
EasyChair Preprint
№ 4063

Simple Electromagnetic Analysis Against
Activation Functions of Deep Neural Networks

Go Takatoi, Takeshi Sugawara, Kazuo Sakiyama and Yang Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 20, 2020

Simple Electromagnetic Analysis Against

Activation Functions of Deep Neural Networks

Go Takatoi, Takeshi Sugawara, Kazuo Sakiyama, and Yang Li

Graduate School of Informatics and Engineering,
Department of Informatics, The University of Electro-Communications

1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
{g.takatoi,liyang}@uec.ac.jp

Abstract. From cloud computing to edge computing, the deployment
of artificial intelligence (AI) has been evolving to fit a wide range of ap-
plications. However, the security over edge AI is not sufficient. Edge AI is
computed close to the device and user, therefore allowing physical attacks
such as side-channel attack (SCA). Reverse engineering the neural net-
work architecture using SCA is an active area of research. In this work,
we investigate how to retrieve an activation function in a neural network
implemented to an edge device by using side-channel information. To this
end, we consider multilayer perceptron as the machine learning architec-
ture of choice. We assume an attacker capable of measuring side channel
leakages, in this case electromagnetic (EM) emanations. The results are
shown on an Arduino Uno microcontroller to achieve high quality mea-
surements. Our experiments show that the activation functions used in
the architecture can be obtained by a side-channel attacker using one or
a few EM measurements independent of inputs. We replicate the timing
attack in previous research by Batina et al., and analyzed it to explain
how the timing behavior acts on different implementations of the activa-
tion function operations. We also prove that our attack method has the
potential to overcome constant time mitigations.

Keywords: Machine learning · Deep learning · Side-channel · Activation
function · SEMA

1 Introduction

Machine learning has been researched in many areas due to its practicality and
effectiveness. Deep learning especially is rapidly becoming a popular machine
learning method. Image recognition [9, 15], robotics [13], natural language pro-
cessing [24], security [1, 16, 28], and medical science [6, 7] are all areas in which
deep learning are being used.

Neural networks are trained with high costs, and has a possibility of including
confidential information from the training phase. Machine learning models are
stored with valuable intellectual property, which are quickly becoming a target.
Therefore, security over artificial intelligence (AI) is a growing concern. There are
already a variety of attacks against AI [2,12,20]. For example, model extraction

2 G. Takatoi et al.

attacks [26], membership inference attacks [22], and model inversion attacks
[5] are all attacks that target valuable information from AI. Model extraction
attack presented by Tramer et al. can reverse engineer a machine learning model
with high efficiency, as it only requires less than 10,000 online queries to the
target machine learning model to replicate their attack. [26]. Shokri et al. proved
that by using membership inference attack, prediction application programming
interface (API) leaks information if an input was used as the training data [22].
Fredrikson et al. discussed that the model inversion attack could reverse engineer
the training data just from the label and access to the prediction API [5].

In recent years, communication, privacy, and latency issues have caused deep
neural networks to be calculated on the edge instead of the cloud servers. Edge
devices are existent close by, therefore allowing physical attacks such as side-
channel attacks. There are side-channel attacks to recover the architectures and
parameters of neural networks. Leaked side-channel information include infor-
mation from the operation. Recovering neural network architectures with cache
side-channel attack is one way to attack edge AI [11, 29]. Fault attacks are also
used to recover neural network parameters [4]. There are side-channel attacks
against specific neural network accelerators [27, 30].

One recent work by Batina et al. has shown that a black box multilayer per-
ceptron (MLP) and convolutional neural network (CNN) implemented on a 8bit
and 32bit CPU can be reverse engineered using merely side-channel informa-
tion [3]. They had separated the recovery of the network architecture into 4 key
parameters: the activation function, pre-trained weights, the number of hidden
layers, and the number of neurons in each layer. The activation function was dis-
cerned by timing attack from its distinctive computation time. Timing patterns
or average timing can be compared with the profile of each function to determine
the activation function. They recovered weight parameters with correlation elec-
tromagnetic analysis (CEMA), looking at the leakage in the Hamming weight
of the input and weight multiplications. The layer boundaries and the number
of nodes can be distinguished from the electromagnetic (EM) trace using the
leakage signatures.

In this work, we have focused on the problem in the recovery of the activation
function. The previously proposed recovery on the activation function has a
limitation that it depends on non-constant timing behavior. By implementing
constant time activation function, their attack can be easily mitigated. In this
work, we have the following contributions.

– We propose a new type of attack to identify activation functions based on
simple electromagnetic analysis (SEMA) [14]. Our proposed attack is imple-
mented and demonstrated on a Arduino Uno, we were able to identify the
activation functions used in the network.

– We have replicated the timing attack on the activation functions by Batina et
al., and analyzed their attack and how the timing behavior acts on different
implementations of the activation function operations. This has shown the
significance of our proposed method as it is versatile to different activation
function implementations and independent of inputs to the network.

SEMA Against Activation Functions of DNN 3

– We have compared our new attack to the attack proposed in previous work,
and we have discussed the potential of our attack to overcome constant time
mitigation.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
the background. Sect. 3 outlines the methodology and the benefits of the SEMA
attack. Subsequently, our experiment setup is shown in 4.1, and the proposed
signal processing method is described in Sect. 4.2. The proposed signal processing
is applied in Sect. 4.3. The analysis of the experiment results are shown in Sect. 5.
Sect. 5.3 also discusses the analysis of previous work and constant time activation
function implementations. Finally, the conclusions are presented in Sect. 6.

2 Background

In this section, we describe the details and architectures of the artificial neural
network (ANN) used in this work.

2.1 Multilayer Perceptron

A MLP is a very simple type of neural network, and is made of fully connected
layers. Fully connected layers means that all of the nodes in a layer is connected
to all of the nodes in the next layer. A model of a node is depicted in Fig. 1.
The circle surrounding a and y is called a node (or neuron). The output y of a
node is calculated in Eq. (1) as follows.

y = h

(

n
∑

i=1

xi × wi + b

)

(1)

Here, (x1, x2, . . . , xn) represents the inputs, (w1, w2, . . . , wn) represents the weights,
b represents the bias, and h(a) represents the activation function. The bias is
often programmed as the weight of an input value 1.

The model of a 4 layer MLP that is used in this work is depicted in Fig. 2. A
MLP must have at least 3 layers, composed of at least one input layer, hidden
layer, and output layer. The MLP in Fig. 2 consists of an input layer, two hidden
layers, and an output layer.

2.2 Activation Functions

Here we describe the activation functions used in this works, which are sigmoid
function, tanh function, softmax function, and Rectified Linear Unit (ReLU)
function.

The sigmoid (logistic) function is a nonlinear function as shown in Eq. (2).
This function will be most effective when used in a neural network trained with
back propagation. The sigmoid function plots inputs ranged (−∞,∞) to outputs
ranged (0, 1).

4 G. Takatoi et al.

1

𝑥#

𝑥$

𝑥%

ℎ()
𝑤$

𝑤%

𝑤#

𝑦𝑎

𝑏

Fig. 1: A Model of a Node

入力層 中間層 出力層

Input

Layer
Hidden

Layer

Output

Layer

Fig. 2: A Model of a Multilayer Percep-
tron

h(a) =
1

1 + e−a
(2)

The tanh function is a rescaling of the sigmoid function, and the main differ-
ence is that it is symmetric by the origin. The tanh function maps inputs ranged
(−∞,∞) to outputs ranged (−1, 1) as shown in Eq. (3).

h(a) =
ea − e−a

ea + e−a
=

2

1 + e−2a
− 1 (3)

The softmax function is able to map values into several outputs (or classes)
which sum becomes 1. The output range is (0, 1). It is able to be seen as probabil-
ity, and is used for classification problems. Eq. (4) below is the softmax function
where the vector is shown in bold.

h(a)j =
eaj

∑K

k=1
eak

, for j = 1, . . . ,K and a = (a1, . . . , aK) ∈ R
K (4)

As shown in Eq. (5), the ReLU function is an extremely simple function,
therefore mainly used as an activation function for ANNs. For networks with
many nodes, this type of simple function can reduce the time of training and
computing.

h(a) =

{

0, for a ≤ 0

a, for a > 0
(5)

SEMA Against Activation Functions of DNN 5

3 Problem and Methodology

3.1 Identification of Activation Functions

Activation functions are used in many neural networks, and they play a very im-
portant role in the network. Non-linear functions are used as activation functions
to output a result from the sum of the inputs and to solve non-linear problems.
Designing and choosing activation functions that enable fast training of accurate
deep neural networks is an active area of research. From this, it can be said that
it is important to conceal the information of activation functions used in a neural
network architecture.

3.2 Previous Work: Identification Based on Timing Behavior

In the previous work by Batina et al., they have used timing attacks to identify
activation functions. The activation function was discerned by timing attack from
its distinctive computation time. They showed that the timing behavior of the
activation function can be directly observed on the EM trace. They collected
EM traces and measured the timing of the activation function computation.
The measurements were taken when the network were processing random inputs
in the range they had chosen beforehand. A total of 2000 EM measurements
were captured for each activation function. By plotting the processing time of
each activation function by inputs, distinct signatures can be seen from each
timing behavior. By making a profile, timing patterns or averaged timing can be
compared with the profile of each function to determine the activation function.

The method proposed by Batina et al. has a few limitations as listed as
follows.

1. Multiple measurements are required to use the distribution of the calculation
time to identify the activation function.

2. Multiple inputs following a uniform distribution are required.
3. The distinct signatures of each activation function from the timing behavior

has a possibility to differ depending on the implementation or processor.
4. The timing difference could be mitigated with constant time implementation

of the activation functions.

3.3 New Method: Identification Using SEMA

The timing attack proposed by Batina et al. had several limitations. Therefore
we took a different approach. While they collected EM traces and measured the
timing of the activation function computation, we observe the leakage patterns
of the EM trace directly and try to discern what operation is being computed in
the trace from the different leakage signatures. We call this SEMA attack. SEMA
attack requires only one or a few EM traces, compared to the timing attack which
required multiple EM traces. We were successful in recovering the activation
function by applying signal processing to the measurement. By reducing the noise

6 G. Takatoi et al.

in the EM trace, we were able to extract peak patterns from the measurement.
We have found out that there are unique peak patterns for each operation in
the activation function. Our attack is also independent of the inputs, as the
patterns generally are invariant for any input. We observe the activation function
operations from the peaks of the EM trace, thus this method has potential to
overcome constant time mitigation.

4 Experiments

4.1 Experimental Setup

Here we describe the experimental setup to measure the EM emanations from
an MLP trained for 3-input XOR.

Target Device The MLP is implemented on the microcontroller Atmel AT-
mega328P. The reasons for using Atmel ATmega328P as a target platform is
motivated as follows.

– CPU and GPU are frequently used platforms for DNN computation, and use
optimized libraries for its operations [23]. By using Atmel ATmega328P, we
can implement the operations in a similar way.

Software Setup There are several ways to implement activation functions into
a neural network. In our work, we have used activation functions that operates
mathematically as shown in Eqs. (2)-(5). The exponential function and tanh
function are implemented using standard library functions in C++ language.
The MLP used in this work has the same architecture as Fig. 2, and has 2
hidden layers with 9 nodes in both layers. However for the MLP with the softmax
function, the dimensions for the 2 hidden layers are 3 nodes for the first hidden
layer, and 9 nodes for the second hidden layer.

Hardware Setup Tektronix MS064 oscilloscope was used to capture EM mea-
surements, and used an RF-U 5-2 near-field EM probe from Langer to collect
EM measurements. All measurements were 500MSamples/s. We also used a low-
pass filter BLP-50+ from Mini-Circuits with cutoff frequency of 48MHz to get a
clear signal. To improve the quality of measurement of the microcontroller, we
scraped the outer package, and decapsulated the microcontroller [21] as shown
in Fig. 3. The EM probe is placed above the decapsulated chip and is chosen by
hand. The full measurement setup is depicted in Fig. 4.

4.2 Attack Scenario

The goal of this work is to show an alternative method to recover the activation
function instead of observing the pattern in the process time distribution that
was presented in previous work. The proposed method has a few advantages over
the previous method.

SEMA Against Activation Functions of DNN 7

Fig. 3: Target Micro-
controller Decapsu-
lated

Low Pass Filter

Electromagnetic Probe

Oscilloscope

Microcontroller

Arduino Uno

Fig. 4: Measurement Setup

– No information and access to the inputs required.
– Less executions required.
– Less implementation dependency, as we can show that the timing behavior

used to identify sigmoid function and tanh function in previous work is
implementation dependent.

Here we specify the considered attack scenario. Several pre-trained networks
are implemented in C++ language and then compiled on to the edge device.
Pre-trained networks are intellectual property, and accordingly the activation
functions in those networks are confidential. The attacker’s motive is to identify
the activation functions used in the network. The attacker’s capability is as
follows.

– The attacker does not know the architecture of the network, but can access
the network predictions.

– The attacker knows what set of activation functions could be implemented on
the architecture, in this work, the sigmoid function, tanh function, softmax
function, and ReLU function.

– The attacker is capable of measuring electromagnetic emanations from the
target device.

Batina et al. has used the MLP to validate their attack methodology [3]. In
this work, we also use the MLP as the DNN of choice. The motives are as follows.

– MLP is a widely used neural network architecture [8, 10, 19,25].
– Every node from a MLP is fully connected. Fully connected layer is a feature

that can be seen in convolutional neural networks, recurrent neural networks,
and other neural network architectures.

8 G. Takatoi et al.

– All layers are identical, making side-channel analysis difficult than other
neural network architectures.

Thereby, a generic attack is possible in developing our methodology. In other
words, our methodology can be applied to many other DNN models.

4.3 Signal processing

We apply several methods to retrieve distinctive patterns from the EM trace. In
this section, we propose a 4-step methodology to obtain the desired EM trace.
First, a measurement (or trace) is taken from the target device. Next, averaging
is applied to the measured trace. Then, to extract the peaks, we compute the
upper half of the EM trace’s envelope. For the last step, by smoothing the trace,
the desired trace is acquired. The detailed actions of each step are as follows.

Step 1: Measuring the EM trace Here, an EM measurement of a MLP
predicting the output class probabilities is taken from a microcontroller. MLPs
including each of the 4 activation functions discussed in Sect. 2.2 are being
computed. Then a EM trace is collected by an electromagnetic probe from the
predicting MLP.

In our experiment, the measurements were taken from the device processing
the input to the outputs of the first hidden layer’s first node. In other words,
the measurement is from the device computing Eq. (1). 4 measurements are
obtained, each with 4 different activation functions mentioned in Sect. 2.2.

Step 2: Averaging the EM trace For this step, averaging is applied to the
trace collected in step 1. By averaging the trace, it can improve the signal-to-
noise ration (SNR). We used the oscilloscope in-built feature for averaging.

Each measurement from step 1 was averaged with 400 traces. However even
with noise reduction, it is difficult to separate the boundaries of the nodes,
multiplication operations and activation functions. The peaks are still very hard
to distinguish, therefore signal processing is applied.

Step 3: Extracting the upper half of the EM trace’s envelope To make
the peak stand out from the averaged trace, we apply signal processing using
Matlab. The upper half of the EM trace’s envelope is calculated to check the peak
of the trace. However, if only the envelope is calculated, the pulse component
still remains.

The averaged traces in step 2 were processed using Matlab. The peaks of
the traces were extracted by calculating the upper half of the envelope. The
peaks can be seen, however there is still noise in the trace, making it hard to
characterize each pattern.

SEMA Against Activation Functions of DNN 9

Step 4: Smoothing the EM trace Last step is signal smoothing, to extract
the noise from the envelope. In this work, we used the Gaussian-weighted moving
average filter, calculated using Matlab. The smaller the window size, the higher
frequency components stand out, and larger the window size, the lower frequency
components are extracted. We want to extract the high frequency noise, therefore
we use a large window size.

For the last step by using the Gaussian-weighted moving average filter,
smoothing was applied to the noisy traces keeping important patterns in our
measurements while leaving out noise. Table 1 presents the window size used for
smoothing each of the measurements. The smoothed trace is shown in Fig. 5.
The patterns can be compared easier with smoothing. The multiplication and
activation function can be easily distinguished with their different patterns. The
red lines in Fig. 5 represents the boundary of the multiplication and activation
function. By observing the patterns of the multiplication operation, the weight
multiplication, the addition of the outputs, and addition of the bias can be dis-
tinguished from the trace.

Table 1: Window size (in sample points) for different activation functions
Activation Function Window Size

Sigmoid 4000
Tanh 4000

Softmax 1000
ReLU 2000

5 Analysis of the Results

5.1 Analysis of the Activation Function Operations

Here we analyze the processed measurements to discern activation functions.
First, we start by examining the computation time of the activation functions.
The computation time can be observed from Fig. 5. Table 2 presents the com-
putation time of the activation functions.

Table 2: Computation time (in µs) for different activation functions
Activation Function Computation Time

Sigmoid 190.79
Tanh 204.35

Softmax 695.52
ReLU 13.76

10 G. Takatoi et al.

𝑀!: 𝑥!×𝑤! (Weight multiplication of the 𝑖th node)

𝐴": ∑ (𝑥!×𝑤!)
"
!#$ (Sum of the 𝑛th node)

𝑆": ∑ (𝑥!×𝑤!)
"
!#$ (Sum of the 𝑛th node weight multiplications)

𝑏 : Bias

𝑀#𝐴#𝑀$ 𝑀%𝐴$ 𝐴% 𝑏

Multiplications

Sigmoid ℎ 𝑎 =
#

#&'!"

Activation Function

190.79𝜇𝑠

Activation Function

204.35𝜇𝑠𝑀!𝐴!𝑀" 𝑀#𝐴" 𝐴# 𝑏

Tanh ℎ 𝑎 =
"

!$%!"#
−1

Multiplications

𝑏

Multiplications
Activation Function

695.52𝜇𝑠

Softmax

ℎ(𝒂)!=
𝑒"!

∑ 𝑒""#
$%!

	𝑓𝑜𝑟	𝒂 = (𝑎! , 𝑎& , 𝑎#) ∈ ℝ
#

𝑆!
𝑆&

𝑆#

𝑆'

𝑆(

𝑆)

𝑆*
𝑆+

𝑆,

𝑀! 𝐴! 𝑀" 𝑀#𝐴" 𝐴# 𝑏

Multiplications

ReLU

ℎ 𝑎 = $0	(𝑎 ≦ 0)𝑎	(𝑎 > 0)

Activation Function 13.76𝜇𝑠

Fig. 5: Extracted Pattern Measurements of Activation Functions as Sigmoid,
Tanh, Softmax and Relu.

SEMA Against Activation Functions of DNN 11

As the activation functions differ in operations, so does the computation
time. It can be observed from Table 2 that the ReLU function has the least
computation time at 13.76µs, and that the softmax function has the most com-
putation time at 695.52µs. Due to the simplicity of the ReLU function, it can
be computed in a short time. The ReLU function does not have an exponenti-
ation operation, unlike the other 3 activation functions. The softmax function
computes the exponentiation operation several times, depending on the number
of nodes in the output layer as shown in Eq. (4). Due to the complexity of the
function, it takes the longest time to process. These two activation functions can
be easily distinguished. However the sigmoid function and tanh function have
similar computation times, sigmoid at 190.79µs and tanh at 204.35µs.

Next, we observe the processed leakage patterns through SEMA. The soft-
max function computes the exponentiation operation several times, therefore
the pattern of the exponentiation operation will repeat itself for the number of
nodes in the output layer. The number of nodes in the output layer is 3 in this
work, thus the multiplication pattern will repeat 9 times, and the exponentiation
pattern 3 times. The vertical red lines separate the exponentiation operations
and the division operation in the activation function.

The ReLU function does not include the exponentiation operation, therefore
cannot observe the same patterns in the other activation functions.

Figure 6 compares the leakage patterns of sigmoid and tanh function. It can
be observed that although there is no obvious gap in the processing time, the
peak patterns differ. Extra peaks can be seen in 2 sections from the tanh func-
tion when comparing with the sigmoid function. The extra peaks observed are
surrounded in a red box. The first peak can be seen right after the multiplica-
tion. The second peak can be seen in the latter half of the activation function.
The differences in peaks comes from the difference in the functions. Tanh func-
tion has an additional multiplication and subtraction compared with the sigmoid
function. We have observed that these operations causes the difference in peak
patterns. The sigmoid function and tanh function can be distinguished with the
different peak patterns, with tanh function having more peaks patterns.

5.2 Distinctive Features of Activation Functions from SEMA

Table 3 presents the features of each activation function when we used SEMA. To
conclude, softmax function and ReLU function can be distinguished out of the
4 activation functions with their computation time. Also, by examining at the
processed measurement patterns, all 4 activation functions can be discerned. Our
experiments has shown that the EM trace leaks information on the operations in
the activation function. Our method can be applied to an attack to identify the
activation functions by making a template and pre-characterizing the operations
in the EM trace.

12 G. Takatoi et al.

𝑀!: 𝑥!×𝑤! (Weight multiplication of the 𝑖 th node)
𝐴": ∑ (𝑥!×𝑤!)

"
!#$ (Sum of the 𝑛th node)

𝑏 : Bias

Multiplications Activation Function

190.79𝜇𝑠

Sigmoid ℎ 𝑎 =
!

!"#!"

Activation Function

204.35𝜇𝑠𝑀!𝐴!𝑀$ 𝑀%𝐴$ 𝐴% 𝑏

Tanh ℎ 𝑎 =
$

!"#!#"
−1

𝑀!𝐴!𝑀$ 𝑀%𝐴$ 𝐴% 𝑏

Fig. 6: Comparison of the patterns of sigmoid and tanh function

Table 3: Features of activation functions from SEMA

Activation Function Computation Time Trace Pattern

Sigmoid - 2 less peaks than tanh

Tanh - 2 more peaks than sigmoid

Softmax Long Repeated exponentiation pattern

ReLU Short Not have exponentiation pattern

5.3 Discussions

We were able to extract features from the EM trace, and identify each activation
function, sigmoid function, tanh function, softmax function, and ReLU function.
The results could be expected as the information of the operation leaks itself from
EM emanations. Our hypothesis was that since the operations leaks information
into the measurements, we could recover the operations from the measurements
itself if we can reduce the noise in the trace. The signal processing allowed the
peaks to have distinctive features for each operation. We were able to match the
features to the activation functions for identification. We believe this attack could
be applied to different neural network models as long as the activation functions
operate directly. We have used Arduino Uno as the target platform. We believe
our approach and methodology could be applied to different platforms. such as

SEMA Against Activation Functions of DNN 13

a similar microcontroller platform, a GPU platform or a FPGA platform. This
is because side-channel analysis are demonstrated on these platforms on several
previous works [3, 17, 27].

Analyzing Previous Work We have also analyzed the work by Batina et al.
and their timing attack against activation functions. They plot the processing
time of each activation function by inputs, and stated that distinct signatures
could be seen from each timing behavior. However, the problem lies on why the
timing behavior acts in such a way, which they have not explained in their work.

We were able to recreate the timing behavior of sigmoid function and the
tanh function as shown in Fig. 7. The timing delay is displayed in µs. The ex-
periments were done on an Arduino Uno simulator Tinkercad. The timing delay
were measured with micros function, which returns the number of microseconds
since the Arduino board began running the program. The processing time were
averaged 10 times per input.

(a) Sigmoid (b) Tanh

(c) Mathematically Calculated Tanh

Fig. 7: Timing Behavior for Different Activation Functions

Batina et al. have stated that tanh is more symmetric in pattern compared
to sigmoid, for both positive and negative inputs which has been completely
replicated in Figs. 7a and 7b. Based on our analysis of the results, we believe that
the standard library functions in C++ language cause the distinct signatures.
The exponentiation function causes the symmetric pattern in timing delay, with

14 G. Takatoi et al.

positive inputs having slightly longer computation time. The tanh function is an
optimized operation, having symmetric patterns for both positive and negative
inputs. However, if we did not use the standard library tanh function, and used
the exponentiation function to mathematically calculate the tanh function, the
timing behavior acts the same way as the sigmoid function as depicted in Fig.
7c. The patterns are both symmetric with positive inputs having slightly shorter
computation time for Figs. 7a and 7c. The minimum, maximum, and mean values
of the timing delay do not differ as significantly as Figs. 7a and 7b. The similarity
in pattern and timing behavior makes the two activation functions very difficult
to distinguish depending on the implementation method.

They have also stated that they take measurements when the network is
processing random inputs in the range, i.e., x ∈ {−2, 2}. This input refers to
the inputs to the activation function. To plot the timing behavior for different
activation functions based on the inputs, there would be a need to calculate Eq.
(6) below.

a =

(

n
∑

i=1

xi × wi + b

)

(6)

where a is the input to the activation functions. Here, (x1, x2, . . . , xn) repre-
sents the inputs, (w1, w2, . . . , wn) represents the weights, b represents the bias.
Without the knowledge of the weights, bias, and nodes in a layer, this timing
attack will not be possible. This proves the significance of our attack, as we do
not need any information on the inputs to the activation function nor the input
to the network. This means that there is no need to calculate the input to the
activation function with our method, therefore shortening the step to identify
the activation function.

Implementation of Constant-time Activation Functions To mitigate the
timing attack on the activation function, dummy operations can be included to
the computation of the activation functions. By making the computation time
of the activation function constant with no operation instruction, it will become
difficult to guess the activation function from the time computed. ReLU function
will be the easiest to implement the constant-time operation, as the computation
time only differs when the input is before 0 and after 0 [18]. However, with SEMA
attack the operation itself could be seen through the EM trace, therefore it will
become easy to see what operation is being done in the processor.

6 Conclusion

The need for implementations of neural networks on to the edge device is in-
creasing. These edge devices, however, tend to be vulnerable to side-channel
attacks. In this paper, we introduce an attack methodology that can recover
activation functions from a black box network using side-channel information.
We conducted the experiment on a MLP processing 3-input XOR implemented

SEMA Against Activation Functions of DNN 15

on a Arduino Uno microcontroller. Using SEMA and signal processing, the ac-
tivation functions were successfully identified. Compared with previous work by
that identify the activation functions using timing behavior, the SEMA attack
proposed in this work does not rely on the inputs, requires fewer measurement
and is less dependant on non-constant timing behavior of the activation function.
Our experiment showed the vulnerabilities of edge AI to side-channel attacks.
Neural networks on edge devices need to implement effective countermeasures
against side-channel attacks to strengthen their security.

In future works, we will further research how SEMA could potentially break
the constant-time implementation. We have also left out relatively new activa-
tion functions such as Exponential Linear Unit (ELU) function, Leaky Rectified
Linear Unit (Leaky ReLU) function, and Scaled Exponential Linear Unit (SELU)
function. We will further look into these activation functions and see how to dis-
tinguish them from ReLU function as they all have the same outputs for positive
inputs, making them hard to identify with our current method.

Acknowledgements This work was supported by JST AIP Acceleration Re-
search Grant Number JPMJCR20U2, Japan.

References

1. Riscure. https://www.riscure.com/blog/automatedneural-network-

construction-genetic-algorithm/ (Last accessed 10 June 2020)
2. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hack-

ing smart machines with smarter ones: How to extract meaningful data from ma-
chine learning classifiers. Int. J. Secur. Networks 10(3), 137–150 (2015)

3. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: Heninger, N.,
Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019. pp. 515–532. USENIX Association
(2019)

4. Breier, J., Jap, D., Hou, X., Bhasin, S., Liu, Y.: SNIFF: reverse engineering of
neural networks with fault attacks. CoRR abs/2002.11021 (2020)

5. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confi-
dence information and basic countermeasures. In: Ray, I., Li, N., Kruegel, C. (eds.)
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-16, 2015. pp. 1322–1333. ACM
(2015)

6. Fredrikson, M., Lantz, E., Jha, S., Lin, S.M., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In:
Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014. pp. 17–32. USENIX Association (2014)

7. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp.
201–210. JMLR.org (2016)

16 G. Takatoi et al.

8. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May, 2015. pp. 106–
111. IEEE Computer Society (2015)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778. IEEE Computer Society
(2016)

10. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-
channel resilience. IEEE Transactions on Computers (2017)

11. Hong, S., Davinroy, M., Kaya, Y., Dachman-Soled, D., Dumitras, T.: How to 0wn
the NAS in your spare time. In: 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net
(2020)

12. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with lim-
ited queries and information. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 2142–2151. PMLR (2018)

13. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey.
I. J. Robotics Res. 32(11), 1238–1274 (2013)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.
Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States. pp. 1106–1114 (2012)

16. Kucera, M., Tsankov, P., Gehr, T., Guarnieri, M., Vechev, M.T.: Synthesis of
probabilistic privacy enforcement. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. pp. 391–408. ACM (2017)

17. Luo, C., Fei, Y., Luo, P., Mukherjee, S., Kaeli, D.R.: Side-channel power analysis of
a GPU AES implementation. In: 33rd IEEE International Conference on Computer
Design, ICCD 2015, New York City, NY, USA, October 18-21, 2015. pp. 281–288.
IEEE Computer Society (2015)

18. Nakai, T., Suzuki, D., Omatsu, F., Fujino, T.: Evaluation of timing attacks against
deep learningon a microcontroller and countermeasures. In: 2020 Symposium on
Cryptography and Information Security - SCIS 2020, Kochi, Japan, January 28-
31, 2020. vol. 3E4-4. The Institute of Electronics, Information and Communication
Engineers (2020)

19. Naraei, P., Abhari, A., Sadeghian, A.: Application of multilayer perceptron neural
networks and support vector machines in classification of healthcare data. In: 2016
Future Technologies Conference (FTC). pp. 848–852. IEEE (2016)

20. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against machine learning. In: Karri, R., Sinanoglu, O.,

SEMA Against Activation Functions of DNN 17

Sadeghi, A., Yi, X. (eds.) Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab
Emirates, April 2-6, 2017. pp. 506–519. ACM (2017)

21. Patranabis, S., Mukhopadhyay, D.: Fault Tolerant Architectures for Cryptography
and Hardware Security. Springer (2018)

22. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 3–18. IEEE Computer
Society (2017)

23. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural net-
works: A tutorial and survey. Proceedings of the IEEE 105(12), 2295–2329 (2017)

24. Teufl, P., Payer, U., Lackner, G.: From NLP (natural language processing) to MLP
(machine language processing). In: Kotenko, I.V., Skormin, V.A. (eds.) Computer
Network Security, 5th International Conference on Mathematical Methods, Mod-
els and Architectures for Computer Network Security, MMM-ACNS 2010, St. Pe-
tersburg, Russia, September 8-10, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6258, pp. 256–269. Springer (2010)

25. Thomas, P., Suhner, M.: A new multilayer perceptron pruning algorithm for clas-
sification and regression applications. Neural Processing Letters 42(2), 437–458
(2015)

26. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction apis. In: Holz, T., Savage, S. (eds.) 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
pp. 601–618. USENIX Association (2016)

27. Wei, L., Luo, B., Li, Y., Liu, Y., Xu, Q.: I know what you see: Power side-channel
attack on convolutional neural network accelerators. In: Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, December 03-07, 2018. pp. 393–406. ACM (2018)

28. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. pp. 363–376. ACM (2017)

29. Yan, M., Fletcher, C.W., Torrellas, J.: Cache telepathy: Leveraging shared resource
attacks to learn DNN architectures. CoRR abs/1808.04761 (2018)

30. Yu, H., Ma, H., Yang, K., Zhao, Y., Jin, Y.: DeepEM: Deep neural networks model
recovery through em side-channel information leakage (2020)

