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Abstract— In this paper, we demonstrate a simple square-wave
electrical modulation scheme for imaging with laser feedback
interferometry (LFI). Distinct advantages of this scheme include:
1) the straightforward creation of the modulating signal, even
for high-current lasers and 2) its natural suitability for lock-in
detection. We compare this simple scheme against two estab-
lished imaging modalities for LFI: 1) mechanical modulation
using an optical chopper and 2) the swept-frequency feedback
interferometry approach. The proposed scheme lends itself to
high-frequency modulation, which paves the way for high frame-
rate LFI imaging with no motion artefacts using off-the-shelf
equipment.

Index Terms— Laser feedback, interferometry, semiconductor
lasers.

I. INTRODUCTION

EXPERIMENTALLY simple schemes for high frame-rate

imaging using laser feedback interferometry (LFI)

are of fundamental interest for many applications [1]–[3].
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Most of the LFI imaging techniques (which utilise the

self-mixing effect) proposed to date are limited in achievable

modulation frequency (and consequently the imaging

frame-rate) by the mechanical nature of the modulation

scheme or the complexity of the electrical modulation used.

To create the LFI signal some of these methods use an

optical chopper [4], [5], or require longitudinal displacement

of the object being imaged [6]. Mechanical modulation

can also be achieved by using microelectromechanical

devices, thus significantly decreasing the size of the complete

system [7], [8]. Alternatively they require involved electrical

or electro-optical modulation and detection schemes including

frequency shifting of the laser beam by acousto-optic deflec-

tors [9]–[11] or swept-frequency feedback interferometry

with directly modulated lasers [12]–[16]. The LFI signal can

also be detected without additional modulation of the laser

carrier, by measuring the extremely small variations in the

DC signal while scanning [17], [18]. However, the LFI signal

can easily be obscured by fluctuations (a consequence of

motion artefacts) when the scanning is rapid.

To overcome these limitations, we propose an ultimately

simple electrical modulation scheme for LFI imaging using

square-wave modulation of the laser current. Three sets of

experiments were performed on the same imaging target to

compare this simple modulation scheme against two estab-

lished LFI imaging methods. Additional displacement exper-

iments and simulations were carried out to elucidate on the

nature of the observed interference fringes. In all cases, exper-

iments were carried out using a mid-infrared (MIR) interband

cascade laser (ICL) [19], [20]. The extremely simple nature

of the square-wave laser current modulation scheme paves the

way for high frame-rate imaging at high laser driving currents,

from which MIR and THz QCL imaging applications may

benefit significantly [21]–[23].

II. EXPERIMENTAL SETUP

The experimental setup of the LFI system can be seen

in Fig. 1. The MIR distributed feedback (DFB) ICL

(λ = 3.57 µm) used in this study was a design adapted

from [24] and operating characteristics (light–current, current–

voltage curves, and the emission spectrum) were described in

detail in [5]. The device was designed specifically for optical

spectroscopy of organic molecules and exhibits high level of

phase stability and narrow emission linewidth. The package
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Fig. 1. Schematic of the experimental apparatus used.

used enables highly accurate temperature control making this

laser eminently suitable for comparing different modulation

schemes proposed in this article.

The ICL was kept at a constant temperature of 20 ◦C

using a Peltier temperature controller mounted inside the

laser package, and operated at a drive current of 65 mA,

approximately 1.3 Ith (current threshold Ith = 50 mA) with an

output power of about 1.4 mW. The emitted radiation from the

ICL was collimated using a 2 inch diameter, 2 inch focal length

off-axis parabolic reflector and focused normally on the target

using a second identical reflector (giving an optical path length

of 341.6 mm). The voltage signal across the laser terminals

was ac-coupled into a × 1000 gain differential amplifier and

subsequently fed into a 16-bit PC-based data acquisition card

synchronised with the chopper or signal generator.

The ICL was operated in three different modes: (1) mechani-

cally modulated using an optical chopper; (2) electrically mod-

ulated with a square-wave current signal; and (3) electrically

modulated with a saw-tooth current signal. Each measurement

data point (spatial pixel) was obtained using 64 averaged time-

domain waveforms. All experiments were carried out using

a 1 kHz modulation frequency. Imaging experiments were

performed on an Australian 5-cent coin and in the subsequent

displacement experiments an aluminium front surfaced mirror

was used. In all experiments, targets were mounted on a three-

axis computer-controlled translation stage, allowing each to

be displaced along the optical axis of the system (z) or raster

scanned in a plane perpendicular to the optical axis (x–y).

A. Mechanical Modulation Using Optical Chopper

The ICL beam was modulated at 1 kHz with an optical

chopper placed just in front of the output aperture of the laser,

thereby amplitude-modulating the optical feedback which the

laser was experiencing. Two states are present: (1) the chopper

blade is obstructing the beam — the laser is operating with

virtually no feedback; and (2) the beam is transmitted between

the blades and to the external target — the laser is operating

with an external feedback level dictated by the target. These

two states result in two distinct voltage levels across the ICL,

giving rise to a square-wave LFI signal in the time domain.

Fig. 2. Diagram of the three modulation schemes and their resulting
LFI signals: (a) optical chopper; (b) square-wave current modulation; and
(c) saw-tooth current modulation.

Figure 2(a) shows a representative voltage waveform measured

across the laser terminals using this approach. This waveform

clearly shows two states — the root-mean-square (RMS) of

these waveforms (trimmed to central 90% of values) was used

for image formation.

B. Square-Wave Current Modulation

A square-wave modulation of the laser current was applied

with a frequency of 1 kHz superimposed on the constant laser

drive current with a modulation depth of 1 mA. Square-wave

modulation has a range of advantages in terms of ease of

implementation and the availability of high-speed high-current

off-the-shelf equipment that can be used to implement it. How-

ever, we would like to point out that a number of phenomena

are involved in determining the voltage levels across the laser

at the two current levels used. Firstly, as the laser sensitivity

to feedback changes with bias current [4], [25] in particular

in close to the lasing threshold, this type of modulation

creates the LFI signal corresponding to two different bias

points, in an alternating pattern [see Fig. 2(b)]. Secondly, due

to current-induced frequency shift between these two states,

the laser is essentially operating at two different frequencies

corresponding to two different phase shifts accumulated in

the external cavity, which the laser interferometer converts

into two intensity levels with their corresponding voltages.

One should keep in mind that the feedback-caused voltage

variation is superimposed on the (much bigger) voltage change

caused directly by the changes in laser driving current. All

these phenomena contribute to the observed voltage signal,

with their relative contribution depending on the laser type

and the current levels used. The RMS value of the measured

and trimmed voltage waveform was used for image formation.

C. Saw-Tooth Current Modulation

A saw-tooth modulation of the laser current was applied

with a frequency of 1 kHz and a modulation depth of 1 mA.

The ramp of the saw-tooth not only linearly modulates the
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Fig. 3. Images of a small region on an Australian 5-cent coin, using the
three modulation schemes. a) Optical chopper (RMS). b) Square-wave laser
current modulation (RMS). c) Saw-tooth current modulation amplitude-like
(peak-to-peak). d) Saw-tooth current modulation phase-like (peak position).

output power of the laser but also induces a linear sweep of

the laser frequency. Figure 2(c) shows a typical waveform from

this modulation scheme as measured across the laser terminals.

The information-bearing portion of the measured waveform is

the signal riding on the saw-tooth — Fig. 2(c) also shows the

same waveform after the ramp has been removed (‘negatised’)

allowing the interferometric fringes in the waveform to be

clearly seen. This waveform contains information about target

reflectivity and the phase-shift on reflection [15]. Therefore,

two images can be obtained concurrently; one being represen-

tative of the strength of reflection at any given point, and the

other corresponding to the phase-shift on reflection at the same

point. The first of these images was obtained by extracting

the peak-to-peak voltage of the negatised and trimmed signal,

while the position of the last peak relative to the modulation

period was used to obtain the phase image.

III. RESULTS AND DISCUSSION

A. Imaging With Laser Feedback Interferometry

The three modulation schemes were used to image the same

1.5 × 1.5 mm2 region (with 5 µm pitch) on the obverse of

an Australian 5-cent coin. The common current bias point for

the three schemes was 65 mA, near to where the maximum

LFI signal was observed using the mechanical modulation

scheme. Figure 3 shows the results of imaging for the target

with each of the three schemes. In each of the four images,

the three dimensional nature of the target is clearly visible.

Figures 3(a), 3(b), and 3(d) show interferometric fringes

arising from the changing surface profile of the target on the

scale of similar order as the laser wavelength. In Fig. 3(c)

these interferometric fringes are conspicuously absent due to

Fig. 4. Signal strength each modulation scheme over displacement: simu-
lated (left) and experimental (right, biased at 65 mA) results for the three
modulation schemes. a) Optical chopper. b) Square-wave current modulation
(1 mA modulation depth). c) Saw-tooth current modulation (amplitude-like).
d) Saw-tooth current modulation (phase-like).

the amplitude-like nature of this representation; the phase

information has been decoupled and is shown in Fig. 3(d).

B. Displacement Characteristics of the Three Schemes

To illuminate the link between the observed fringes and

the operation of the laser feedback interferometer, we carried

out an additional set of experiments and simulations. In these

experiments, the target (a planar front surface aluminium

mirror) was displaced longitudinally to reveal the effect on the

LFI signal. The displacement used — four half-wavelengths

(7.148 µm) — corresponds to a change in transmission phase

accumulated in the external cavity of 4π , and results in inter-

ferograms with four peaks. The right-hand column of Fig. 4

shows the experimentally measured dependence of the LFI

signal on position, where the corresponding simulations appear

in the left-hand column of the same figure. The simulation

model used is based on the well-known excess phase equation

governing self-mixing phenomena in lasers in steady-state and

has been described in detail in [26]. Modulation from the

optical chopper [Fig. 4(a)] was incorporated into simulation

by periodically switching between a low reflectivity target

when the optical chopper blade blocks the beam and a target
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with high reflectivity when the beam passes between chopper

blades to the mirror at two distances from the laser. This

was implemented by changing the value of the feedback

parameter C (a commonly used quantity for characterizing

feedback levels [27]) between a low (C = 0.001) and a high

(C = 1) value, and using two distances given by the geometry

of the experimental setup. A clear match between simulation

and experiment was observed.

Square-wave current modulation was captured in simulation

by periodically switching between two different operating

frequencies at two different voltage levels (corresponding to

the two different driving currents). It is interesting to note

that the observed change in RMS of the simulated signal with

displacement was modelled solely through the difference in

the transmission phase accumulated in the external cavity at

each of the two operating frequencies and the change in laser

sensitivity to feedback with the driving current was ignored.

The effect of saw-tooth current modulation on the negatised

LFI signal was included in simulation as a linear frequency

chirp over the modulation period as dictated by the frequency

modulation coefficient of the laser. For each position of the

target, this frequency chirp results in two or more ripples

(peaks) in the LFI signal waveform — corresponding to

a change in transmission phase of greater than 4π . The

position of these peaks relative to the modulation waveform

was determined by the length of the external cavity. As the

target was linearly displaced, there was a corresponding linear

change in the transmission phase, which was clearly captured

[Fig. 4(d)] both in experiment and simulation.

On the other hand, the peak-to-peak amplitude of this

saw-tooth current modulation signal should not change

with displacement, as properly reflected in our simulation

[Fig. 4(c)]. The experimental signal displays traces of the

phase information seeping into the peak-to-peak amplitude.

This explains the presence of the interference fringes in

Figs 3(a), 3(b), and 3(d) and their (almost complete) absence

in Fig. 3(c).

C. Discussion

Both experiment and simulation show that the effects

leading to the image formation were the change in the external

cavity length and the change in the effective reflectivity [in

this case the reflectivity of the target (5-cent coin) is changing

due to change in angle and roughness at different points

where the beam interrogates the surface]. The displacement

experiment, where the reflectivity of the target was kept

constant, clearly separates the two effects. For the first two

modulation schemes [see Figs. 4(a) and (b)] the amplitude

of the LFI signal depends on the displacement of the target;

in the third case, due to the FM nature of the modulation

scheme, it is the phase, not the amplitude of the LFI signal

that contains the information about the displacement of the

target. In all three cases, interference fringes (caused by the

phase wrapping) are observable in the obtained images [see

Figs. 4(c) and (d)]. The change in the effective reflectivity of

the target additionally modulates the strength of the signal, and

was clearly separated from the phase information in Fig. 3(c).

Each of the three modulation schemes has some comparative

advantages. The mechanical modulation through the optical

chopper produces simple output signal — lending itself to

straightforward lock-in detection — and results in the great-

est contrast with displacement, but has the modulation fre-

quency limited by mechanical considerations. At high speeds

it also introduces spurious mechanical vibrations and periodic

changes in the refractive index of the air that will be detected

by the system [28].

The square-wave current modulation can be implemented

at high frequencies for high-current lasers (for example THz

QCLs) — limited only by the characteristics of the laser

being used — whilst retaining natural suitability for lock-in

detection. Moreover, as no mechanical modulation is required,

this scheme is more compact, requires fewer elements, and

avoids any problems resulting from mechanical vibrations.

Finally, the saw-tooth current modulation results in

two distinct concurrently captured images — each bearing

complementary information about the target. However, the

generation and detection of the modulating current waveforms

and resulting voltage signals is considerably more involved,

especially for high current lasers.

IV. CONCLUSION

We have proposed a very simple square-wave electrical

modulation scheme for imaging with LFI. The simplicity of

the modulating current waveform lends itself to high frequency

modulation with high current lasers and detection using off-

the-shelf equipment. The proposed scheme compares well with

established LFI imaging modalities.
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