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Highlights 

• Automated parameterisation techniques are explored using the freeware PEST 

• Optimisation was fastest when the Gauss-Levenberg-Marquardt algorithm was employed 

• Tikhonov regularisation with SVD or LSQR significantly improved model calibration 

• CMAES resulted in the best fit but required the longest optimisation times 

• Log transformation of parameters generally improved calibration quality 
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Abstract 

Several techniques for automatic parameterisation are explored using the software PEST. We 

parameterised the biophysical systems model APSIM with measurements from a maize cropping 

experiment with the objective of finding algorithms that resulted in the least distance between 

modelled and measured data (φ) in the shortest possible time. APSIM parameters were optimised 

using a weighted least-squares approach that minimised the value of φ. Optimisation techniques 

included the Gauss-Marquardt-Levenberg (GML) algorithm, singular value decomposition (SVD), 

least squares with QR decomposition (LSQR), Tikhonov regularisation, and covariance matrix 

adaptation-evolution strategy (CMAES).  

In general, CMAES with log transformed APSIM parameters and larger population size resulted in the 

lowest φ, but this approach required significantly longer to converge compared with other 

optimisation algorithms. Regularisation treatments with log transformed parameters also resulted in 

low φ values when combined with SVD or LSQR; LSQR treatments with no regularisation tended to 

converge earliest.  

In addition to an analysis of several PEST algorithms, this study provides a narrative on how 

methodologies presented here could be generalised and applied to other models.  
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Software availability 

• APSIM version 7.8, programmed in C#.NET and VB.NET, freely available subject to user licencing 

at http://www.apsim.info/Products/Downloads.aspx  

• PEST version 14.2, programmed in FORTRAN, freely available at 

http://www.pesthomepage.org/ , Contact address Watermark Numerical Computing, 336 

Cliveden Avenue, Corinda 4075, Australia. Telephone 07 3379 1664; Email address 

johndoherty@ozemail.com.au 

 

Introduction 

Parameterisation (or parameterization, or calibration) is the process of adjusting the parameters of a 

mathematical model to improve the agreement or fit between model outputs and the observed or 

measured data (Wallach et al., 2014). In modelling specific agricultural scenarios, such as crop 

production in a specific location, models typically first require parameterisation, wherein their 

outputs conform with measured data. An extensive survey of methods used to parameterise crop 

models found that nearly half the 211 respondents used trial-and-error to search for the best-fit 

parameters (Seidel et al., 2018), such as that applied by Harrison et al. (2012). However, manual 

calibration techniques have the disadvantage of allowing only a small number of parameters to be 

calibrated, with a large amount of parameter combinations remaining uninvestigated. Indeed, often 

such approaches involve less than 10 parameters (Seidel et al., 2018). Recently Holzworth et al. 

(2015) emphasised the need for a more objective and reproducible calibration and validation 

methodology as a way forward for models in a growing agricultural domain, suggesting that the 

http://www.apsim.info/Products/Downloads.aspx
http://www.pesthomepage.org/
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availability of a reproducible calibration methodology helps simplify model calibration 

documentation in an industry where model documentation has been a long-standing issue 

(Holzworth et al., 2015; Sexton et al., 2016). 

Automated approaches aim to optimise model parameters through programmed directives that 

assess sequential changes in the objective function (φ), often calculated as the cumulative squared 

difference between the observed data and corresponding modelled data. Auto-parameterisation 

methods typically begin with initial parameter sets based on expert knowledge (prior information) 

and continue to be iteratively upgraded and thus form new parameter vectors until specified 

termination criteria are reached. In many algorithms, such criteria are based on the rate of change in 

parameters and φ over consecutive iterations. Optimisation problems of this kind may involve 

several variables, such that φ is comprised by multiple components. Although automated 

approaches for model parameterisation have existed for some time (Lacroix et al., 2002; Samanta 

and Mackay, 2003; Sequeira et al., 1994), there are few studies that have examined whether auto-

parameterisation can be used to calibrate dynamic programs such as APSIM (Keating et al., 2003) 

(but see notable exceptions by Akponikpè et al. (2010), Chen et al. (2016) and Sexton et al. (2016)). 

The limitation of past work performing optimisation of agricultural models may be because the 

objective functions formed by using such models often have discontinuities that make it difficult to 

use gradient-based minimisation methods (Buis et al., 2011). A common approach, such as that 

adopted in the crop model OptimiSTICS, is to use the Nelder–Mead simplex algorithm, which is 

adapted to non-smooth functions because the search of the optimum is not based on the 

computation of the function’s gradient. As the Nelder–Mead simplex is a local optimisation method, 

OptimiSTICS automatically repeats the minimisation with several different starting parameter values 

to minimise the risk of converging to a local minimum. However, since this approach requires the 

user to specify the number of starting points, as well as the starting values in the options file (Buis et 

al., 2011), it does not guarantee convergence on the global minimum of the response surface. Other 

approaches, such as generalised likelihood uncertainty estimation (GLUE) (Chisanga et al., 2015; 

Sexton et al., 2016) and Bayesian parameter estimation (Wallach et al., 2012), yield parameter 

estimates that are strongly dependent on the choice of likelihood function and the method of 

combining likelihood values (Seidel et al., 2018). Nonetheless, work by Sexton et al. (2016) showed 

that both GLUE and Markov Chain Monte Carlo (MCMC) calibrations resulted in accurate simulations 

of biomass and yield in the crop model APSIM-Sugar. 

Given the importance of phenology in developing new cultivars, many previous agricultural model 

optimisation studies have concentrated on crop phenological parameters. Indeed, programs such as 

GENCALC (Hunt et al., 1993), and more recently the GLUE optimisation program (Jones et al., 2011) 

have been included in the latest release of the DSSAT model (Jones et al., 2003). These tools allow 

DSSAT users to calibrate phenological parameters (and other crop parameters) of photoperiod-

sensitive plants from few observations (e.g. Marin et al., 2011). The NAG (1983) is another dedicated 

optimiser that has been used to estimate phenological parameters for APSIM crops (Carberry et al., 

2001; Farré et al., 2004; Turpin et al., 2003). However, restriction to only phenological parameters 

has meant that such studies have not simultaneously optimised other parameters, such as those 

related to soil water content or nitrous oxide emissions. Indeed, some studies have extracted model 

algorithms and programmed them in separate programs (e.g. Archontoulis et al., 2014 used R to 

program phenological equations in APSIM), which increases the risk that dynamic interactions 

between APSIM modules (such as SoilN, Plant and SurfaceOM) are not captured while parameter 

optimisation takes place. In this study, we aimed to conduct simultaneous optimisation of several 

model parameters, not just phenology. 
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The model-independent Parameter ESTimation software PEST (Doherty, 2016a) has been used 

successfully with studies of soil biogeochemical models (Necpálová et al., 2015), fractured porous 

media (Finsterle and Zhang, 2011), remote sensing (Droogers et al., 2010), and tree growth 

(Gaucherel et al., 2008). Notable advantages of PEST include that (1) the software can generally 

complete a parameter estimation process with an extremely high level of model run efficiency (Chen 

et al., 2016), (2) PEST requires little prior knowledge of programming and (3) PEST can be used on a 

wide range of mathematical models. Further, the freeware is supplied with a number of utility 

programs that facilitate iterative parameterisation, e.g. multiple rounds of parameterisation via 

replacement of optimised parameters into PEST control files (PARREP), addition of parameter prior 

information (ADDREG), differential weighting of observations (PWTADJ) and several other programs 

that prevent tedious manipulation of PEST control files by users.  

PEST optimises model parameters through successive perturbations in response to the difference 

between modelled and measured data, within which users may implement local or global 

optimisers. The default local optimisation scheme uses the Gauss-Levenberg-Marquardt algorithm 

(Marquardt, 1963), an iterative method that is a hybrid of the Gauss-Newton algorithm and the 

method of steepest descent. At each step of the iteration, the response surface (φ) is approximated 

by the φ value evaluated for the previous parameter set plus the step size multiplied by the Jacobian 

matrix (J), which is the derivative of the function with respect to the current parameter set. A critical 

constant implicit to this process is the value of the damping factor λ, which is adjusted from one 

iteration to the next. If the sum of the squared deviations between observations and measured 

values S is large, λ is reduced, bringing the algorithm closer to the Gauss-Newton algorithm, whereas 

if S is small, λ is increased, such that the algorithm approximates the method of gradient descent 
(Marquardt, 1963). When the rate of convergence is low, as would be the case when the gradient of 

φ approaches zero, λ is increased in response to reduced curvature of the objective function, 
preventing some of the reduction in parameter increment step size as the algorithm converges on 

the minimum of the response function. The factor used to adjust λ between successive iterations 
(RLAMFAC) is one of the variables examined in the present study. 

The Gauss-Marquardt-Levenberg (GML) algorithm (hereafter, the ‘default’) in PEST can be used 

either with or without Tikhonov regularisation. When properly formulated, mathematically 

regularised inversion has several advantages, including provision for multiple parameters to be 

calibrated during the matrix inversion (parameterisation) process. Doherty (2016a) indicates that  

regularised inversion promulgates minimum error variance, and is numerically stable. It does not 

founder for want of an invertible matrix as the inverse problem is formulated in a way that 

guarantees matrix invertibility. Other advantages include the allowance for heterogeneity to emerge 

in a solution where its existence is supported by data (and suppression of heterogeneity in modelled 

outcomes where it is not supported by the data), accommodation of model parameter non-

uniqueness, and identification of parameter values that cannot be estimated during inversion 

(singularity) (Doherty 2016a). 

Another optimisation algorithm that can be employed using PEST is covariance matrix evolution 

strategy (CMAES_P). Unlike the default method in PEST, however, CMAES_P does not require 

derivatives of model outputs with respect to adjustable parameters in order to enable calibration. 

Thus it can be employed where model outputs show “numerical granularity” due to model numerical 
solution instability (Doherty 2016a), or where the model is highly nonlinear and/or the response 

surface shows local minima at various scales (Hansen and Ostermeier, 2001). Evolutionary 

algorithms are based on the principle of natural selection to guide the evolution towards a global 

optimum in a discrete or real-valued search space. A population of individuals is created, evaluated 
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with a pre-defined φ, and updated by a combination of operators (selection, recombination, 

mutation) to create the next generation (Rouchier et al., 2015). This process is repeated until some 

stopping criterion is met. The principle of CMAES_P is that each generation of ψ individuals is 

created following a multivariate normal distribution in which the mean and covariance matrices are 

adapted after the evaluation of the previous generation (Rouchier et al., 2015). After each 

generation, the mean of the distribution is moved towards previously successful individuals, while 

the covariance matrix is adapted as to favour previously successful mutation steps in the future.  The 

selection is of type (ω, ψ), in that the ω best individuals of the parent generation determine the 

creation of a number ψ > ω of offsprings, and no individual from the parent generation is kept unto 

the next one (Rouchier et al., 2015).  

Where model derivatives have integrity, the default gradient-based optimisation processes of PEST 

are likely to be superior to that of CMAES_P (Doherty 2016a). In contrast, where model derivatives 

do not have integrity, the performance of CMAES_P may be superior to that of the GML algorithm 

and/or Tikhonov regularisation (Doherty 2016a). Since this study used a multi-component objective 

function comprised by several diverse biophysical datasets (e.g. grain yield, soil water content, 

nitrous oxide emissions etc.), it is likely that the φ surface contains discontinuities, local minima, 

noise, and overall is rugged, such that in several locations of the landscape, model derivatives may 

not have integrity. If this assumption is true, CMAES_P should result in lower overall φ value 
compared with PEST’s gradient-based algorithms.  

There are several applications where auto-parameterisation approaches could be used in 

agricultural modelling scenarios. The first is model-intercomparison studies, such as those 

documented by Rosenzweig et al. (2013), Lampe et al. (2014) and Ehrhardt et al. (2018). In these 

studies, users were required to calibrate their model of choice using time-series of measured data 

that were typically measured in the field (Rosenzweig et al., 2013). However, the extent to which 

anthropogenic elements and/or user predisposition influenced modelled results in such studies is 

unknown. Another application of auto-parameterisation is to extensive measured datasets, such as 

that documented by Field et al. (2016), where manual calibration procedures become too tedious 

due to the number of measured datasets assumed in the calibration. Use of an automated 

calibration program such as PEST could potentially remove some of the inherent differences in 

modelled results caused by differences in user parameterisation techniques and/or knowledge, and 

could automate standardised numerical recipes for model calibration across diverse datasets such as 

that described by Field et al. (2016). 

Previous studies have shown that PEST can successfully be used for parameterisation of APSIM 

(Akponikpè et al., 2010; Chen et al., 2016). However, these studies were focussed on APSIM and 

agronomic results rather than optimisation and applied the default PEST GML algorithm. The extent 

to which other optimisation methodologies within PEST (Tikhonov regularisation, SVD vs LSQR and 

CMAES_P) enable calibration of APSIM parameters is yet unknown, as is the CPU time required for 

optimisation of the multitude of options available to PEST users. The trade-off between optimisation 

quality and optimisation time is also important. Although optimisation generally improves with 

computational time, complex evolutionary algorithms such as CMAES_P may require hundreds of 

hours to run if the number of parameters estimated is large and the model is complex. Continuing 

optimisation processes for too long may also result in overfitting. On the other hand, premature 

convergence of an optimisation algorithm may result in poor parameterisation and thus model 

predictability. Thus, the aim of this study was to determine which PEST algorithms and settings were 

conducive to the lowest residual difference between APSIM-generated data and measurements in 

the fewest possible number of model calls. Here our focus was on optimal PEST settings, rather than 
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optimal APSIM parameters. The purpose of this study was to identify PEST algorithms (via control file 

settings) that resulted in the best fit of APSIM simulations to measured data through optimisation of 

APSIM parameters. 

 

Methods 

Experimental data 

Data were obtained from experiments conducted at Turin, Italy (44° 53'N, 7° 41'E). Replicated 

measurements were made for nitrous oxide emissions, above-ground biomass, grain yields, 

cumulative crop nitrogen uptake of above-ground biomass, harvest index, and soil water content; all 

variables except N2O were monitored over three years; N2O was monitored for two years. Four 

replicated plot measurements were made for each variable except N2O, which had three to nine 

replicates per treatment (in the present study, we compared all measured variables to simulated 

values and fitted APSIM to the means of field measurements). Full details of field experiments are 

provided in Alluvione et al. (2010), Alluvione et al. (2013) and Grignani et al. (2012); only a brief 

reprise is given here. The data used for this study were part of a larger experiment with multiple 

treatments that examined agronomic responses and greenhouse gas emissions of maize crops; here 

we used the urea treatment detailed in Grignani et al. (2012).  

The soil at the experimental site was deep, calcareous, and fertile, and had a silty loam texture. The 

long-term average yearly temperature is 11.9°C, and the long-term average yearly precipitation is 

734 mm. The climate type is F (hot temperate climate without dry season, similar to temperate 

climates), with two main rainfall periods, in spring and autumn (Supplementary information 1).On 

the day of sowing each year (19 May 2006, 4 June 2007 and 19 May 2008), experimental plots were 

prepared by mouldboard plowing at 30 cm deep. Seeds of the FAO 500 maize hybrid PR34N43 (Zea 

Mays L. Pioneer Hi-Bred) were sown 2 cm deep at densities of 7.4 seeds/m2. Mineral fertiliser as 

urea at a rate equivalent to 130 kg N/ha was applied at sowing each year. Crops were irrigated 

throughout the growing season according to evapotranspiration requirements (see Supplementary 

Information 1). Harvesting was conducted on the 22 September 2009, 10 October 2010 and 29 

September 2011. Further details of experimental conditions are provided in Grignani et al. (2012). 

Total biomass and N uptake were assessed by hand-harvesting at dent stage from an area of 15 m2 

per plot, with four plot field replicates. Plant samples, separated into grain and shoot/leaves, were 

oven-dried at 70°C and analysed for N content using a CHN elemental analyser. 

Soil NO3−N content was determined by collecting soil samples before sowing, at flowering, and after 

harvest from three soil layers (0–15, 15–30, 30–60 cm) in all plots and all years. Soil nitrates were 

extracted by shaking 100 g of moist soil with 300 mL of 1 M KCl solution for 1 h. Subsequently, the 

samples were filtered and NO3 −N concentration was determined by colorimetry with a continuous 

flow analyser. Soil moisture was measured on the same dates through weighing c. 100 g of soil 

before and after oven drying at 105°C. 

Measurements of CO2, N2O and CH4 fluxes were performed through a non-steady state closed 

chamber technique (Alluvione et al., 2009) coupled with an Innova 1412 photoacoustic infrared gas 

analyzer (LumaSense Technologies A/S, Ballerup, Denmark). Within each plot three chambers (240 

mm; height: 110 mm; wall thickness: 6.2 mm) were monitored for a total of nine measurements per 

treatment. Fluxes were estimated assuming a linear change of gas concentration over time during 
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chamber closure and applying proper corrections for fluxes underestimation by the linear model due 

to the alteration of near-surface concentration gradients (Venterea and Baker, 2008).  

 

Biophysical model for agronomic simulations 

APSIM is a biophysical model that simulates the growth and development on a daily time step in 

response to climate inputs (maximum and minimum daily temperature, solar radiation, rainfall and 

vapour pressure), soil water, nitrogen, soil organic matter and residue and crop management 

(Keating et al. 2003). The model is discussed in detail by Keating et al. (2003) and Holzworth et al. 

(2014). APSIM v7.8 was used to conduct this study. The model was initialised with soil data from 

Alluvione et al. (2013) (Supplementary information 1); these data included soil water characteristics, 

organic carbon, pH and soil texture. Crop management conditions in the model were set in line with 

experimental data described above assuming simulated tillage with discs in the absence of an option 

to simulate cultivation by mouldboard plows. 

As the FAO 500 cultivar used in the field experiments (PR34N43; see Alluvione et al. 2010) was not 

available in APSIM, a new cultivar was created in the APSIM Maize XML file using the parameters for 

the “usa_18leaf” variety provided in the default APSIM cultivars (this variety was selected as it had a 

similar thermal time to maturity as that for FAO 500). APSIM parameter files (located in the 

C:/Program Files/APSIM directory) for the crop (Maize.xml), soil (Soil.xml) and soil organic matter 

(SurfaceOrganicMatter.xml) were used to establish the cultivar PR34N43 and associated soil 

conditions, and later to demark APSIM parameters amendable for modification by PEST (see below). 

The ‘ApsimToSim’ executable provided with the default APSIM download package was used to 

create an APSIM simulation file (.sim) containing all of the APSIM parameters and management 

information from both the graphical user interface and XML files mentioned above. Availability of 

the APSIM .sim file containing all of the parameters in each simulation is a key feature allowing 

APSIM to be optimised by PEST, as is the ability to run APSIM using command prompt arguments 

specifying the location of the APSIM model executable (ApsimModel.exe in the MS Windows 

Program Files directory) and the .sim file to be used in each simulation. The ApsimModel executable 

allows PEST to run APSIM, read model outputs contained in the APSIM .out files, modify specified 

parameters in the .sim file, rerun APSIM using the modified .sim file, re-evaluate APSIM outputs, and 

so on. At the start of the parameterisation process, 115 APSIM parameters were identified as having 

moderate to significant influence on the magnitude of one or more simulation variables; these 

APSIM parameters were later used as part of the optimisation process (APSIM has much more than 

115 parameters). APSIM parameters optimised by PEST were identified through sensitivity analyses 

wherein each parameter was individually modified by 10% and the magnitude of change in APSIM 

outputs observed; any APSIM parameter causing more than 10% change in one or more APSIM 

outputs was used as a basis for selecting a given APSIM parameter for later optimisation in PEST. 

Optimised APSIM parameters included those influencing the magnitude and thus temporal 

variability in soil water (e.g. A_to_evap_fact), soil nitrate or ammonium (e.g. solute_flow_eff), 

phenology (e.g. tt_enjuv_to_init), biomass (e.g. transp_eff_cf) or grain development (e.g. 

grain_gth_rate). A complete list of APSIM parameters used for optimisation and their bounds are 

shown in Supplementary Information 2. The same APSIM parameters were optimised for all GML 

optimisation runs, and a subset of these were analysed for CMAES_P optimisation runs. APSIM 

parameter bounds were based on author experience with APSIM, as well as APSIM online literature 

via http://www.apsim.info/. As far as possible, upper and lower parameter bounds were set to 

physiologically or biophysically meaningful limits, e.g. for the default maize grain growth rate of 9.17 

mg/grain.day, we set limits of 0.1 and 10 mg/grain.day. For APSIM parameters expressed as 

http://www.apsim.info/
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fractions, such as the root exploration parameter (XF) or the fraction of retained biomass C returned 

to biomass, we set limits as 1E-9 and 1.0 (PEST does not handle zero value model parameters so 

instead of zero we set lower bounds to 1E-9). It is important to stress that we chose more 

parameters than would be chosen in a typical optimisation process. We did this because we had (1) 

to ensure that all possible sensitive APSIM parameters were included in the optimisation and (2) to 

determine whether PEST could optimise so many APSIM parameters simultaneously. 

 

Automated parameterisation protocols for multiple objective functions 

The freely available model-independent parameter estimation and uncertainty analysis software 

PEST (http://www.pesthomepage.org/) was used to conduct the automatic parameterisation 

processes described here. All optimisation runs were conducted by running either PEST, CMAES_P, 

or other utility programs in the command prompt. Prior to optimisation, PEST requires four main 

types of files. These include instruction, template, parameter and control files. Instruction files 

(extension .ins) were created for APSIM outputs corresponding to yield variables (grain yield, final 

biomass, grain N concentration, total crop N and total grain N), as well as for soil water, N2O and NO3 

in layers 1-3. Instruction files allow PEST to identify which model outputs correspond to 

observations, as well as the magnitude to which parameter adjustment influences model outputs. 

Template files (extension .tpl) were created from APSIM simulation (.sim) files, with hashes (#) for 

identifying parameters that were amenable for modification by PEST. Parameter files 

(extension .par) contain initial APSIM parameter values, parameter scaling (1.0 in all cases) and 

parameter offsets (0.0 in all cases), as well as precision and decimal point notation of PEST 

computations (the parameter file for treatment 1 in Table 1. Control files (extension .pst; e.g. see 

Supplementary information 3) contain all of the information required for PEST to be able to run 

APSIM, read APSIM output files (.out), alter hash-demarked parameters in the APSIM .sim based on 

APSIM .out files, then repeat the said process based on the changes in parameters and objective 

function described below. Control files also contain a number of PEST-specific parameters, each 

present within defined sections. These include PEST convergence criteria, regularisation constraints, 

measured field data, parameter transformations, upper and lower bounds for APSIM parameters, 

parameter groups, prior information equations, specification of APSIM output files, etc. In addition 

to observations (field measurements) and APSIM parameters subject to modification, the PEST 

control file also contains so-called ‘parameter groups’ and ‘observation groups’. Parameter groups 
are variables assigned to common APSIM parameters, e.g. we created the parameter group ‘kl’ that 
was assigned to APSIM parameters KL1-KL5 (which specify the maximum rate of water extraction in 

each of the five layers of the soil profile). ‘Observation groups’ were groups of field variables (13 in 

total); in this study these included biomass, grain yield, harvest index, nitrous oxide emissions, 

cumulative crop nitrogen uptake, volumetric soil water content in three layers, grain nitrogen 

content per unit area, grain nitrogen concentration and soil nitrate concentration in three layers. 

Initial control files were built using the utility program PESTGEN, while instruction, template and 

control files were checked for errors using the PEST utility programs INSCHEK, TEMPCHEK and 

PESTCHEK, respectively (see Doherty, 2016b for details on use of these programs). Many of the PEST 

parameters/allowable settings in the control file were manipulated to determine the best PEST 

settings required to obtain the lowest possible objective function (i.e. sum of squared weighted 

residuals) in the fastest possible computational time. These PEST control parameters and settings 

are now briefly described, however for a detailed description of each PEST setting in each 

optimisation run, readers are referred to Doherty (2016a) and Doherty (2016b). 

 

http://www.pesthomepage.org/
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Theory: PEST optimisation algorithms in this study 

Three main types of optimisation were employed in this study: the first two included the GML 

algorithm, the second also included the GML algorithm but also Tikhonov regularisation, and the 

third included covariance matrix adaptation evolution strategy (PEST implementation abbreviated as 

CMAES_P). The GML algorithm is a gradient-based optimisation approach, whereas CMAES_P is a 

“genetic-type” algorithm that does not employ derivatives to conduct optimisation.  

Each of the three main optimisation types were tested with and without one or more minor forms of 

regularisation. For the purpose of this study, regularisation is a means through which a unique 

solution is obtained to an inverse problem where the calibration dataset lacks the information to 

support uniqueness (Doherty, 2016a), i.e. the situation wherein only one combination of model 

parameters provides the lowest difference between measurements and modelled values. For each 

of the three main optimisation processes, we examined the effect of adding either singular value 

decomposition (SVD) or least squares with QR decomposition (LSQR). In contrast to Tikhonov 

regularisation, which is a major form of regularisation and enables solution of an ill-posed problem 

by adding information derived from initial parameter estimates (prior information), SVD and LSQR 

are minor forms of regularisation that remove model parameter combinations from the problem by 

subdividing the estimated model parameters into two orthogonal subspaces, one comprising the 

“calibration solution subspace” and the other the “calibration null space”, the latter of which is 

spanned by model parameter combinations that cannot be estimated during an inversion process 

(C4SF, 2017). In PEST, Tikhonov regularisation can be applied in conjunction with either GML or 

CMAES_P optimisation and either without or without SVD or LSQR (but SVD and LSQR cannot be 

combined in any given optimisation). 

In this section, we first briefly describe the theoretical background of each of the three optimisation 

algorithms, then discuss further background to SVD and LSQR. Both optimisation and regularisation 

algorithms are presented in the context of implementation within the PEST framework. 

1. Gauss-Marquardt-Levenberg algorithm (the default) 

The GML algorithm used for the default optimisation runs (“estimation mode” in PEST) computes an 

objective function (φm) based on nonlinear least-squares minimisation between the response 

surface from the model and the measured data (the ‘m’ subscript denotes measured data). The GML 

is a gradient-based approach, and as such, may only find local minima. Model parameters are 

calculated in an iterative fashion as PEST systematically varies model inputs, runs the model, reads 

the model output, and evaluates the model fit using φm, which represents the weighted least 

squares difference between observed and simulated values (Doherty and Hunt, 2010). The objective 

function for the GML algorithm can be expressed as: 

φm = [c – Xa]T Qm[c - Xa]      (1) 

where Qm is a diagonal matrix whose ith element qii is the square of the weight wi attached to the ith 

field measurement, c is a vector of measured values, a is a vector of APSIM parameters to be 

estimated, X is a matrix of APSIM outputs based on parameter vector a and collocated with the 

observations in c, and T indicates matrix transpose. Following Lin (2005), the parameter vector a is 

updated on iteration j + 1 using: 

    aj + 1 = aj + ρ.[JTJ + λB]-1 ×  JT(c - Xa)    (2) 

where aj is a vector of estimated APSIM parameters on the jth iteration, J represents the Jacobian 

(matrix containing all first-order partial derivatives of simulated values that correspond to 
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observations in the calibration dataset to the adjustable model parameters aj), ρ is a PEST parameter 

between 0 and 1 which is chosen so that φm(aj+1) < φm(aj), B is a diagonal matrix with elements taken 

from JTJ, and λ (the Marquardt lambda) is computed numerically during each iteration. 

Equation (1) can be alternatively expressed as 

φm = ∑ [𝑤𝑖𝑟𝑖]2𝑛𝑖=1         (3) 

Where 𝑟𝑖 (the ith residual) is the difference between the modelled and measured value for the ith 

measured variable and 𝑤𝑖 is the corresponding weight matrix attributed to the ith residual. n 

represents the total number of observation groups. Thus, in this study, the 13 components of φm 

included grain yield, biomass, harvest index, grain N concentration, cumulative crop N uptake, grain 

N content, volumetric soil water content in three layers, soil nitrate concentration in three layers 

and soil nitrous oxide emissions. For treatments 1-24, each weight 𝑤𝑖 was assigned using the PEST 

utility program PWTADJ2 such that weights were inversely proportional to the standard deviation of 

each ‘observation group’ in the PEST control file (there were 13 observation groups). Weights were 

uniformly assigned within observation groups but differentially across observation groups. 

Weighting in this way defends the inversion process against one or more observation groups with 

high standard deviation dominating the value of φm. Weighting applied in all treatments is shown in 

Supplementary information 5. 

At the start of each iteration, the relationship between the best model parameters and model 

outputs is linearised using a Taylor-series expansion. The finite-difference method is used to 

compute the Jacobian matrix (Necpálová et al., 2015). The linearised solution is then solved for the 

updated model parameter set using the GML algorithm, and the new φm is calculated as defined 

above. The model parameter changes and value of φm are compared with those of the previous 

iteration to determine if another iteration is justified. If it is, the entire process is repeated; if not, 

the parameter estimation process terminates (Doherty, 2016a). 

In PEST, the real variable RLAMBDA1 is the initial value of λ (Eqn. 2). In general, the value of λ should 
decrease as the number of iterations increases. The effect of RLAMBDA1 was tested because the 

initial value may have an impact on the rate of convergence of the algorithm and the final value of 

the objective function. Doherty (2016a) indicates that ill-posed problems are more likely to result in 

singularity in matrix inversion (singularity prevents matrix inversion and thus derivation of optimal 

parameter vectors). For such problems, increasing the value of RLAMBDA1 to 10 (from the default of 

5) and setting the value of RLAMFAC to -3 (the factor by which PEST adjusts λ as it tests different 
values of this variable for their efficacy in lowering φ). By setting RLAMFAC to -3, PEST adjusts λ 
during each iteration of the inversion process so that λ can achieve a value of 1.0 with three 
adjustments. This allows rapid adjustment of λ if local parameter insensitivity promulgates sudden 

problem ill-posedness (Doherty, 2016a).  

 

2. Gauss-Marquardt-Levenberg algorithm with Tikhonov regularisation 

The second main optimisation algorithm employed in this study also used the GML algorithm, but 

included Tikhonov regularisation (treatments 25-54). Mathematical “regularisation” is the process of 

adding information into an optimisation search to solve an ill-posed problem and to prevent over-

fitting. To conduct optimisation runs using Tikhonov regularisation, PEST must be run in 

“regularisation” mode, wherein PEST defines two objective functions instead of only one defined in 

“estimation” mode (Eqn. 1). The objective function in “regularisation” mode is comprised by the 
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measurement objective function, designated φm, and the regularisation objective function, 

designated φr. This constitutes a weighted least-squares measure of the discrepancies between the 

model parameters and their preferred conditions: 

φr = [d – Za]T Qr[d - Za]      (4) 

where φr is a diagonal matrix of the squares of weights assigned to the various “regularisation 
observations” which comprise vector d. The relationships between the regularisation observations in 

d and their model-generated counterparts (calculated from model parameter vector a) are 

encapsulated in matrix Z (Doherty, 2016a). 

To assign every APSIM parameter with a preferred value equal to its initial value, the ADDREG1 

utility program described in Doherty (2016b) was used. The ADDREG1 program adds a series of prior 

information equations to the PEST control file that are assigned to PEST parameter groups beginning 

with “regul_” in the “prior information section” (see Supplementary information 3). Collectively, the 

addition of prior information equations using ADDREG1 comprises a Tikhonov regularisation scheme 

(Doherty, 2016b). In essence, prior information equations constitute a set of observations which 

pertain directly to the model parameters themselves. As such, they comprise part of the calibration 

dataset which assists in the estimation of APSIM parameters. Using ADDREG1, one linear prior 

equation is added for each APSIM parameter cited in the control file. In each prior equation, the 

APSIM parameter is set equal to its initial value (or the log of its initial value if the APSIM parameter 

is transformed). Similar to individual observations in the PEST control file, weights must be assigned 

to each prior equation; these weights are multiplied internally by a regularisation weight factor (μ) 

before formulation of an overall φ during each iteration of the inversion process (Eqn. 6 below). 

Treatments 25-54 had 115 prior information equations and 69 observation groups (56 of which were 

associated with prior information; e.g. see Supplementary information 3). All prior information 

equations were assigned a weight of 1.0 (the default). Setting the PEST variable IREGADJ to 1.0 

allows PEST to vary the regularisation weights between groups, thus complementing the information 

density of the calibration dataset (Doherty, 2016b).  

By way of example of prior information, for the APSIM soil nitrogen denitrification parameter we 

created the PEST parameter ‘dnitcof’ and a corresponding regularisation group parameter called 
‘regul_dnitco’ (all APSIM parameters optimised by PEST must be represented by corresponding PEST 

parameter names less than or equal to 12 characters in length). The prior information equation thus 

created using ADDREG1 was: 

log10(dnitcof) = -2.97     (5) 

where the log was introduced as the PEST parameter denitcof for this example was log transformed 

prior to the inversion process (see Supplementary information 3) and -2.97 represents the log of the 

initial dnitcof value (1.05E-03). Throughout the optimisation process, the extent to which dnitcof 

differs from 1.05E-3 causes a non-zero residual, and the value of φr in Eqn. 5 becomes non-zero. 

To prevent over-fitting, the user is required to provide a target measurement objective function 

(φt
m). This is the value of PHIMLIM shown in Tables 1-4 (set to 1.00E-10 in treatments 25-54). PEST 

attempts to minimise the value of φr subject to the constraint provided by φt
m. In solving this 

constrained minimisation problem, PEST applies a global multiplier to all weights that are ascribed to 

prior information equations (Doherty 2016a). During each iteration of the inversion process, PEST 

minimises the total objective function: 

  φ = φm + μ2φr      (6) 
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where μ is the regularisation weighting factor. During each iteration, PEST computes the optimal 

value of μ. Under the linearity assumption used to compute the Jacobian matrix, this is the value of μ 

that results in a model parameter upgrade vector for which φm is reduced to a value as close as 

possible to φm
t. When PEST is not able to lower φm to φm

t, it accepts the upgraded model parameters 

and proceeds to the next iteration. However, if PEST does succeed in lowering φm to an acceptable 

level, it then attempts to lower φr while maintaining φm below this acceptable level. This acceptable 

level is the variable PHIMACCEPT and should be set slightly higher than φm
t (the default 

PHIMACCEPT value is 1.05E-10).  

The PEST parameter FRACPHIM shown in Tables 1-4 represents the new value for φt
m calculated 

at the beginning of every iteration; this value is calculated as the current value of φm times 

FRACPHIM, or the current value of FRACPHIM, whichever is greater. FRACPHIM was set to 0.1 for 

treatment 25. WFINIT, WFMIN and WFMAX are the initial, minimum and maximum permissible 

regularisation weight factors, respectively. PEST parameter WFFAC defines the multiplier used to 

adjust the regularisation weight factor such that the value of φm equals that of φm
l, whilst PEST 

parameter WFTOL defines the maximum allowed difference between two successive weighting 

factors (Doherty 2016a). The variable IREGADJ is used to adjust the weighting factor within 

regulation groups. When it is set to 1, PEST multiplies the weights pertaining to all members of 

each regularisation group by a group-specific factor. This factor is chosen so that the total 

composite sensitivities of all regularisation groups are the same. It is important to note, however, 

that relative weighting within each observation group remains unchanged when IREGADJ equals 

1.0 (Doherty 2016a). 

 

3. Covariance matrix adaptation-evolution strategy 

The PEST control files for the GML algorithms were also compatible for use with the third main 

algorithm employed in this study: covariance matrix adaptation-evolution strategy (PEST 

implementation abbreviated CMAES_P). In contrast to the GML algorithm, CMAES_P does not apply 

gradient-based methods, and thus is theoretically capable of finding the global minimum of the 

search space. In CMAES_P, a population of new search points (ψ ≥ 2) is generated by sampling a 

multivariate normal distribution. The basic equation for sampling the search points for generation 

number g reads: 

   xk
(g + 1) ~ m(g) + σ(g)ѵ(0, C(g))       for k = 1, … , ψ   (7) 

where ~ denotes the same distribution on the right and left hand sides, ѵ(0, C(g)) is a multivariate 

normal distribution with zero mean and covariance matrix of the search distribution C(g), xk
(g + 1)  

represents the kth offspring (individuals, search points) from generation g + 1, m(g) represents the 

weighted average value of the search distribution of ω selected parents (ω < ψ) at generation g, and 

σ(g) is the overall standard deviation (step-size). The number of generations g depends on CMAES_P 

termination criteria that are prescribed by the user. Further details of CMAES and supporting 

theoretical background are described in Hansen (2016). 

For simplicity, several CMAES_P optimisation criteria were not altered from their defaults (Table 4). 

These included the random number seed (1111) for initialisation, the minimum relative objective 

function or model parameter change over 40 iterations (1.00 x 10-3), the relative high-low objective 

function difference over 10 iterations (1.00 x 10-2), and the maximum iteration count (1000; see 

Table 4). For CMAES_P, we examined the effect of ψ, ω, singular value thresholds, singular value 

decomposition (SVD) hybridisation, log transformation of model parameters, inclusion of prior 
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information, and whether or not model parameters causing model run failures should be weighted 

lower than other model parameter vectors. 

For CMAES_P, weights corresponding to ω model parameter sets can be assigned as “super-linear”, 
“linear”, or “equal”. In the first two cases, greater weight is given to model parameters that give rise 

to lower φ values, this often leading to faster reduction of the objective function. Since the first two 

cases tend to elicit similar responses in model optimisation runs, this study only examined 

“superlinear” and “equal” weighting (the latter in treatment 60). Once a new average set of model 

parameter values has been computed in this fashion, the next iteration begins. Because random 

model parameter realisations are generated to be symmetrical about this mean, there is a tendency 

for the objective function to fall as iterations proceed (Doherty 2016a). A caveat of CMAES_P is run 

time burden in optimisation runs that include multiple model parameters. In this study, CMAES_P 

would not allow simultaneous optimisation of 115 APSIM parameters, so the number of optimised 

parameters was reduced from 115 in GML optimisation runs (treatments 1-54), to 84 in treatments 

performed by CMAES_P (55-71). Accordingly, the number of PEST parameter groups in CMAES_P 

treatments was reduced to 39. The 31 APSIM parameters removed from the GML control files in 

preparation for the CMAES_P runs were chosen according to their sensitivity. These APSIM 

parameters were identified from the PEST “.sen” files that were produced after each GML 

optimisation run (APSIM parameter sensitivity was consistent regardless of treatment applied). 

Inspection of .sen files showed that insensitive APSIM parameters were not modified by PEST during 

GML or Tikhonov regularisation runs. Thus, it is likely that the fewer parameters contained in the 

CMAES_P treatments had little effect on the final degree of fit achieved. APSIM parameters 

optimised using CMAES_P are shown in Supplementary Information 2. 

At the CMAES_P prompt, users must select whether “soft” or “hard” hybridisation takes place. 
“Soft” hybridisation replaces the best of the currently-selected ψ parameters (these forming part of 

the m + 1 member parameter set on which SVD analysis was based) with the SVD-computed 

parameter set if the value of φ achieved through SVD yields the lowest φ to date. If the “hard” 
option is selected, parameter set replacement is undertaken if the SVD-computed parameter set 

leads to a lower φ than that computed only on the basis of the current ψ parameter sets (Doherty 

2016a).  

 

4. Minor regularisation methods: singular value decomposition (SVD) and least-squares with QR 

decomposition (LSQR) 

In PEST either singular value decomposition (SVD) or LSQR (Least Squares with QR decomposition) 

can be combined with any other optimisation algorithm. Both methods were originally developed 

for the inversion of ill-conditioned matrices (Lanczos, 1961; Paige and Saunders, 1982). In contrast 

to the analytical approach afforded by SVD, LSQR is an iterative numerical approach designed for 

inversion of large matrices. Although LSQR generally allows faster convergence, it is an 

approximate measure and thus may not result in φ values that are as low as those obtained using 

SVD. Hence, we investigated the influence of both SVD and LSQR on the value of φ and 
computational time for each of the three main algorithms described above. 

SVD is a form of matrix factorisation into rotational and scaling matrices, enabling tractability to 

the solution of ordinary least-squares problems in matrix inversion by preventing matrix 

singularity. Truncated SVD of the weighted Jacobian matrix in PEST occurs on an iteration-by-

iteration basis (Necpálová et al., 2015). The level of truncation was automatically calculated based 
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on a stability criterion. SVD transforms the original model parameters into linear combinations 

(i.e., eigenvectors), determines which are most sensitive (James and John, 2005; Moore and 

Doherty, 2006), and truncates the transformed normal equations matrix, reducing the number of 

estimated parameters to maintain numerical stability and maximum reasonableness (Aster et al., 

2013). The resulting regularised inversion process will not include parameters that are 

unidentifiable with the available data. When correlated parameters are included in the inversion, 

the SVD-based regression finds the maximum likelihood combination of the parameters that is 

consistent with the observations (Necpálová et al., 2015). In all SVD treatments in this study, the 

PEST variable SVDMODE was set to 2, such that PEST undertook singular value decomposition of 

the Q1/2J matrix, where Q is a weighting matrix and J represents the Jacobian matrix described 

above. 

The LSQR algorithm (Least Squares with QR decomposition) represents another mechanism that can 

be used to solve inverse problems (Paige and Saunders, 1982). LSQR attempts to subdivide 

parameter space into orthogonal null and solution spaces, and then restricts solution of the inverse 

problem to the latter space (Paige and Saunders, 1982). Because LSQR facilitates matrix sparsity and 

compartmentalisation of the solution into a matrix subspace (rather than attempting to linearise the 

entire solution as conducted by SVD), LSQR tends to converge much faster than SVD (Lin et al., 

2016). 

 

Treatments conducted in this study 

Seventy-one treatments were conducted. These examined various PEST control file settings for each 

of the optimisation algorithms and regularisation techniques presented above. Table 1 presents a 

brief description of the PEST parameters examined in this study, while Tables 2-4 show the values of 

PEST parameters compared with their default values. Treatments 1-24 describe PEST optimisation 

runs conducted in the ‘estimation’ mode (using the GML theorem), Treatments 24-54 were 

conducted in ‘regularisation’ mode and thus used the GML algorithm with Tikhonov regularisation, 
while treatments 55-71 were conducted using CMAES_P (Table 4). Descriptions in Table 1 provide a 

minimal level of background required to enable understanding of the concepts used in this study; 

more detail regarding PEST parameters and theory underlying each treatment is shown in 

Supplementary information 4, Doherty (2016a) and Doherty (2016b).  

Treatment 0 contained only management and soil information measured at the site; no 

parameterisation was conducted for this treatment. PEST was used to compute φ for this treatment 
using the control file from treatment 1 (see below) but with the number of optimisation runs set to 

zero (using PEST parameter NOPTMAX in the control file). This treatment was not judged as the 

baseline because the maize hybrid used in the field trials was not available in APSIM; as such, part of 

the calibration process in all treatments involved optimising parameters for the new hybrid in 

APSIM. 

The PEST control file for treatment 1 was used to create the default treatment (baseline) upon which 

all other treatments were compared. Initial weights applied to observations in this file and in all 

subsequent files were established using the utility program PWTADJ2 according to observation 

groups, wherein weights were assigned to each observation group that were the inverse of the 

standard deviation associated with the corresponding observation group. Group specific calibration 

weight adjustment was employed using PWTADJ2 to accommodate the fact the PEST would likely 

experience more difficulties in fitting some modelled values to field measurements compared with 
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others. Weighting applied by PWTADJ2 was retained for all treatments except treatments 52 and 53, 

which were designed to examine the effect of observation group weighting. Treatment 52 adopted 

the optimised parameters from one of the better performing treatments (treatment 43), then 

increased weighting applied to the N2O group, since results showed that relative contribution to φ 

from this group was large. The weighting applied to all N2O observations was increased from 4.203 

(as for previous treatments) to 20, with the rationale that PEST would thus “focus” on reducing the 
error between modelled data and measurements of this observation group. Similar to treatment 52, 

treatment 53 reused the optimised parameters resulting from treatment 43. The PWTADJ1 utility 

program provided with PEST was used to re-adjust the weighting applied to all datasets, such that 

the total contribution of all datasets to φ was 10. A summary of observation group weighting for all 

treatments is provided in Supplementary information 5. 

For treatments 1-54, 115 APSIM parameters were demarked within the PEST template file by hashes 

(#) along with a user-assigned parameter name. Corresponding upper and lower bounds were 

specified for each of these parameters in the PEST control file and were not altered between 

treatments. For all treatments in Tables 2 and 3, there were 117 field measurements, 56 parameter 

groups, 0 prior equations, and 13 observation groups in the PEST control files.  

To identify sensitive PEST parameters in the control file, groups of only two or three PEST 

parameters were modified from the baseline file on a piecemeal basis to test the effect of 

alternative setting groups on the value of the objective function and total run time. However, some 

of the parameters in the PEST control file required more than one PEST parameter to be modified 

(e.g. in the ‘parameter groups’ section, the use of split derivatives required three settings to be 

simultaneously modified from the baseline file). After key PEST control file parameters causing a 

significant effect on optimisation time or the objective function deviation from the default value (or 

both) were identified, combinations of up to five PEST parameters in the control file were modified 

and tested to determine whether the combined effect of sensitive PEST parameters on total model 

calls and objective function value was additive or otherwise. Thus, treatments that employed 

Tikhonov regularisation (Table 3) were constructed based on previous runs without regularisation 

that reduced either φ or the total number of model calls. It should also be noted that although this 

study explores and extensive number of PEST parameter combinations, not all possible parameter 

combinations were explored. 

 

Model evaluation criteria 

The quality of fit and time for optimisation convergence of each treatment was evaluated using φ, 

CPU time and Pearson’s correlation coefficient (r). Both φ and r include data from all 13 APSIM 

variables fitted in each treatment; both variables were computed by PEST.
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Table 1 Treatments used to examine PEST control file parameters (table layout follows PEST control file). Parameter descriptions are summarised from Doherty et al 

(2016a). Variables in square brackets are optional in PEST. 

PEST control file 

parameter 

Treatment No. Type Values Description 

Control data 
    

RLAMBDA1 2 Real ≥ 0 Initial λ value at start of optimisation 

RLAMFAC 2 Real positive or negative, but 

not zero 

Dictates λ adjustment process from one iteration to the next 

PHIRATSUF 2 Real 0-1 Fractional objective function sufficient for end of current iteration 

PHIREDLAM 23 Real 0-1 Termination criteria for λ search 

NUMLAM 23 integer ≥ 1 Maximum number of λ values to be tested 

[JACUPDATE] 5, 49-50 integer ≥ 0 Activation of Broyden's Jacobian update procedure (mechanism for improving Jacobian 

matrix) 

[LAMFORGIVE] 5, 49-50 Text "lamforgive" or 

"nolamforgive" 

Assign a high objective function value to any λ search resulting in an APSIM run failure 

[DERFORGIVE] 5, 49-50 Text "derforgive" or 

"noderforgive" 

Accommodates model failure whilst computing the Jacobian by setting pertinent 

parameter sensitivities to zero 

RELPARMAX 3 Real > 0 Stipulates maximum relative parameter change limit from one iteration to the next 

FACPARMAX 3 Real > 1 Stipulates maximum factor-based parameter change from one iteration to the next 

FACORIG 24 Real 0-1 Imposes a minimum factor-based change on parameters that are very small, ensuring 

sufficient parameter perturbation during inversion 

PHIREDSWH 3 Real 0-1 Sets a value for the relative change in objective function for one iteration to the next that 

stipulates introduction of 3- or 5-point derivatives (cf. forward-differencing derivative 

default) 

[DOAUI] 7, 8 Text "aui", "auid" or "noaui" Implements automatic user intervention (AUI; mechanism for defending inversion process 

against poor finite-difference derivates) 

[DOSENREUSE] 6-8, 20, 70 Text "senreuse" or 

"nosenreuse" 

Reuse parameter sensitivities as opposed to the default of recalculating for each 

optimisation iteration 

[BOUNDSCALE] 9 Text "boundscale" or 

"noboundscale" 

If SVD is activated, "boundscale" scales all parameters by their upper and lower bounds 

prior to inversion 

NOPTMAX 22-23 integer -2, -1 or > 0 Number of optimisation iterations 

PHIREDSTP 4, 22-23 Real > 0 Minimum relative change in objective function for triggering termination of optimisation 

NPHISTP 4, 22-23 integer > 0 Number of successive iterations over which PHIREDSTP applies 

NPHINORED 4, 22-23 integer > 0 Number of iterations since last reduction in objective function to trigger termination 

RELPARSTP 4, 22-23 Real > 0 Minimum relative parameter change triggering termination of the optimisation process 

NRELPAR 4, 22-23 integer > 0 Number of successive iterations over which RELPARSTP applies 
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Sensitivity reuse 
    

SENRELTHRESH 6-8, 20, 38-39, 41, 44, 46, 

48-49, 70 

Real 0-1 Relative parameter sensitivity below which sensitivity reuse is activated for a parameter 

SENMAXREUSE 6-8, 20, 38-39, 41, 44, 46, 

48-49, 70 

integer ≥ 1 Maximum number of reused sensitivities per iteration 

SENALLCALCINT 6-8, 20, 38-39, 41, 44, 46, 

48-49, 70 

integer > 1 Iteration interval at which all sensitivities are recalculated 

SENPREDWEIGHT 6-8, 20, 38-39, 41, 44, 46, 

48-49, 70 

Real any number Weight to assign to prediction in computation of composite parameter sensitivities to 

determine sensitivity reuse 

SENPIEXCLUDE 6-8, 20, 38-39, 41, 44, 46, 

48-49, 70 

Text "yes" or "no" Include/exclude prior information when computing composite parameter sensitivities to 

determine sensitivity reuse 

Singular value decomposition 
   

SVDMODE 9-10, 35, 39, 40, 45-46, 49-

50, 67, 70 

integer 0 or 1 If SVDMODE is set to 1, activates truncated SVD for solution of inverse problem 

MAXSING 9-10, 35, 39, 40, 45-46, 49-

50, 67, 70 

integer > 0 Number of singular values before truncation 

EIGTHRESH 9-10, 35, 39, 40, 45-46, 49-

50, 67, 70 

Real ≥ 0 and < 1 Ratio of the lowest to the highest eigenvalue of the (JtQJ + λI) matrix at which singular 

value truncation occurs (see text in Methods) 

EIGWRITE 9-10, 35, 39, 40, 45-46, 49-

50, 67, 70 

integer 0 or 1 Determines whether SVD file resulting from PEST inversion process is written to text file 

LSQR 
    

LSQRMODE 11, 20, 36, 41-44, 47-48, 52-

54, 68-69 

integer 0 or 1 Activates LSQR solution of the inversion problem 

LSQR_ATOL 11, 20, 36, 41-44, 47-48, 52-

54, 68-69 

Real ≥ 0 Estimate of the relative error in the data defining the Q1/2J matrix used in LSQR (see text in 

Methods) 

LSQR_BTOL 11, 20, 36, 41-44, 47-48, 52-

54, 68-69 

Real ≥ 0 Estimate of the relative error in the data defining the parameter vector a in Eqn. 1 

LSQR_CONLIM 11, 20, 36, 41-44, 47-48, 52-

54, 68-69 

Real ≥ 0 Upper limit of the matrix condition number during the inversion process (higher condition 

numbers indicate ill-posedness) 

LSQR_ITNLIM 11, 20, 36, 41-44, 47-48, 52-

54, 68-69 

integer > 0 Upper limit of the number of iterations permitted when LSQR is employed 

LSQRWRITE 11, 20, 36, 41-44, 47-48, 52-

54, 68-69 

integer 0 or 1 Writes output from the LSQR solver to an output file 

Automatic user intervention 
   

MAXAUI 7-8 integer ≥ 0 Maximum number of automatic user interventions per optimisation iteration 

AUISTARTOPT 7-8 integer ≥ 1 Optimisation iteration at which to commence automatic user intervention 

NOAUIPHIRAT 7-8 Real 0-1 Relative objective function reduction threshold triggering automatic user intervention 

AUIRESTITN 7-8 integer ≥ 0 (≠ 1) Automatic user intervention pause interval expressed in optimisation iterations 
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AUISENSRAT 7-8 Real > 1 Composite parameter sensitivity ratio triggering automatic user intervention 

AUIHOLDMAXCHG 7-8 integer 0 or 1 When implemented, instructs PEST to hold specific parameters based on their relative 

change during previous optimisation iterations 

AUINUMFREE 7-8 integer > 0 Cease automatic user intervention if the number of adjustable parameters has been 

reduced to AUINUMFREE 

AUIPHIRATSUF 7-8 Real 0-1 Ratio of objective function computed using AUI to that computed without AUI. If 

AUIRATSUF is less than this value, implementation of automatic user intervention is 

terminated 

AUIPHIRATACCEPT 7-8 Real 0-1 Relative objective function reduction threshold for acceptance of automatic-user 

intervention-calculated parameters 

NAUINOACCEPT 7-8 integer > 0 Number of iterations since accepting previous parameter change that triggers termination 

of automatic user intervention 

Parameter groups 
   

INCTYP 12 Text "relative", "absolute", 

"rel_to_max" 

Method by which parameter increments are calculated 

DERINC 13 Real > 0 Absolute or relative parameter increment (added or multiplied to existing parameters 

depending on the value of INCTYP) 

DERINCLB 14 Real ≥ 0 Absolute lower bound of relative parameter increment 

FORCEN 15 Text "switch", "always_5" Determines when higher order derivatives are undertaken for each parameter group 

(always_5 = five-point derivatives are used, switch = start by using forward difference 

derivatives then switch to three-point derivatives for all parameter group members on the 

first occasion that the relative reduction in the objective function between iterations is less 

than the value of PHIREDSWH) 

DERINCMUL 16 Real > 0 Derivative increment multiplier when undertaking derivatives using methods other than 

the default forward-differencing method 

DERMTHD 15, 17 Text "parabolic", "minvar" or 

"best_fit" 

Method used to calculate derivatives ("min_var" means minimum error variance; must be 

implemented with "always_5", "best_fit" is a regression approach implemented with 

"switch") 

[SPLITTHRESH] 18, 49-50 Real > 0 (0 = deactivation of 

split slope analysis) 

Slope threshold for split slope analysis (an option for mitigating effects of poor model 

numerical performance on PEST performance wherein segmented analysis is used to 

compute the change in each parameter) 

[SPLITRELDIFF] 18, 49-50 Real > 0 Relative slope difference threshold allowing implementation of split slope analysis 

[SPLITACTION] 18, 49-50 Text "smaller" The slope segment with higher absolute value is rejected, and the derivative is taken as the 

slope of the segment with lesser absolute slope 

Parameter data 
    

PARTRANS 19, 37-46, 49, 52-54, 56-70, 

72 

Text "log" or "none" Parameter transformation prior to inversion ("log" = log to the base 10) 

PARCHGLIM 19, 21, 37-46, 49, 52-54, 56-

70, 72 

Text "relative" or "factor" Determines whether optimised model parameters are adjusted relatively or by 

multiplication of a factor 
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Regularisation 
    

PHIMLIM 66-71 Real > 0 Target measurement objective function (see text in Methods) 

PHIMACCEPT 26, 66-71 Real > PHIMLIM Acceptable measurement objective function (see text in Methods) 

[FRACPHIM] 27, 66-71 Real ≥ 0 (< 1) Sets target measurement objective function at this fraction of current measurement 

objective function 

[MEMSAVE] 28 Text "memsave" or 

"nomemsave" 

Activates conservation of memory at cost of execution speed and quantity of model output 

WFINIT 29, 66-71 Real > 0 Initial regularisation weight factor (see text in Methods) 

WFMIN 66-71 Real > 0 Minimum regularisation weight factor 

WFMAX 66-71 Real > WFMIN Maximum regularisation weight factor 

[LINREG] 51 Text "linreg" or "nolinreg" Instructs PEST that regularisation constraints are linear or nonlinear, respectively 

[REGCONTINUE] 32 Text "continue" or 

"nocontinue" 

Instructs PEST to continue minimising regularisation objective function even if 

measurement objective function is less than PHIMLIM (see text in Methods) 

WFFAC 30, 66-71 Real > 1 Regularisation weight factor adjustment (see text in methods) 

WFTOL 31, 66-71 Real > 0 Convergence criterion for regularisation weight factor calculated during each iteration 

IREGADJ 33, 34, 66-71 integer 1, 2 or 4 Instructs PEST to perform inter-regularisation group weight factor adjustment, or to 

compute new relative weights for regularisation observations and prior information 

equations (see text in Methods) 

[NOPTREGADJ] 34 integer ≥ 1 The number of consecutive optimisation iterations stipulating recalculation of 

regularisation weight factor 

[REGWEIGHTRAT] 34 Real ≥ 1 The ratio of the highest to lowest regularisation weight (see text in Methods) 

CMAES_P 
    

Population size (ψ) 61, 65, 69-72 integer  [4 + 3 × ln(n)] Number of random realisations of n-dimensional parameter vectors generated during each 

iteration of CMAES_P (n = the number of parameters being estimated)  

Number of parents (ω) 62-63 integer ψ/2 Number of objective function values used to calculate m in Eqn. 7 for the next iteration. 

Default value is half the population size. 

Recombination weights 60 Text "linear", "superlinear" or 

"equal" 

Weighting given to the lowest objective function values in forming m (Eqn. 7) for the next 

iteration 

SVD-hybridisation 57-59 Text "soft" or "hard" Uses all or a subset of the current iteration ψ parameter sets to compute approximate 
SVDs (see text in Methods)  

No. singular value trial 

thresholds 

57-59 integer ≥ 1 Determines level of single value truncation if SVD-hybridisation is employed 

Forgive model run 

failure 

64-65, 69-70, 72 Text "yes" or "no" 'Yes' allows CMAES_P to continue if any parameter set causes an APSIM run failure, "no" 

ceases CMAES_P if a given parameter set causes an APSIM run failure 
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Table 2 Data from PEST control files used to conduct optimisation with the GML algorithm. All optimisation runs were performed using ‘estimation’ mode in PEST, with 115 

parameters, 56 parameter groups, 13 observation groups and no prior equations. Parameters shown in bold indicate variation from the baseline file (treatment 1). PEST 

control settings in the first column are described in the methods, and parameters in square brackets [] indicate optional use in the PEST control file. Each control file section 

is identified with an asterisk. NA = Not Applicable. 

Treatment No. Baseline 2 3 4 5 6 7 8 9 10 11 

* control data                       

RLAMBDA1 5 10 5 5 5 5 5 5 5 5 5 

RLAMFAC 2 -3 2 2 2 2 2 2 2 2 2 

PHIRATSUF 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

PHIREDLAM 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

NUMLAM 10 10 10 10 10 10 10 10 10 10 10 

[JACUPDATE] NA NA NA NA 999 NA NA NA NA NA NA 

[LAMFORGIVE] NA NA NA NA lamforgive NA NA NA NA NA NA 

[DERFORGIVE] NA NA NA NA derforgive NA NA NA NA NA NA 

RELPARMAX 3 3 2 3 3 3 3 3 3 3 3 

FACPARMAX 3 3 2 3 3 3 3 3 3 3 3 

FACORIG 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

PHIREDSWH 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

[DOAUI] NA NA NA NA NA NA auid aui NA NA NA 

[DOSENREUSE] NA NA NA NA NA senreuse senreuse senreuse NA NA NA 

[BOUNDSCALE] NA NA NA NA NA NA NA NA boundscale NA NA 

NOPTMAX 50 50 50 50 50 50 50 50 50 50 50 

PHIREDSTP 0.01 0.01 0.01 0.005 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

NPHISTP 3 3 3 5 3 3 3 3 3 3 3 

NPHINORED 3 3 3 5 3 3 3 3 3 3 3 

RELPARSTP 0.01 0.01 0.01 0.005 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

NRELPAR 3 3 3 5 3 3 3 3 3 3 3 

* Sensitivity reuse                     

SENRELTHRESH NA NA NA NA NA 0.15 0.15 0.15 NA NA NA 

SENMAXREUSE NA NA NA NA NA -1 -1 -1 NA NA NA 

SENALLCALCINT NA NA NA NA NA 3 3 3 NA NA NA 

SENPREDWEIGHT NA NA NA NA NA -1 -1 -1 NA NA NA 

SENPIEXCLUDE NA NA NA NA NA Yes yes yes NA NA NA 

* Singular value decomposition                   

SVDMODE NA NA NA NA NA NA NA NA 2 2 NA 
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MAXSING NA NA NA NA NA NA NA NA 115 115 NA 

EIGTHRESH NA NA NA NA NA NA NA NA 5E-07 5E-07 NA 

EIGWRITE NA NA NA NA NA NA NA NA 0 0 NA 

* lsqr                       

LSQRMODE NA NA NA NA NA NA NA NA NA NA 1 

LSQR_ATOL NA NA NA NA NA NA NA NA NA NA 0.0001 

LSQR_BTOL NA NA NA NA NA NA NA NA NA NA 0.0001 

LSQR_CONLIM NA NA NA NA NA NA NA NA NA NA 1000 

LSQR_ITNLIM NA NA NA NA NA NA NA NA NA NA 1000 

LSQRWRITE NA NA NA NA NA NA NA NA NA NA 0 

* automatic user intervention                   

MAXAUI NA NA NA NA NA NA 87 87 NA NA NA 

AUISTARTOPT NA NA NA NA NA NA 1 1 NA NA NA 

NOAUIPHIRAT NA NA NA NA NA NA 0.9 0.5 NA NA NA 

AUIRESTITN NA NA NA NA NA NA 0 0 NA NA NA 

AUISENSRAT NA NA NA NA NA NA 5 10 NA NA NA 

AUIHOLDMAXCHG NA NA NA NA NA NA 0 0 NA NA NA 

AUINUMFREE NA NA NA NA NA NA 3 3 NA NA NA 

AUIPHIRATSUF NA NA NA NA NA NA 0.8 0.4 NA NA NA 

AUIPHIRATACCEPT NA NA NA NA NA NA 0.99 0.8 NA NA NA 

NAUINOACCEPT NA NA NA NA NA NA 30 30 NA NA NA 

* parameter groups                     

INCTYP relative relative relative relative relative relative relative relative relative relative relative 

DERINC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

DERINCLB 0 0 0 0 0 0 0 0 0 0 0 

FORCEN switch switch switch switch switch switch switch switch switch switch switch 

DERINCMUL 2 2 2 2 2 2 2 2 2 2 2 

DERMTHD parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic 

[SPLITTHRESH NA NA NA NA NA NA NA NA NA NA NA 

SPLITRELDIFF NA NA NA NA NA NA NA NA NA NA NA 

SPLITACTION] NA NA NA NA NA NA NA NA NA NA NA 

* parameter data                     

PARTRANS none none none none none None none none none none none 

PARCHGLIM relative relative relative relative relative relative relative relative relative relative relative 
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Table 2 Continued. 

Treatment No. 12 13 14 15 16 17 18 19 20 21 22 23 24 

* control data                        

RLAMBDA1 5 5 5 5 5 5 5 5 5 5 5 5 5 

RLAMFAC 2 2 2 2 2 2 2 2 2 2 2 2 2 

PHIRATSUF 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.3 

PHIREDLAM 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.009 0.03 

NUMLAM 10 10 10 10 10 10 10 10 10 10 10 20 10 

[JACUPDATE] NA NA NA NA NA NA NA NA NA NA NA NA NA 

[LAMFORGIVE] NA NA NA NA NA NA NA NA NA NA NA NA NA 

[DERFORGIVE] NA NA NA NA NA NA NA NA NA NA NA NA NA 

RELPARMAX 3 3 3 3 3 3 3 3 3 3 3 3 3 

FACPARMAX 3 3 3 3 3 3 3 3 3 3 3 3 3 

FACORIG 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 

PHIREDSWH 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

[DOAUI] NA NA NA NA NA NA NA NA NA NA NA NA NA 

[DOSENREUSE] NA NA NA NA NA NA NA NA senreuse NA NA NA NA 

[BOUNDSCALE] NA NA NA NA NA NA NA NA NA NA NA NA NA 

NOPTMAX 50 50 50 50 50 50 50 50 50 50 100 100 50 

PHIREDSTP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.01 

NPHISTP 3 3 3 3 3 3 3 3 3 3 6 6 3 

NPHINORED 3 3 3 3 3 3 3 3 3 3 6 6 3 

RELPARSTP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.01 

NRELPAR 3 3 3 3 3 3 3 3 3 3 6 6 3 

* sensitivity reuse              

SENRELTHRESH NA NA NA NA NA NA NA NA 0.15 NA NA NA NA 

SENMAXREUSE NA NA NA NA NA NA NA NA -1 NA NA NA NA 

SENALLCALCINT NA NA NA NA NA NA NA NA 3 NA NA NA NA 

SENPREDWEIGHT NA NA NA NA NA NA NA NA -1 NA NA NA NA 

SENPIEXCLUDE NA NA NA NA NA NA NA NA yes NA NA NA NA 

 * singular value decomposition          

All variables in this section were as for the baseline        

* lsqr                        

LSQRMODE NA NA NA NA NA NA NA NA 1 NA NA NA NA 

LSQR_ATOL NA NA NA NA NA NA NA NA 0.0001 NA NA NA NA 

LSQR_BTOL NA NA NA NA NA NA NA NA 0.0001 NA NA NA NA 

LSQR_CONLIM NA NA NA NA NA NA NA NA 1000 NA NA NA NA 

LSQR_ITNLIM NA NA NA NA NA NA NA NA 1000 NA NA NA NA 

LSQRWRITE NA NA NA NA NA NA NA NA 0 NA NA NA NA 
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 * automatic user intervention            

All variables in this section were as for the baseline         

* parameter groups             

INCTYP 

rel_to_m

ax relative relative relative relative relative Relative relative relative relative relative relative relative 

DERINC 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

DERINCLB 0 0 0.00001 0 0 0 0 0 0 0 0 0 0 

FORCEN switch switch switch always_5 switch switch Switch switch switch switch switch switch switch 

DERINCMUL 2 2 2 2 3 2 2 2 2 2 2 3 2 

DERMTHD parabolic parabolic parabolic minvar parabolic best_fit Parabolic parabolic parabolic parabolic parabolic parabolic parabolic 

[SPLITTHRESH NA NA NA NA NA NA 0.0001 NA NA NA NA NA NA 

SPLITRELDIFF NA NA NA NA NA NA 0.5 NA NA NA NA NA NA 

SPLITACTION] NA NA NA NA NA NA Smaller NA NA NA NA NA NA 

* parameter data              

PARTRANS none none none none none none None log none none none none none 

PARCHGLIM relative relative relative relative relative relative Relative factor relative factor relative relative relative 
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Table 3 Data from PEST control files used to conduct optimisation using Tikhonov regularisation. All optimisation runs were performed using ‘regularisation’ mode in PEST, 
with 115 parameters, 56 parameter groups, 69 observation groups and 115 prior equations. Parameters shown in bold indicate variation from the baseline file. PEST control 

settings in the first column are described in the methods, and parameters in square brackets [] indicate optional use in the PEST control file. Each control file section is 

identified with an asterisk. NA = Not Applicable. 

Treatment No. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

* control data                             

All variables in this section were as for the baseline file in Table 2          

* sensitivity reuse                             

SENRELTHRESH NA NA NA NA NA NA NA NA NA NA NA NA NA 0.15 

SENMAXREUSE NA NA NA NA NA NA NA NA NA NA NA NA NA -1 

SENALLCALCINT NA NA NA NA NA NA NA NA NA NA NA NA NA 3 

SENPREDWEIGHT NA NA NA NA NA NA NA NA NA NA NA NA NA -1 

SENPIEXCLUDE NA NA NA NA NA NA NA NA NA NA NA NA NA yes 

* singular value decomposition                           

SVDMODE NA NA NA NA NA NA NA NA NA NA 2 NA NA NA 

MAXSING NA NA NA NA NA NA NA NA NA NA 115 NA NA NA 

EIGTHRESH NA NA NA NA NA NA NA NA NA NA 5E-07 NA NA NA 

EIGWRITE NA NA NA NA NA NA NA NA NA NA 0 NA NA NA 

* lsqr                             

LSQRMODE NA NA NA NA NA NA NA NA NA NA NA 1 NA NA 

LSQR_ATOL NA NA NA NA NA NA NA NA NA NA NA 0.0001 NA NA 

LSQR_BTOL NA NA NA NA NA NA NA NA NA NA NA 0.0001 NA NA 

LSQR_CONLIM NA NA NA NA NA NA NA NA NA NA NA 1000 NA NA 

LSQR_ITNLIM NA NA NA NA NA NA NA NA NA NA NA 1000 NA NA 

LSQRWRITE NA NA NA NA NA NA NA NA NA NA NA 0 NA NA 

* automatic user intervention                         

All variables in this section were as for the baseline in Table 2           

* parameter groups                           

All variables in this section were as for the baseline in Table 2          

* parameter data                           

PARTRANS none none none none none none None none none none none none log log 

PARCHGLIM relative relative relative relative relative relative Relative relative relative relative relative relative factor factor 

* regularisation               

PHIMLIM 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 

PHIMACCEPT 1.05E-10 1.1E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 

[FRACPHIM] 0.1 0.1 0.03 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

[MEMSAVE] NA NA NA memsave NA NA NA NA NA NA NA NA NA NA 

WFINIT 1 1 1 1 10 1 1 1 1 1 1 1 1 1 
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WFMIN 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 

WFMAX 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 

[LINREG] NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[REGCONTINUE] NA NA NA NA NA NA NA continue NA NA NA NA NA NA 

WFFAC 1.3 1.3 1.3 1.3 1.3 2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 

WFTOL 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

IREGADJ 1 1 1 1 1 1 1 1 2 4 1 1 1 1 

[NOPTREGADJ] NA NA NA NA NA NA NA NA NA 2 NA NA NA NA 

[REGWEIGHTRAT] NA NA NA NA NA NA NA NA NA 10 NA NA NA NA 

 

Table 3 Continued 

Treatment No. 39 40 41 42 43 44 45 46 47 48 49 50 51 52a 53b 54c 

* control data                                 

RLAMBDA1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

RLAMFAC 2 2 2 2 -3 -3 -3 -3 -3 -3 -3 -3 2 -3 -3 -3 

PHIRATSUF 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

PHIREDLAM 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

NUMLAM 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

[JACUPDATE] NA NA NA NA NA NA NA NA NA NA 999 999 NA NA NA NA 

[LAMFORGIVE] NA NA NA NA NA NA NA NA NA NA lamforgive lamforgive NA NA NA NA 

[DERFORGIVE] NA NA NA NA NA NA NA NA NA NA derforgive derforgive NA NA NA NA 

RELPARMAX 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

FACPARMAX 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

FACORIG 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

PHIREDSWH 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

[DOAUI] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[DOSENREUSE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[BOUNDSCALE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

NOPTMAX 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

PHIREDSTP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

NPHISTP 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

NPHINORED 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

RELPARSTP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

NRELPAR 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

* Sensitivity reuse                                 

SENRELTHRESH 0.15 NA 0.15 NA NA 0.15 NA 0.15 NA 0.15 0.15 NA NA NA NA NA 

SENMAXREUSE -1 NA -1 NA NA -1 NA -1 NA -1 -1 NA NA NA NA NA 

SENALLCALCINT 3 NA 3 NA NA 3 NA 3 NA 3 3 NA NA NA NA NA 
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SENPREDWEIGHT -1 NA -1 NA NA -1 NA -1 NA -1 -1 NA NA NA NA NA 

SENPIEXCLUDE yes NA yes NA NA yes NA yes NA yes yes NA NA NA NA NA 

* singular value decomposition                             

SVDMODE 2 2 NA NA NA NA 2 2 NA NA 2 2 NA NA NA NA 

MAXSING 115 115 NA NA NA NA 115 115 NA NA 115 115 NA NA NA NA 

EIGTHRESH 5E-07 5E-07 NA NA NA NA 5E-07 5E-07 NA NA 5E-07 5E-07 NA NA NA NA 

EIGWRITE 0 0 NA NA NA NA 0 0 NA NA 0 0 NA NA NA NA 

* lsqr                                 

LSQRMODE NA NA 1 1 1 1 NA NA 1 1 NA NA NA 1 1 1 

LSQR_ATOL NA NA 0.0001 0.0001 0.0001 0.0001 NA NA 0.0001 0.0001 NA NA NA 0.0001 0.0001 0.0001 

LSQR_BTOL NA NA 0.0001 0.0001 0.0001 0.0001 NA NA 0.0001 0.0001 NA NA NA 0.0001 0.0001 0.0001 

LSQR_CONLIM NA NA 1000 1000 1000 1000 NA NA 1000 1000 NA NA NA 1000 1000 1000 

LSQR_ITNLIM NA NA 1000 1000 1000 1000 NA NA 1000 1000 NA NA NA 1000 1000 1000 

LSQRWRITE NA NA 0 0 0 0 NA NA 0 0 NA NA NA 0 0 0 

* automatic user intervention                           

All variables in this section were as for the baseline in Table 2            

* parameter groups                               

INCTYP relative relative relative relative relative relative relative relative relative relative relative relative relative relative relative relative 

DERINC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

DERINCLB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FORCEN switch switch switch switch Switch switch switch switch switch switch switch switch switch switch switch switch 

DERINCMUL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

DERMTHD parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic parabolic 

[SPLITTHRESH NA NA NA NA NA NA NA NA NA NA 0.0001 0.0001 NA NA NA NA 

SPLITRELDIFF NA NA NA NA NA NA NA NA NA NA 0.5 0.5 NA NA NA NA 

SPLITACTION] NA NA NA NA NA NA NA NA NA NA smaller smaller NA NA NA NA 

* parameter data                                 

PARTRANS log log log log log log log log none none log log none log log log 

PARCHGLIM factor factor factor factor factor factor factor factor relative relative factor factor relative factor factor factor 

* regularisation                 

PHIMLIM 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 

PHIMACCEPT 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 

[FRACPHIM] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

[MEMSAVE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

WFINIT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

WFMIN 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 1E-10 

WFMAX 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 1E+10 

[LINREG] NA NA NA NA NA NA NA NA NA NA NA NA linreg NA NA NA 

[REGCONTINUE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

WFFAC 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 
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WFTOL 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

IREGADJ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

[NOPTREGADJ NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[REGWEIGHTRAT] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
a Increased weighting on all N2O measurements from 4.203 (as applied in all other treatments) to 20. 
b Adjusted weighting on all measured data such that the contribution to φ from each observation group was 10. 

c Repeated optimisation using optimised APSIM parameters from treatment 43. 
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Table 4 PEST control file settings used to conduct global optimisation with CMAES_P. All optimisation runs were performed using ‘estimation’ mode in PEST, with 84 

parameters, 39 parameter groups, 13 observation groups and zero prior equations. Parameters shown in bold indicate variation from the baseline file in Table 2. CMAES_P 

control settings in the first column are described in the methods, with values in round brackets () in the CMAES_P section of the table indicating the default value for 

CMAES_P. Parameters in square brackets [] indicate optional use in the PEST control file. Each control file section is identified with an asterisk. NA = Not Applicable, N = no, 

Y = yes, S = superlinear, L = linear, E = equal. 

Treatment no 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 

* control data                                  

All parameters in this section except for DOSENREUSE were as for the baseline in Table 2      

[DOSENREUSE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA senreuse NA 

* Sensitivity reuse                        

SENRELTHRESH NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.15 NA 

SENMAXREUSE NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -1 NA 

SENALLCALCINT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3 NA 

SENPREDWEIGHT NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -1 NA 

SENPIEXCLUDE NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA yes NA 

* singular value decomposition                

SVDMODE NA NA NA NA NA NA NA NA NA NA NA NA 2 NA NA 2 NA 

MAXSING NA NA NA NA NA NA NA NA NA NA NA NA 115 NA NA 115 NA 

EIGTHRESH NA NA NA NA NA NA NA NA NA NA NA NA 5.00E-07 NA NA 5.00E-07 NA 

EIGWRITE NA NA NA NA NA NA NA NA NA NA NA NA 0 NA NA 0 NA 

* lsqr                                  

LSQRMODE NA NA NA NA NA NA NA NA NA NA NA NA NA 1 1 NA NA 

LSQR_ATOL NA NA NA NA NA NA NA NA NA NA NA NA NA 1.00E-04 1.00E-04 NA NA 

LSQR_BTOL NA NA NA NA NA NA NA NA NA NA NA NA NA 1.00E-04 1.00E-04 NA NA 

LSQR_CONLIM NA NA NA NA NA NA NA NA NA NA NA NA NA 1000 1000 NA NA 

LSQR_ITNLIM NA NA NA NA NA NA NA NA NA NA NA NA NA 1000 1000 NA NA 

LSQRWRITE NA NA NA NA NA NA NA NA NA NA NA NA NA 0 0 NA NA 

* automatic user intervention                  

All variables in this section were as for the baseline in Table 2        

* parameter groups                    

All variables in this section were as for the baseline in Table 2        

* parameter data                                  

PARNME NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

PARTRANS none log log log log log log log log log log log log log log log none 
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PARCHGLIM relative factor factor factor factor factor factor factor factor factor factor factor factor factor factor factor relative 

* regularisation                                  

PHIMLIM NA NA NA NA NA NA NA NA NA NA NA 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-10 NA 

PHIMACCEPT NA NA NA NA NA NA NA NA NA NA NA 1.05E-10 1.05E-10 1.05E-10 1.05E-10 1.05E-10 NA 

[FRACPHIM] NA NA NA NA NA NA NA NA NA NA NA 0.1 0.1 0.1 0.1 0.1 NA 

[MEMSAVE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

WFINIT NA NA NA NA NA NA NA NA NA NA NA 1 1 1 1 1 NA 

WFMIN NA NA NA NA NA NA NA NA NA NA NA 1.00E-10 1.00E-10 1.00E-10 1.00E-10 1.00E-10 NA 

WFMAX NA NA NA NA NA NA NA NA NA NA NA 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 NA 

[LINREG] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[REGCONTINUE] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

WFFAC NA NA NA NA NA NA NA NA NA NA NA 1.3 1.3 1.3 1.3 1.3 NA 

WFTOL NA NA NA NA NA NA NA NA NA NA NA 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 NA 

IREGADJ NA NA NA NA NA NA NA NA NA NA NA 1 1 1 1 1 NA 

[NOPTREGADJ] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[REGWEIGHTRAT] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

[REGSINGTHRESH] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Variables within the CMAES_P algorithm via the command prompt     

Populations size (ψ = 

4 + 3*ln(n)) 18 18 18 18 18 18 25 18 18 18 25 18 18 18 25 25 25 

Number of parents (ω  

= ψ/2) 9 9 9 9 9 9 9 4 15 9 9 9 9 9 9 9 9 

Recombination 

weights (superliner, 

linear or equal) s s s s s E s s s s s s s s s s s 

SVD-hybridization (N) N N Y Y Y N N N N N N N N N N N N 

Singular value trial 

threshholds (3) NA NA 3 3 10 NA NA NA NA NA NA NA NA NA NA NA NA 

Hybridization (soft) NA NA hard soft soft NA NA NA NA NA NA NA NA NA NA NA NA 

Forgive model run 

failure (Y) Y Y Y Y Y Y Y Y Y N N Y Y Y N N Y 
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Results 

Using PEST to parameterise APSIM resulted in significant improvement in model fit (as shown by 

comparing the φ value from Treatment 0 to that from other treatments in Table 5), but this was 

mainly because part of the parameterisation process required finding optimal plant parameters for a 

maize hybrid (PR34N43) that was not included in the default APSIM release. Parameterisation with 

the default GML algorithm (and PEST control file settings) reduced φ from 244 (no calibration, 

treatment 0) to ~82 or less, with the corresponding correlation coefficients increasing from 0.37 to 

0.81 or greater (Table 5). Both the value of φ and that of r indicate that PEST improved the 
predictability of APSIM for the scenario modelled. For the default GML algorithm, φ ranged from 

82.3 (treatments 12-15) to 28.8 (treatments 11 and 20). Parameterisation routines employing SVD or 

LSQR resulted in lower φ values than all of the other parameterisation options we examined here. 

However, algorithms that used LSQR were completed significantly earlier than those using SVD 

(Table 5), indicating that the former would be a better choice for model parameterisation. 

Correlation coefficients generally improved as the value of φ decreased, indicating better fit. 

Table 5 shows that LSQR was one of the faster performing algorithms, and that reuse of composite 

parameter sensitivity (SENREUSE) generally reduced optimisation times even further, without 

detriment to the quality of the fit. As a consequence, many of the Tikhonov regularisation 

optimisation settings we used in Table 3 were in conjunction with the SENREUSE setting. 

Twelve treatments that used regularisation resulted in lower φ values than those without 
regularisation. Treatment 52 examined the effect of reusing the optimised parameters from one of 

the better performing treatments (treatment 43, which included logarithmic transformation, LSQR 

and setting RLAMFAC to -3), and increasing the weight applied to the N2O dataset, since this dataset 

generally carried the lowest φ (Table 6). Treatment 53 was also similar to treatment 43, except 

weights of each observation group (grain yield, N2O etc.) in treatment 53 were adjusted such that 

based on initial parameter values, the contribution made to φ by each observation group was 

approximately 10. The higher φ values of treatments 52 and 53 indicate that either reusing 

optimised parameters and increasing weight assigned to observations groups that dominate the 

value of φ or equalising the weighting of each observation groups prior to optimisation using PEST’s 
PWTADJ1 utility program reduce the quality of optimisation, as shown by comparison of these 

treatments to their equivalent treatments with no reweighting of observation groups (treatments 54 

and 43, respectively). 

The PEST control file setting FRACPHIM (treatment 27) had little effect on φ. Although log 

transformation of variables prior to inversion was useful in lowering φ when used in concert with 
SVD and LSQR, log transformation of parameters alone did not improve the quality of fit when used 

with regularisation (treatment 37), or with composite parameter sensitivity reuse (SENREUSE; 

treatment 38), or in treatments that combined SENREUSE, LSQR, and/or an RLAMFAC value of -3 

(treatments 41, 44 in Table 6).  

As with the default optimisation algorithms, there was no apparent relationship between quality of 

fit and optimisation time, with optimisation times varying from 4,684 to 44,238 (Table 6). 

Optimisation settings in combination with regularisation that afforded the best fits included the use 

of LSQR or SVD, logarithmic transformation of variables, and (if altered from the default value of 2), 

setting RLAMFAC to -3. Although SENREUSE generally resulted in lower run times, evidence from 

comparisons of treatments 38 to 37, 49 to 50, 46 to 45 and 42 to 41 indicated that SENREUSE 

generally caused premature termination of the optimisation algorithm, resulting in some loss of 

quality of model parameterisation when used with regularisation.



32 

 

Table 5 CPU time, value of the objective function (φ) and Pearson’s correlation coefficient (r) resulting from optimisation of APSIM parameters using PEST. 

Optimisation iterations were performed using different settings in the PEST control file (see methods and Table 1). Shaded rows represent no optimisation 

(treatment 0) or PEST default optimisation settings. Rows are arranged with φ in descending order. 

 

 

 

 

 

 

 

 

 

 

 

Treatment No. PEST control file settings examined CPU time (s) φ r 

0 NONE NA 244 0.37 

12 REL TO MAX 4172 82.3 0.81 

14 DERINCLB 2557 82.3 0.81 

15 ALWAYS 5 10696 82.2 0.81 

13 DERINC 2474 82.1 0.81 

23 PHIREDLAM 12386 81.6 0.81 

22 NOPTMAX 11557 81.6 0.81 

4 NPHISTP 7922 81.6 0.81 

24 FACORIG 2972 81.6 0.82 

17 BEST FIT 2716 81.6 0.81 

18 SPLITTHRESH 2706 81.6 0.81 

16 DERINCMUL 2692 81.6 0.81 

1 DEFAULT 2595 81.6 0.81 

6 SENREUSE 1478 81.6 0.81 

2 RLAMBDA 4614 81.4 0.81 

5 LAMFORGIVE 4316 79.6 0.82 

3 RELPARMAX 5918 79.4 0.82 

7 AUID 4267 79.0 0.82 

21 FACTOR 4776 78.5 0.82 

19 LOG 4449 77.5 0.82 

9 SVD, BOUNDSCALE 6796 73.4 0.81 

8 AUI, SENREUSE 3996 32.7 0.92 

10 SVD 11611 28.9 0.93 

20 LSQR, SENREUSE 2555 28.8 0.93 

11 LSQR 3380 28.8 0.93 
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Table 6  CPU time, objective function (φ) and Pearson’s correlation coefficient (r) from optimisation of APSIM parameters using PEST with Tikhonov 

regularisation (REG). The shaded row represents optimisation results conducted using PEST default settings with regularisation. Other treatments were 

conducted using regularisation and different settings in the PEST control file (see methods and Table 1). Rows are arranged with φ in descending order. 

Treatment No. PEST control file settings examined CPU time (s) φ r 

52 REG, LOG, LSQR, RLAMFAC, PARREP, N2OWT 7831 380 0.71 

53 REG, LOG, LSQR, RLAMFAC, PWTADJ1 10998 100 0.74 

27 REG, FRACPHIM 13851 82.3 0.81 

37 REG, LOG 15935 36.5 0.91 

51 REG, LINREG 27787 35.8 0.91 

31 REG, WFTOL 21481 35.8 0.91 

38 REG, LOG, SENREUSE 11761 35.4 0.91 

41 REG, LOG, LSQR, SENREUSE 4850 35.1 0.91 

44 REG, LOG, LSQR, RLAMFAC, SENREUSE 4684 35.1 0.91 

33 REG, IREGADJ 34942 34.1 0.92 

32 REG, REGCONTINUE 34929 34.1 0.92 

25 REG 29493 34.1 0.92 

26 REG, PHIMACCEPT 28367 34.1 0.92 

30 REG, WFFAC 17082 33.9 0.92 

29 REG, WFINIT 39968 31.3 0.93 

49 REG, LOG, SVD, RLAMFAC, SPLITTHRESH, LAMFORGIVE, SENREUSE 12889 30.3 0.93 

35 REG, SVD 20222 28.9 0.93 

48 REG, LSQR, RLAMFAC, SENREUSE 8238 28.9 0.93 

36 REG, LSQR 27136 28.6 0.93 

47 REG, LSQR, RLAMFAC 22393 28.5 0.93 

28 REG, MEMSAVE 24124 28.4 0.93 

34 REG, IREGADJ4 30843 28.1 0.93 

39 REG, LOG, SVD, SENREUSE 11338 28.1 0.93 

50 REG, LOG, SVD, RLAMFAC, SPLITTHRESH, LAMFORGIVE 14632 27.5 0.93 

40 REG, LOG, SVD 15975 27.4 0.93 

42 REG, LOG, LSQR 25862 26.8 0.93 

46 REG, LOG, SVD, RLAMFAC, SENREUSE 21985 26.5 0.93 

45 REG, LOG, SVD, RLAMFAC 18965 26.4 0.93 

54 REG, LOG, LSQR, RLAMFAC, PARREP 13262 26.2 0.93 

43 REG, LOG, LSQR, RLAMFAC 44238 26.0 0.93 
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Table 7  CPU time, objective function (φ) and Pearson’s correlation coefficient (r) resulting from optimisation of APSIM parameters using the PEST algorithm 

CMAES_P (covariance matrix adaptation evolution strategies). The shaded row represents optimisation results conducted using default CMAES_P settings. 

Other treatments were conducted using CMAES_P with different settings in the PEST control file (see methods and Table 1). Rows are arranged with φ in 
descending order. PE = prior equations (see methods for descriptions of CMAES_P simulations). 

Treatment No. CMAES_P settings examined CPU time (s) φ r 

67 LOG, PE, SVD 22465 47.7 0.88 

68 LOG, PE, LSQR 16693 47.7 0.88 

63 LOG, OMEGA15 19141 39.2 0.90 

62 LOG, OMEGA4 18341 36.9 0.91 

60 LOG, EQUAL WT 61409 36.6 0.91 

57 LOG, SVDHYBR 33878 31.2 0.92 

55 DEFAULT CMAES 47749 30.5 0.92 

66 LOG, PE 76195 28.8 0.93 

71 PSI 62947 25.8 0.94 

70 LOG, PSI, NOFORGIVE, PE, SVD, SENREUSE 92370 24.4 0.94 

59 LOG, SVDHYBR, SOFT10 32941 23.0 0.95 

58 LOG, SVDHYBR, SOFT 31698 23.0 0.95 

56 LOG 58469 18.5 0.97 

64 LOG, NOFORGIVE 55214 18.5 0.97 

61 LOG, PSI 56644 15.9 0.98 

65 LOG, PSI, NOFORGIVE 47484 15.9 0.98 

69 LOG, PSI, NOFORGIVE, LSQR, RLAMFAC 47243 15.9 0.98 

 

Parameterisation using CMAES_P resulted in the lowest φ values of all optimisation algorithms examined (Table 7). These values were obtained by log 

transforming variables and increasing the initial population size (ψ) to 25 (from a default population size of 18 in treatment 55). When failure of CMAES_P 

to read any part of a model run was allowed to precipitate cessation of the algorithm (i.e. setting NOFORGIVE in Table 7 to true), total run times were 

generally reduced (cf. treatment 64 to 56 and 65 to 61). This occurred because in the default case, parameter vectors giving rise to model run failure did not 

terminate the CMAES_P algorithm. Instead, the default case allowed CMAES_P to continue after internally assigning a very high objective function to this 

parameter set, thus providing a disincentive to the optimisation process from generating similar parameter sets in future runs (Doherty, 2016a). 
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Treatments 61, 65 and 69 resulted in the lowest φ of all CMAES_P algorithms examined (all used log 

transformation and increased the population size to 25); treatments 65 and 69 terminated 

optimisation earlier due to the NOFORGIVE setting detailed above. Although φ values for many 

CMAES_P treatments were lower than those obtained using regularisation (Table 6), CMAES_P 

optimisation run times were considerably longer.  

The shortest optimisation time of all CMAES_P treatments was obtained using log transformation of 

parameters, prior equations, and LSQR (treatment 68), although the value of φ associated with this 
treatment was relatively high. The longest optimisation times were obtained by increasing the value 

of population size, log transforming variables, or both. Treatment 70 took the longest period for 

parameter convergence, requiring over 25 hrs of CPU time. This treatment included log 

transformation of variables, increased population size, use of prior equations, SVD, composite 

parameter sensitivity reuse, and the NOFORGIVE setting detailed above. Treatments 66 (log 

transformation of variables and use of prior equations), 71 (increased population size) and 60 (log 

transformation and equally weighting all of the parent population vectors) also required extensive 

CPU times to satisfy the parameter convergence criteria applied here. 

The relationship between φ and the total number of model calls shown in Fig. 1 depicts the trade-off 

between lower cumulative residual error (between modelled and measured values) with CPU time; 

generally lower φ values were obtained after more model calls. Optimisation runs with the default 

solver or Tikhonov regularisation required the fewest model calls for parameter convergence, but 

the majority of regularisation runs resulted in lower φ values than those using the default solver 

method.  

 

Fig. 1. Relationship between the total number of model calls with the objective function (φ) of each 
optimisation run in PEST (treatments 52 and 53 not shown since weighting applied to objective 

function components in these treatments was not comparable to other treatments). 
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Fig. 2. Contribution of each APSIM variable to the total objective function value (φ) for each treatment in descending order from left to right. Legend abbreviations: AGDM 

= above-ground dry matter, Grain N = grain nitrogen content in kg/ha, HI = harvest index, Grain N conc = N concentration of grain in %, N2O = nitrous oxide emissions in kg 

N2O-N/ha, Cum N = cumulative N uptake in above-ground biomass in kg/ha, NO3(1, 3, 5) = nitrate content in kg/ha in soil layers 1, 3 or 5, respectively, SWS(1, 3, 5) = soil 

water content in layers 1, 3 and 5 respectively, yield = grain yield, and regularisation phi = contribution of prior equations to φ. 

 

Variability in φ across CMAES_P runs was generally higher than that for other optimisation methods (Fig. 1). The clustering of default and regularisation optimisation 

methods around a φ value of 26 indicates a local minimum in the objective function surface at this point, since some of the CMAES methods were able to attain φ values as 
low as 15.9. 

 

The contribution to φ from each variable for each treatment is shown in Fig. 2. The uncalibrated treatment (0) had the highest φ value, mainly due to large error in the 

prediction of N2O, soil nitrate, grain N concentration and cumulative N uptake. Treatments conducted with the default GML algorithm had the highest φ values (e.g. 12, 14, 
27 and 15). Treatments 61, 65 and 69 had the lowest φ values (as discussed above); each of these treatments were conducted with CMAES_P. CMAES_P treatments were 

most effective at lowering φ due to their ability to reduce model error associated with nitrous oxide emissions. 
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Fig. 3. Measured (points) and simulated (lines) (a) above-ground biomass and grain yield, (b) soil nitrous oxide 

emissions, (c) harvest index, (d) grain nitrogen concentration, (e) cumulative N uptake, (f) grain N content, (g) 

volumetric soil water content in the first layer (0-15 cm), (h) volumetric soil water content in the second layer (15-30 

cm), (i) volumetric soil water content in the third layer (30-60 cm), (j), soil nitrate content in the first layer (0-15 cm), 

(k) soil nitrate content in the second layer (15-30 cm), (l) soil nitrate content in the third layer (30-60 cm). The solid 

line represents treatment 43, whilst the dashed lines represent treatment 65 (see Tables 3 and 4 for features of 

these treatments). 

In general, the greatest contribution to φ was from N2O, except for treatment 9, which employed BOUNDSCALE and 

SVD (as discussed above). The contribution to φ from the regularisation objective function (φr in Eqn. 6) in applicable 

treatments was generally very small; the largest contribution to φr was in treatments 70, 66, 67 and 68. Treatments 

that employed Tikhonov regularisation also had greater contributions from NO3 and soil water content to φ. 
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Two of the better performing PEST optimisation settings are shown for comparison in Fig. 3. These 

included treatment 43 (regularisation, logarithmic transformation of parameters prior to inversion, 

LSQR and setting RLAMFAC to -3), and treatment 65 (CMAES with logarithmic transformation of 

parameters, an initial population size of 25, and terminating the optimisation whenever any 

parameter upgrade vector resulted in model run failure). Differences in the quality of the fit to either 

grain yield of biomass were minimal over the three years (Fig. 2a). Treatment 65 provided a better fit 

to N2O data in 2007, where the peak N2O emissions in that year were greater, but in 2008 the timing 

of the simulation parameterised by treatment 43 was more realistic than that provided by treatment 

65 (Fig. 3b). Differences between the quality of parameterisation of harvest index, grain N 

concentration, cumulative N uptake and grain N content were minimal (Figs 3c-f). In most cases, the 

parameterisation by treatment 65 resulted in lower soil water content in each of the three layers, 

and slightly larger differences between measured values and simulations. Treatment 65 resulted in a 

parameter set that caused more damping of the temporal fluctuations in NO3 content, and slightly 

lower ARMSE overall for soil NO3 content (Fig. 2). This resulted in a better fit to observed NO3 in 

2008 in the first and second soil layers (0-15 cm, 15-30 cm), but not necessarily in other years or in 

the third layer. 

 

Discussion 

Use of auto-parameterisation as a tool for model intercomparison and identifiability analysis 

The purpose of this study was to examine a range of PEST optimisation algorithms on the biophysical 

systems model, APSIM (Keating et al., 2003). Although PEST has been used previously on APSIM 

(Akponikpè et al., 2010; Chen et al., 2016), the extent to which the alternative optimisation 

algorithms within PEST could minimise the weighted sum of squared residuals between the 

measured and modelled data was unknown. Indeed, past studies using PEST with APSIM have 

predominantly had agronomic foci, whereas the lens of this study was on optimisation algorithms. 

This study has demonstrated that several combinations of optimisation algorithms within PEST can 

be reliably used to perform multi-objective function optimisation of APSIM. 

Aside from specification of preferred parameterisation settings in PEST, the observation that auto-

parameterisation can be used in this way to calibrate crop models is a very useful finding per se. 

There have been several past agricultural studies that have compared the outputs across models 

(Rosenzweig et al., 2014; Rosenzweig et al., 2013). During such model inter-comparison studies, 

different users were required to calibrate their model to intensive time-series datasets that were 

typically measured in the field (Rosenzweig et al., 2013). However, the extent to which 

anthropogenic effects influence differences between results of such studies is unknown. In 

particular, non-uniform prioritisation of variables used in the calibration process may lead to 

differences in model predictions purely as a result of the philosophical basis that a user places in 

different variables as part of the calibration process. If PEST (or other optimisation algorithm or 

software) was consistently used in such inter-comparison studies, one could argue that much of the 

user subjectivity might be removed by selecting the same optimisation algorithm and termination 

criteria for model parameterisation. The variability associated with the model user per se would then 

be the selection of lower and upper bounds placed on parameters, as well as initial parameter 

values. Where more than one team used the same model in an inter-comparison study, common 

initial values and bounds could be placed on model parameters. The same approach could be 

adopted in cases where a given parameter was common in multiple models (e.g. leaf N 

concentrations, radiation-use efficiency, specific leaf area, etc.). The important point here is that if 
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auto-parameterisation were able to absolve much of the uncertainty associated with how users 

parameterise models, the remaining differences between modelled results should better reflect 

model structural differences and thus strengths and weaknesses in model subroutines. 

Automated calibration approaches such as this study can also be used with identifiability analyses 

(Doherty and Hunt, 2009). Identifiability analyses evaluate the degree to which parameters can be 

estimated uniquely by relating the contributions made by the adjustable parameters to any of the 

eigenvectors spanning the calibration solution space (Necpálová et al., 2015). Unlike sensitivity 

analysis, identifiability analysis accounts for parameter correlations that can make it impossible to 

uniquely estimate even highly sensitive model parameters (Doherty and Hunt, 2010). In conjunction 

with automated calibration approaches, identifiability analyses have been used to show that only a 

small number of  parameters used in most environmental models are uniquely estimable with most 

datasets (Beck and Halfon, 1991). Inability to uniquely identify model parameters can be the result 

of their high correlation with other parameters, or lack of sensitivity of the model outputs to these 

parameters (Necpálová et al., 2015). This sort of problem is very difficult to recognise without 

specialised tools and can lead to misidentification of parameter values and inaccurate model 

projections for conditions outside the range of the calibration dataset. The application of inverse 

modelling provides insights about parameter dependencies, parameters that exert the greatest 

influence on the simulated values, whether field observations contain sufficient information to 

estimate the model parameters, and uncertainty associated with the predictions based on the 

estimated parameter values (Necpálová et al., 2015). 

 

Preferred optimisation settings in PEST 

Implementing Tikhonov regularisation was occasionally an improvement upon the GML algorithm 

without Tikhonov regularisation when SVD or LSQR was also employed (cf. Tables 5 and 6). Of the 30 

regularisation treatments examined, only 12 had lower φ than that obtained from GML treatments 
11, 20 and 10, which were conducted with SVD or LSQR (or LSQR with parameter sensitivity reuse; 

Table 5). The 12 regularisation treatments with lowest φ most often included LSQR or SVD and of 

these, the eight treatments with the lowest φ had log transformed parameters prior to inversion. In 
general, however, Pearson’s correlation coefficient values for treatments 11, 20, 10 and all of the 
aforementioned regularisation treatments were greater than 0.9, suggesting any of these 

treatments - regardless of many other PEST control file settings - provided a high degree of 

parameterisation. Moreover, the majority of the treatments without regularisation converged much 

earlier than those with regularisation, indicating that if parameterisation run time is an issue, users 

may simply opt to apply the default algorithm with SVD or LSQR. 

Somewhat counter to our expectations, regularisation treatments with SVD were often terminated 

faster than corresponding LSQR treatments (e.g. treatment 43 required 44,238 seconds and SVD 

treatment 45 required 18,965 seconds; treatment 42 required 25,862 seconds whereas the 

corresponding SVD treatment (40) converged in 15,975 seconds; Table 6). Doherty and Hunt (2010) 

suggest that the computational costs when employing SVD arise from calculation of the Jacobian 

matrix and linearisation of the solution in the search direction, such that computational time can 

become inordinately large when more than 2,500 parameters are optimised (Lin et al., 2016). In 

contrast to SVD, however, LSQR approximates the solution using a least squares subspace, where 

the algorithm projects the original problem down to a subspace and solves the projected problem, 

instead of finding the solution in the original parameter subspace. This projection usually results in 

much smaller dimensionality of the problem and thus reduced computation costs (Lin et al., 2016). 
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Although we found evidence of this for the default GML algorithm without regularisation (cf. 

treatments 10 and 11 in Table 5), the opposite was true when regularisation was employed (Table 

6). This may have been because we estimated much fewer than 2,500 parameters or because 

implementation of SVD or LSQR with Tikhonov regularisation increased the computational burden 

due to incorporation of prior information equations. 

One of the better performing regularisation algorithms included log transformation of parameters, 

LSQR, and setting the factor used to adjust λ between successive iterations (RLAMFAC) to -3 

(treatment 43). Reusing optimised parameters from this treatment in a subsequent round of 

optimisation did not improve the quality of the fit (treatment 54), indicating that the optimisation 

algorithm had converged on a local or global minimum in treatment 43. For all regularisation 

treatments, treatment 43 resulted in the lowest φ for optimisation using Tikhonov regularisation, 

but required 4,216 model calls and thus was one of the longest running regularisation methods 

examined. CMAES_P treatments 61, 65 and 69 resulted in even better fits to the data (these 

treatments were conducted with log transformed variables prior to optimisation and increased 

initial population size (ψ)), but required even more model calls (17,317-17,357) than the 

regularisation methods resulting in the lowest φ (treatments 54 and 43). These results suggest that 

(1) log transformation of parameters prior to inversion, (2) implementing LSQR and (3) setting 

RLAMFAC to -3 appear to be better optimisation settings with APSIM if run time is an issue. Tikhonov 

regularisation is clearly a faster optimisation method than CMAES_P, likely because CMAES_P runs 

require multiple (ψ) vector upgrades during every iteration, whereas the GML method with 

Tikhonov regularisation does not. Algorithms combining log transformation of parameters, SVD, 

regularisation (and potentially an RLAMFAC of -3) also performed well with respect to terminal 

values of φ (e.g. treatments 40, 46 and 45 in Table 6). As the four regularisation treatments with 

lowest φ were realised when RLAMFAC was set to -3 (from the default value of 2), our advice to 

future research on this theme is a thorough examination of how RLAMFAC affects parameter 

convergence and optimisation time. 

Here we implemented prior equations implicit to Tikhonov regularisation using the ADDREG1 utility 

program provided with the PEST suite. This program formulated prior information equations as 

linear equations involving individual parameters. As such, prior information equations did not 

involve more than one parameter, although multiple parameters can be included in such equations 

so long as the overall equation is linear. Previous studies that have used Tikhonov regularisation to 

solve optimisation problems have shown that whilst the performance of the algorithm is not 

strongly dependent on the prior knowledge equations, a preliminary estimate of parameter values 

(in the form of prior equations) enables more accurate estimation of parameters (Rouchier et al., 

2015). Experimentation with different initial parameter values and thus prior information is 

something that should be explored in future studies.   

To assess whether prior information was useful in global optimisation, we added the same prior 

information from the regularisation control files to some of the CMAES_P files. However, in contrast 

to Tikhonov regularisation, use of prior information with CMAES_P resulted in little improvement 

(treatment 66) or degraded the quality of the optimisation (treatments 67 and 68), the latter of 

which resulted in higher φ than all other CMAES_P treatments when SVD or LSQR were also used. 

This was most likely because covariance matrix adaption strategy was developed using the principal 

of maximum entropy, and this principal is enacted by minimising the amount of prior information 

built into the distribution (Hansen and Ostermeier, 2001; Jaynes, 1982). Having a priori information 

implicit to the CMAES_P treatments 66-68 through the form of initial parameter estimates appears 
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to have biased the covariance matrix away from evolution towards the parameter vector providing 

the global minimum. 

As we did not alter either the weighting associated with parameters in prior information equations, 

or the overall weighting associated with prior information articles, it is possible that different 

parameter factors or article weighting may have improved the accuracy and precision of the 

modelled data. Provision of different initial parameter estimates and weighting for both parameters 

and equations is an exercise that remains to be conducted for both CMAES_P and Tikhonov 

optimisation algorithms. 

Certain control file settings of CMAES_P allowed reduction of φ to lower values than those obtained 

by using Tikhonov regularisation (cf. Tables 2 and 3). Convergence of the gradient-based methods 

with regularisation to φ values of between 26 and 27 indicates that these algorithms terminated on 

local minima, compared with some of the CMAES_P methods, which reduced φ further, as low as 

15.9 (Table 7). Given that three CMAES_P treatments converged on the same φ value, (treatments 
61, 65 and 69), it is possible that this value represents the global minimum of the solution. Our 

results also suggest that treatments with Tikhonov regularisation converged on local minima related 

to the N2O emissions measurements (Fig. 2), since this variable primarily contributed to φ in 
regularisation treatments, in contrast to treatments with CMAES_P that were more effective at 

lowering the contribution to φ caused by N2O emissions. 

 

Optimisation settings resulting in low model accuracy and precision 

Without Tikhonov regularisation, optimisation performance by the default algorithm was improved 

via reduced number of model calls when composite parameter sensitivity reuse was implemented 

(see Table 5). However, employing SENREUSE in combination with regularisation (Table 6) generally 

degraded with quality of the data fit (cf. treatments 43 to 44, 39 to 40 or 45 to 46). Reusing 

composite parameter sensitivity from one iteration to the next clearly saved CPU time in re-

evaluating sensitivity from one run to the next, however this reduction in computational time came 

at the expense of early convergence and higher terminal φ values, indicating the PEST setting 
SENREUSE should be avoided. 

There were several other treatments that had little effect on the value of φ or r but required 
significantly longer to converge (Table 5). Implementing PEST’s method to fit derivatives using five 

points (ALWAYS 5, treatment 15) caused significantly greater run time as opposed to the default 

forward differencing/three-point derivative computation. Increasing the tolerances on parameter 

convergence (i.e. increasing the number of iterations over which parameters do not change and the 

relative change from iteration to iteration; treatments 22 and 23) also resulted much longer run 

times but no improvement in model to measurement mismatch. 

 

Model features enabling optimisation by PEST and applicability of our results to other studies 

The use of PEST as an optimisation tool has several advantages. PEST (1) facilitates simultaneous 

parameter optimisation across multiple objective functions, (2) requires very little programming 

knowledge (control, instruction and template files are arranged in a straightforward and intuitive 

layout) and (3) contains several free utility programs within the suite of PEST tools that help create, 

guide and error-check files prior to parameterisation (e.g. utility programs for adding Tikhonov 

regularisation, replacing parameter values between one optimisation and the next, checking the 
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value of the Jacobian matrix from iteration to iteration, etc.). PEST also includes linear and nonlinear 

methodologies for quantification of predictive uncertainty (the software can be run in ‘predictive 
analysis’ or ‘Pareto’ modes, both of which facilitate pre- and post-calibration uncertainty analyses), 

although these features were not applied here in order to keep the study size manageable. 

As mentioned above, some of the model features allowing optimisation by PEST include the 

availability of model file(s) with all of the parameters used in the model simulation (in this case these 

were APSIM .sim files, generated with the ApsimToSim executable), as well as corresponding model 

outputs (in this case APSIM .out files). The format(s) of model outputs must also be sufficiently 

consistent from simulation to simulation such that their locations can be uniquely specified in the 

PEST instruction files (.ins). Even so, PEST has considerable flexibility in its ability to recognise a 

specific model output (e.g. a model output measured on a specific date) and thus the change in 

modelled values for each parameter upgrade iteration. PEST also requires a “model command line” 
wherein a command line interpreter code (or equivalent) can be used to specify the location and run 

the model (e.g. for Treatment 5 we used "C:\Program Files (x86)\Apsim78-

r3867\Model\ApsimModel.exe" PEST_treatment_5.sim > null”, where the line in quotation marks 
provides the location of the ApsimModel executable, “PEST_treatment_5.sim” is the name of the 
APSIM .sim file containing PEST demarked parameters, and “> null” prevents run time information 
from APSIM showing on the command line). Thus, availability of a compiled version of the model 

allowing execution from the command line is a key feature facilitating optimisation by PEST. 

We postulate that the results found in this study would also be applicable and relatively consistent 

for other models. Although models vary widely in function, intent and complexity, PEST was 

specifically designed to be model independent and thus applicable across a range of models. In 

general terms, use of Tikhonov regularisation with prior equations provided better fits than the 

standard GML algorithm, as did inclusion of SVD or LSQR (though regularisation treatments with 

LSQR were no necessarily faster than those with SVD). Combining SVD or LSQR with Tikhonov 

regularisation, log transforming parameters prior to inversion and setting the Marquardt lambda 

modification factor (RLAMFAC) to -3 further improved the quality of the optimisation obtained. Even 

less error variance resulted from using CMAES_P, especially with larger population sizes, albeit 

CMAES_P required much longer run time than the GML algorithm with Tikhonov regularisation. We 

cannot disqualify the assertion that any optimisation algorithm applied here resulted in overfitting, 

though regularisation per se is designed to guard against overfitting by allowing heterogeneity to 

emerge where its existence is supported by field data, and penalising regions of the solution space 

where model heterogeneity cannot be supported by the calibration data (Tonkin and Doherty, 

2005). An opportunity for future studies would be to test our hypothesis that these results (i.e. order 

of PEST algorithms resulting in the best fit of simulations to measured data) is reasonably consistent 

across models by applying PEST to their own models under a diverse range of experimental 

conditions. 

Limitations of this study 

This study investigated how different PEST algorithms and control file settings influenced the value 

of φ, r and associated CPU time required for each optimisation treatment. For the default GML 

algorithm and that with Tikhonov regularisation, we fitted 117 measurements with 115 parameters. 

Various rules of thumb in statistics exist for the desirable ratio of measurements to parameters, but 

often a ratio of 10 is used (Harrell Jr. et al., 1984). This study was far from that. Further, some of 

model errors were not independent for different measurements, so the effective sample size would 

be less than 117. It also should be noted that this study was applied to data from a single location 

and treatment. In a general calibration-validation experiment that aimed to use the calibrated model 
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in a validation or to make predictions or scenario analysis such as genotype by environment by 

management analysis, the approach conducted here would not be appropriate because some of the 

treatments could potentially be overfitted. As well, conclusions regarding preferential treatments 

may be specific to this study and different conclusions as to the best calibration approach may apply 

to other situations. Nevertheless, the purpose of this study was not to use the calibrated model to 

make agronomic predictions. Rather, this study was designed to test the ability of PEST to optimise 

extreme ratios of number of parameters to field measurements. Indeed, the purpose of this work 

was to determine which PEST algorithms resulted in the best fit to the 13 datasets and thus provide 

guidance for future studies using PEST on the pros and cons of each of the main approaches, as well 

as the motivation for using each approach. For example, if CPU time is not an issue due to parallel 

computing through clusters, CMAES_P with increased population size and log transformation of 

variables prior to inversion would be recommended. In the case that optimisation runs are 

constrained by CPU time, Tikhonov regularisation with SVD and LSQR and log transformation is 

suggested. 

For future studies that aim to use PEST for parameterisation of their model followed by model 

evaluation and/or application, we advise that model practitioners select a small number of the 

optimisation treatments shown here (e.g., four or five treatments with the lowest φ), calibrate their 
model on multiple datasets and experimental treatments (preferably with more than one location if 

the study is on an agronomic experiment similar to the present study), validation of their model 

(spatially and temporally if possible) and restriction on the number of parameters optimised such 

that the ratio of data points to optimised parameters is 10 or greater. Consideration of which 

parameters are optimised also needs attention. Here we identified parameters for optimisation 

through manual sensitivity analysis, wherein the magnitude of change in model outputs resulting 

from changes in single parameters was recorded. Future studies could automate this step by using 

some of the tools provided with PEST or related programs, either the PEST utility program SENSAN 

(which allows users to conduct local sensitivity analyses), or the global sensitivity analyser (contained 

in the PEST compatible program ‘PEST++’; Welter et al., 2015). Selection of sensitive model 

parameters influencing the model output variable of interest is an important first step, particularly if 

the number of parameters to be calibrated is low, for selection of insensitive parameters (or 

sensitive model parameters with respect to another model output but not the output that is to be 

fitted) will likely limit the quality of model fit obtained and thus predictive skill of simulations 

conducted using the calibrated model. In this study, optimised parameters varied in function; some 

having impact on simulated crop biomass, others on soil water content, others on nitrous oxide 

emissions, etc. For crop models like APSIM, it is unlikely that one model parameter will have 

significant influence on all model outputs, meaning that more parameters will need to be chosen for 

optimisation if the number of variables fitted is greater. 

Conclusions 

This study demonstrated several approaches for automated parameterisation of the complex 

deterministic model, APSIM. Through use of the model-independent Parameter ESTimation software 

(PEST), we examined multi-objective parameterisation of APSIM using data from a maize cropping 

experiment that contained several datasets. Tikhonov regularisation generally improved the 

performance of the default Gauss-Levenberg-Marquardt algorithm, particularly when the scaling 

factor used to determine parameter increments in successive optimisation iterations (RLAMFAC) was 

set to a value of -3 (enabling PEST to scale λ during each iteration of the inversion process so that λ 
can achieve a value of 1.0 with three adjustments), and either LSQR decomposition or SVD was used. 

Nonetheless, employing the default GML algorithm with LSQR or SVD also resulted in high quality 
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calibration and in significantly less computational time than other optimisation algorithms examined 

here. Employing CMAES_P with log transformed parameters and increased population size resulted 

in very low φ values but required significantly longer to converge. We propose that auto-

parameterisation could be used as a protocol in future model inter-comparison exercises, since it 

would (1) foster removal of some of the subjectivity in simulation results associated with 

anthropogenic parameterisation after predefining lower and upper parameter bounds, (2) allow 

standardisation of parameter convergence criteria within given optimisation runs, (3) accelerate and 

systematise the inverse modelling process (Necpálová et al., 2015), and (4) highlight important 

effects of structural differences between models. 
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