Wm  wK; t) is the focus of the rest of the analysis. The presumption that abatement

shifts production multiplicatively has the dual reflection that abatement can be modelled as if it

multiplicatively rescales the output price. Structurally, this is similar to the way in which output

augmenting technical change is modelled. Econometrically it has several very interesting

implications: Once R°(p*, wL, wF, wm, wK, t) is estimated, the laximum restricted profit per acre

is R°(p, wL, wF, wm, wK; t). Maximum output consistent with restricted profit maximization is

R°1(p„ wF, wm, WK; t) by the Hotelling-Shephard Lemma, and per-acre input utilization

consistent with maximum abatement is -R°(p, wL, wF, wm, INK; A).

Our econometric approach uses expression (4) and the Hotelling-Shephard Lemma to solve

for the optimal level of abatement:

g = Xpr/ ( XpY' + v)

for the exponential abatement technology and

g = - v)AITY'

for the logistic abatement technology. Using these results in the last equation in (3) gives the

optimal level of pesticide use

(5a) Z' = ?C' a + ln(XpY' + v) - In vl

in the exponential case and

(5b) — + ln(lifpY1 - v) - in v]

in the logistic case.

The parametric specification of R°(p*, wL, wF, w, wK; t) is the modified generalized-

Leontief .form

R°(p*, wL, wF, wm, WK; t) = (avp* + 1„bp,(wi p*)1/2 + 1/2 IiIkbik(wi wk)112)



+ t(tpp* +1„-ciwi),

where ap, bik. and the ti are parameters to be estimated, and bu, = bu. Apply the Hotelling-

Shephard lemma to get the following expressions for the aggregate per-acre supply and derived

demands for a given g:

(6) Y' = Rap + 1/2Eibp1(w1 / p*)112 ) + ttp],g,

I = [bp1(p*/w1)112 + + tiw, (I = F', L', K', M').

Together expressions (5) and (6) describe the aggregate supply-response system including the

specified pesticide demand equation. To each equation in (5a,b) and (6), we appended an

additive error term. Assume that each of these error terms is independently, identically

distributed over time around a mean of zero and contemporaneously correlated with one another.

The system of equations represented by (5a or 5b) and (6) is a nonlinear, simultaneous

equations system. Consistent estimates were obtained using the following three-stage strategy.

In the first stage, a reduced-form equation.for pr was estimated using a flexible functional form

of all the prices in the system and time. That estimated equation was used to create a predicted

value for pY'. In the second stage, expression (5) was estimated by nonlinear least squares after

replacing pY' with its predicted value. This yields a consistent estimate of a (0) and X (w) in

the exponential (logistic) case. When combined with the fitted value of pesticide demand

obtained from the estimated version of (5), these estimates provide a consistent estimate of

g(p,w,v). This predicted value for g was then substituted into (6) which was estimated using

Zellner's seemingly unrelated regression technique using SAS/PC. At the suggestion of a

reviewer two versions of both models were fit: one version that corrected for potential

autocorrelation problems in the estimated residuals and one that did not. We corrected for

autocorrelation for both the pesticide demand equation and the restricted profit system. To

15



correct for potential autocorrelation problems in the pesticide demand equation, we took the

estimated residuals from the uncorrected model and used these to perform a Cochrane-Orcutt

correction of the data and then refit the corrected model using nonlinear least squares. For the

restricted profit system, Parks' generalization of Zellner's seemingly unrelated regression

technique was applied to the system of equations described above. This estimation was done in

LIMDEP. With one exception discussed below, the qualitative results for both versions of the

model were highly similar. All estimation was performed on a Gateway 2000 486DX/33

computer.'

Empirical Results

Table 1 report two sets of estimated parameters and 'their standard errors corresponding

to the exponential and logistic abatement models. Both models give virtually identical results,

suggesting that the estimates are robust with respect to small changes in the specification of G(z).

To conserve space we only report estimates from the uncorrected system. Estimates from the

autocorrelation-corrected model are available upon request from the authors.

Estimated Damage

The estimated parameters can be used to construct consistent estimates of abatement, G(z),

and percentage pesticide damage, 1 - G(z), using the fitted values of pesticide demand, Z'.4

Because we use a single-product specification, our abatement estimates are for total U.S.

agricultural output, including both crops and animal products. Depending on the year, animal

products represent between 47 and 60 percent of the total, with this share falling over time. If

we adopt the plausible assumption that pest damage to animal products is negligible, i.e., that all
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pesticide use is directed toward crops, then, letting a be the share of crops in the value of total

output, crop damage can be estimated as

1 - G(r) = exp(a - XZ'Va

in the exponential case and

1 - G(r) = exp(0 - v'Z')/(of 1 + exp(0 -

in the logistic case.

Using this admittedly crude approximation, both models indicate crop damage on the order

of 15 percent during the early 1950's and crop damage falling steadily as pesticide use spread,

reaching 11 percent in the mid 1960's, 6 percent in the mid 1970's and stabilizing at about 3

percent from 1979 through the ensuing decade. (The autocorrelation-corrected model suggested

slightly higher crop damage in the early 1950s, approximately 20 percent, but virtually identical

estimates of crop damage for the rest of the sample period.) Thus; our results suggest much lower

- losses from pest damage than estimated by crop scientists (see for example Cramer and Pimentel

et al.). One explanation is that their studies may ignore the full range of adjustments that farmers

make in actual field conditions. However, the highly aggregate nature of our data, discussed

above, dictates a need for caution in the interpretation of our results and for further research

applying our methods to more disaggregate data to draw firm conclusions on actual damage

levels.

In interpreting our damage estimates, one should also recognize that much more precise

estimates of crop damage can be achieved by using the multioutput production model developed

in the theoretical section. We did not pursue that approach here because our data were limited

and our primary fodus in this study is on developing a workable and flexible alternative to current

pesticide modelling practices, which are all single product in nature.
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Estimated Supply and Demand Elasticities

For the supply-response system, two sets of elasticities are relevant. The first are the

short-run elasticities corresponding to fixed abatement levels. These elasticities can be calculated

from the estimated parameters, e.g., the supply elasticity is calculated as pgR°11(pg,w)/ R°1(pg,w).

These elasticities are reported, at sample means, for both versions of the model in Table 2a. No

short-run pesticide elasticity is reported because for a fixed g pesticide demand is perfectly price-

inelastic in our specification. All elasticities are of the expected signs in both versions of the

model and compare favorably with other elasticities estimated from aggregate data (Antle; Ball

(1988)). Although all elasticities are of the expected signs, the estimated R°(pg,w) is not convex

at all data points. In particular, at the sample mean one of the calculated eigenvalues for the

Hessian matrix of R°(pg,w) in prices is slightly negative. Therefore, we cannot conclude that the

estimated R°(pg,w) is convex at that point. Nonconvexity of R°(pg,w), however, is not a problem

unique -to this study, and similar problems have been encountered with other versions of this data

set (Ball (1988)). The typical method for resolving this problem is to impose convexity upon the

data using either the methods of Lau or Diewert and Wales. We did not pursue this option,

which involves substantial additional computational complexity, because of the limited aims of

the present study, i.e., illustrating an estimation procedure.

The second set of elasticities reported are the long-run elasticities that exploit the

conditionally additive nature of the LZ model. These elasticities correspond to the optimal

solution to (1). Thus, they characterize implicitly rt(p,w,v), and, in principle, could be integrated

to obtain 7t(p,w,v). Our strategy for calculating them exploits expression (2) and the fact that,

Yv(P,w,v) = irpviThw,V = Rpg (p,w;g(p,w,v)),g,(p,w,v)
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where gv(p,w,v) is calculated by implicit differentiation of (2). These long-run elasticities are

reported in Table 2b. Again the estimates for both specifications of abatement are virtually

identical. The short-run and long-run elasticities are subject to the LeChatelier Principle, i.e.,

long-run, own-price elasticities exceed the corresponding short-run elasticities in absolute value.

Our calculations numerically confirm this principle. All elasticities are of the expected sign and

of plausible values when compared with other studies (see for example Antle; Ball (1988)).

Negative cross-price elasticities indicate that labor, fertilizer, materials and capital are all

complementary with pesticides. (For the autocorrelation-corrected model pesticides and fertilizer

are substitutes.) Because these cross-elasticities are all small (the largest is under 0.11),

reductions in pesticide use, ceteris paribus, will likely occasion at most rather modest decreases

in these inputs; this is in accord with a growing conventional wisdom.

The elasticity of pesticide demand with respect to output price is quite high, roughly 2.7

in both specifications. This empirical result, which is affirmed by the autocorrelation-corrected

version of the model, supports the increasingly widely held belief that pesticide use would be

substantially lower in the absence of farm subsidies (see for example Reichelderfer).

Elasticities of abatement derived from the pesticide-elasticity estimates are reported in the

last line of Table 2b. Abatement is extremely inelastic to changes in all input prices implying

that even relatively large changes in price will have small effects on abatement levels and thus

pest damage. This result, too, is in accord with LZ's prediction about the behavior of abatement

as it approaches 1 and with the results from the autocorrelation-corrected model.

For purposes of comparison, the long-run elasticity estimates for the autocorrelation-

corrected system are reported in Table 2c. We found somewhat lower price responsiveness for

the restricted profit system estimated using Parks' procedure than for the system not corrected for
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autocorrelation. For example, pesticide demand is own-price inelastic in the corrected system

but elastic in the uncorrected system. All own-price elasticities in the autocorrelation-corrected

system are of the expected sign, but all are also somewhat lower than those reported above. The

elasticity estimates from both systems are well within the range of other estimates presented in

the literature. The main qualitative difference between the results reported in Table 2b and those

reported in Table 2c are that fertilizer emerges as a regressive input (its utilization rises as the

price of output falls) in the autocorrelation-corrected version of the model.

Maximum Output, Minimum Output, and Actual Output

Maximum potential output, Rp(p,w,l) gives an upper bound on crop profit maximizing

production. Damage in the absence of pesticides 0(0) gives an upper bound on damage, so that

output in the absence of pesticides, Rp(p,w,G(0)), gives a lower bound on profit maximizing

aggregate production. Figures 1 and 2 compare pictorially, for the sample period, our estimates

of aggregate production under actual pesticide use with estimated maximum potential output,

Rp(p,w,l) and with output at actual prices and zero pesticide use, Rp(p,w,G(0)), for the

exponential and logistic specifications, respectively. (The autocorrelation-corrected system yields

virtually identical versions of Figures 1 and 2.) Prior to the widespread adoption of pesticides,

damage was close to the lower bound. As pesticide use increased, output moved closer to the

upper bound of maximum potential output, stabilizing at close to 99 percent of it.

Damage Control vs. Conventional Specifications

. One of the key elements of the LZ critique of traditional production modelling is that by

ignoring the biological content of agricultural production relations, it can unknowingly introduce

biases into empirical estimates of the technology. Therefore, to assess the difference that our

approach makes in modelling, we have estimated an alternative model that ignores the unique
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role that abatement activities play in agricultural production models. The most natural alternative

to our model is a generalized-Leontief specification of n(p*,w,v,t) (i.e., a generalized-Leontief,

land-rent function)

n(p ,w,v,t) = (app* + avv + Ekbk,(WkV)1/2 bvp(vp)1/2 + p*)1/2 + 1/2 Ei/kb,k(w, wk)1/2)

+ t(tpp* + t1w1 + ;v),

(The parameters of n(p*,w,v,t) are not the same as the parameters of R°.) This specification was

estimated using the same empirical procedures as to estimate the parameters of R°. The estimated

parameters are reported in Table 3 and elasticities evaluated at the sample mean are reported in

Table 4. (Only one set of elasticities are reported because this profit function is not conditionally

additive.) Although a perusal of the estimated parameters suggests this model fits the data rather

well, a glance at the elasticity matrix reveals a problem. At the mean of the data (and at other

data points), the pesticide demand equation is upward sloping, suggesting that raising the price

of pesticides actually increases pesticide usage. Other occurrences of estimated pesticide demand

equations sloping in the wrong direction are not unknown in the empirical production literature

(Chambers and Pope). Various heuristic explanations for this phenomenon have been offered.

But the success of our model in capturing the appropriate slope of the pesticide demand equation

suggests that the problem may lie in specifications that ignore the restrictions arising from the

nature of damage control.

Besides the presence of an upward sloping pesticide demand problem, this production

model encountered severe problems with satisfying the convexity properties of profit functions.

At the sample mean, three of the eigenvalues calculated for the Hessian matrix of the profit

function were negative (compared to one which was only slightly negative for the LZ

specification).
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Although the generalized-Leontief n(p*,w,v,t) and our earlier model are not nested in a

classical statistical sense, they can be compared using nonnested hypothesis testing procedures.

Our approach to this problem was to consider an artificial-regression model described by the

following system of equations:

Y = (1- ;) yir YG

x, = (1 - xl, + xiG15,

for i = 1, n. Here subscript it refers the supply or demand function that would be generated

by the generalized-Leontief n(p*,w,v,t) while subscript G refers to the supply or demand function

that would emerge from our model. A nonnested hypothesis test that corresponds to the single-

equation J-test for the correctness of the generalized-Leontief version of the technology would

be to test that ; = 15, = 0 for all i. As with the standard J-test, the above model will not generally

be identified. Therefore, we substituted estimates of supply and demands derived from our model

for .yG and for xiG (as appropriate) before reestimating this model using Zellner's seemingly

unrelated regression method. (Under the hypothesis that the 0-system is appropriate, this

estimation procedure is consistent.) We used a joint F test to test the null hypothesis that

= = 0 for all i. The computed value of the joint F statistic was 17.938 and its p-value was

0.0001, leading us to reject this hypothesis at all reasonable levels of significance. We also

estimated a version of the model where ; and 15,(i = 1, , n) were all set equal to p. The non-

nested test then became a test of whether p = 0. The null hypotheses that p = 0 was rejected at

all traditional levels of significance. Thus, we find no statistical reason to prefer the conventional

specification to the generalized LZ mode1.5





Final Remarks

The principal debates over pesticide policy hinge critically on productivity issues. The

extent to which pesticide use ought to be curtailed to protect human health and the environment

depends on the extent to which food and fiber production would fall. Whether taxes should be

used instead of direct regulation depends in part on the price responsiveness of pesticide demand,

since governments tend to be reluctant to impose disproportionately large taxes. When and where

restrictions on pesticide use will improve environmental quality overall depends in part on

substitution between pesticides and other inputs.

To date, information on pesticide productivity and pesticide demand has been quite

inadequate. Econometric methods have been used in only a handful of cases. Most analyses rely

on assessments of crop production experts for information on alternative production systems and

changes in crop damage, despite the fact that these assessments estimate average rather than

marginal, productivity, do not take into account adjustments by individual farmers; are subject to

political biases, and have often proven wrong in retrospect.

LZ proposed an approach to estimating pesticide productivity econometrically that

captures the fundamental biological role of pesticides and permits indirect estimation of crop

damage. We generalize the LZ approach while enhancing its flexibility, and illustrate the new

methodology with an application using data on aggregate U.S. agricultural production. The

advantages of this new methodology are an ability to recapture pest damage directly from

observed data and a great increase in the ability to model the production technology flexibly.

Our analysis uses time-series data for the entire United States. Thus, our actual empirical

results should be interpreted with caution. Disaggregating this data by crop types and/or regions

would permit a decisive analysis of damage differences and price elasticities by crop and/or
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region. Comparing abatement functions obtained from cross-sectional data at different points in

time would allow analysis of changes in abatement technology due to the spread of resistance or

other factors. Thus, considerable scope exists for future applications of our methodology.





Footnotes

1. In contrast to the LZ formulation (p. 264), the cost of abatement is a nonlinear function of

g. Standard duality results ensure that the cost of abatement is linear in g if and only if G(z) is

positively linearly homogeneous. In the case of a scalar input, linearity of the cost of abatement

in g implies a linear abatement function. Both linearly homogeneous and linear abatement

functions are inconsistent with g lying between 0 and 1, which in turn derives from the biological

restriction that damage cannot exceed potential output.

2. We follow previous econometric work on pesticide productivity--as well as agricultural

production generally--in treating production using a static framework (except for including a time

trend to capture technological change). We ignore interseasonal dynamic considerations such as

the spread of resistance (see for example Regev, Shalit and Gutierrez; Lazarus and Dixon) as well

as intraseasonal pest population dynamics and pest-crop interactions. Clark and Carlson present

evidence indicating that resistance has had statistically indiscernible effects in weed control,

which accounts for the bulk of aggregate pesticide use in the U.S., as well as in disease control;

thus, the effects of ignoring resistance should be small. Blackwell and Pagoulatos propose an

alternative damage control specification, but it is valid for the case of a single pest without
predators or competitors and in which pesticides are applied only once and all other inputs are

applied only at planting time--conditions that are too restrictive for a characterization of aggregate

U.S. agricultural production.

3. All equations were estimated under the assumption that all the time series involved were

stationary. As a reviewer points out, this may be implausible. If the time series are not

stationary, the resulting estimates could be seriously flawed. However, our model is highly

nonlinear. Hence, recent developments in cointegration analysis are not applicable to our

problem. Thus, like other researchers using these and similar data, we ignore the implications

of potential nonstationarity. At some point, when the theory of nonlinear cointegrated relations

has been more fully developed, it would be interesting to reexamine our model using such new

techniques.

4. For a related approach to obtaining biological data from market data, see Chambers and

Strand.

5. Because the LZ model is estimated in a stepwise fashion, no analogous single-regression test
for whether the LZ is to be preferred to the conventional model exists. However, the overall

poor performance of the generalized-Leontief n*(p,w,v,t) in terms of its economic properties

seems to rule it out as a plausible alternative to the LZ which has much better economic

properties.
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Table 1: Parameter Estimates for the Exponential and Logistic Abatement Specifications

Parameter

Exponential Logistic

Estimate

i

Standard Error Estimate

,

Standard Error

X/Alf 3.075606

A

0.24922 3.393526 0.26276

we -2.665343 0.04658 -2.612253 0.05125

ap 12.902561
'1

2.028708 12.856560
,

2.031720

bpL -5.041100 1.933796 -4.949614 1.944650

bpF -5.353494 0.695796 -5.345073 0.696839

bpm -2.160809

4,

2.528963 -2.193738 2.532546

. bpK -6.373086 4 1.759182 -6.346542 1.760405

bu, -1.769652

4

1.473930 -1.830444 1.482574

bi,F . 0.693290

4,

0.406854 • 0.685814 0.408288

bLm -3.279458 1.164158 -3.295743 , 1.166415,

bi,K 0.434088

4

0.850212 0.401595 . 0.852718

bFF 1.994731 0.248271 1.995001 0.248881

bFm 0.064382 0.542684 0.065607 0.542725

bFK 2.855737 0.269705 4 2.854909 0.269963

bmm 1.859728 2.696463 1.896686 2.700412

b mK -0.949624 0.857806 -0.937498 0.857307

bKK 1.548012 1.007063

,

1.535103 1.007653

Tr, 0.290269 0.017198 0.289385 0.017259

TT, 0.035636 0.009837

,

0.036064

,

0.009900

TF

,

-0.027308

,

0.003000 -0.027263 0.003012

tm -0.061367 0.009597 -0.061364 0.009634

TIC -0.042960 0.006271 -0.042788 0.006289
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Table 2a: Short-run elasticities calculated at the sample mean

price-4

lquantity

Output Labor

,

Fertilizer Materials Capital

Exponential Model

Output 0.43348 -0.10478 -0.12348 -0.049807 -0.15541,

Labor 0.31088 -0.43691

4 •

-0.04118 0.19438

i

-0.027220

Fertilizer 2.44248 -0.66209 -0.81532 -0.028231 -0.91136

Materials 0.16468 0.21661 -0.004719 -0.45016

4

0.07359

Capital 0.70093 -0.041377 -0.30206 0.10038 -0.45787

Logistic Model

Output 0.43188 -0.10297 -0.12340 -0.050611 -0.15490

Labor 0.30551 -0.43499 -0.040675 0.19534 -0.025182

Fertilizer 2.44084 -0.66303 -0.81647 -0.028768 -0.91265

Materials 0.16734 0.21769 -0.004809 ' -0.45287 0.07265

Capital 0.69864 -0.038279 -0.30198

i

0.099098 -0.45748





•

Table 2b: Long-run elasticities calculated at the sample mean

price->

lquantity

Output Labor Fertilizer Materials

.

Capital Pesticide

, 

Exponential Model

Output ,. 0.54194 -0.11288 -0.13303 -0.05366 -0.16743 -0.06130

Labor 0.33491 , -0.43871 -0.04323

,

0.19352 -0.02988 -0.01358

Fertilizer 2.63132 -0.28824 . -0.83194

.

-0.03494 -1.34572 -0.10672

Materials 0.17741 0.21566 -0.00584 -0.45062 0.07218 -0.00720

Capital 0.75512 , -0.04542 -0.30683 0.098456 -0.46387 -0.03063

Pesticide 2.70909 -0.20233 -0.23844

,

-0.09618 -0.30010 -1.53104

Abatement 0.07731 -0.00577 -0.00680 -0.00275 -0.00856 -0.04369

• Logistic Model

Output 0.54126 -0.11101 -0.13302 -0.05456 -0.16699 -0.06105

Labor 0.32935 -0.43675 -0.04277 0.19448 -0.02782 -0.01331

Fertilizer 2.63131 -0.28517 -0.83324 -0.03565 -1.34547 -0.10631

Materials 0.18040 • 0.21673 -0.00596 -0.45334 0.:071207 -0.00729

Capital 0.75316 -0.04228 -0.30678 0.09713 -0.46350 -0.03043

Pesticide 2.69800 -0.19821 -0.23753 -0.09742 -0.29818 -1.50587

Abatement 0.07804 -0.00573 -0.00687 -0.00282 -0.00862 -0.04356
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Table 2c: Long-run elasticities of the autocorrelation-corrected model, calculated at the sample

mean

price-4

lquantity

Output Labor Capital Materials Fertilizer Pesticide

Exponential Model

Output 0.26346 -0.02512 -0.03529 -0.04007 0.04415 -0.05444

Labor 0.07453 -0.22356 -0.01326 0.13336

,

0.04153 -0.00339

Capital i 0.15918 -0.02016 -0.24389

4

0.11957

, ,

0.01281

i

-0.00723

Materials 0.13250 0.14893 0.08766 -0.46160

,

0.11541

,

-0.00602

Fertilizer -0.87337 0.27688 0.05616 0.69045 -0.30106 0.03968

Pesticide 2.40608 -0.05043 -0.07086 -0.08045 0.08864 _ -0.60271

. Logistic Model

,

Output 0.25973 -0.02947 -0.03328 -0.04233 0.04393 -0.05635

Labor 0.08743 -0.22669 -0.01568 0.12864 0.04083 -0.00412

Capital 0.15011 -0.02383

4

-0.2381.5 0.12245 0.01438 -0.00708

Materials 0.13996 0.14336 0.08977 -0.46055 0.11522 -0.00660

. Fertilizer -0.86962 0.27220 0.06305 0.68932 -0-.30001 . '0:04099

Pesticide 2.49016 -0.06142 -0.06938 -0.08824 0.09158 -0.67038
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Table 3: Parameter estimates for the conventional generalized-Leontief system

Parameter Estimate Standard Error

bpp 9.053506 1.986584

bpi, -2.414691 1.740267

bpK -3.325207 1.676242

bpm 1.612477 • 2.368800

bpp -3.477347 0.648827

bpz

,

-2.315334 0.605846

-1.329611 0.671525

bLK -0.691577 0.781885

bLm -4.398103 1.101933

bLF -0.186491 0.388425

bLz 0.733905 0.377803

bKK

,

0.269366 0.480258

bKm -2.278713 0.873705

bKF - •

_

2.03525471266377

bKz 0.490050 0.242991

bmm -0.371563 1.258498

bmF

, _

-0.480209 0.545155

bmz i
0.621291 0.469572

bFF 0.540985 0.138836

bFz 0.704698 0.163632

bzz 0.230289 0.089484

tp 0.262179 0.015497

TL 0.045319 0.008953

TK -0.032940.005928•

xm -0.044468 0.009423

• TF • -0.018561 0.003025

' tz -0.020493 0.003006
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Table 4: Long-run Elasticities of the generalized-Leontief Model Calculated at the San pie Mean

price-->

lquantity

Output Labor Fertilizer Materials Capital

,

Pesticide

, 

Output 0.23705 -0.05125 -0.08190 0.03795 -0.08280 -0.05906

Labor 0.15205 -0.04200 0.01106 i 0.26068 0.04337 -0.04714

Fertilizer 1.62001 0.07374 -0.06253 0.21057 -0.94417 -0.33486

Materials

.

-0.12549

.

0.29050 0.03520

i

-0.32748 0.17659 -0.04932,

Capital 0.37344 0.06592 -0.21528 0.24087 -0.40882

,

-0.05614

, Pesticide 2.60989 -0.70215

,

-0.74816 -0.65918 -0.55006

,

0.04966 .
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