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Abstract

Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics.
Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently
HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large
set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent
infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess
clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-
clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play
in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of
intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and
chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage
transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage
transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess
clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the
shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-
clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled.
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Introduction

Phylogenetic clusters of closely related virus such as HIV arise

from the epidemiological dynamics and transmission by infected

hosts. If virus is phylogenetically clustered, it is an indication that

the hosts are connected by a short chain of transmissions [1].

If super-infection is rare, and assuming an extreme bottleneck at

the point of transmission, each lineage in a phylogenetic tree

corresponds to a single infected individual with its own unique

viral population [2,3]. A transmission event between hosts causes

an extreme bottleneck in the population of virus in the new hosts.

For infections between MSM, it is estimated that infection is

initiated by one or several virions [4,5]. At the time of

transmission, the quasispecies of virus within the transmitting host

diverges and can thereby generate a new branch in the phylogeny

of consensus viral isolates from infected individuals [6]. Trans-

missions in the recent past should be reflected by recently diverged

lineages, and transmissions from long ago should reflect branches

close to the root of a tree. [7]. Viruses such as HIV which have a

high mutation rate relative to epidemiological spread can generate

epidemics such that the correspondence between transmission and

phylogenetic branching is most clear [2].

Given a phylogeny of virus reconstructed from n samples, the

phylogenetic clusters are a partition of the n sample units into

disjoint sets as a function of the tree topology. A cluster will consist

of all taxa of the tree that are descended from a given lineage on

the interior of the tree. There are many variations of this idea, and

there is no general agreement about how to choose interior

lineages for defining clusters. The most common algorithms

require strong statistical support for a monophyletic clade among

all taxa in a cluster [8–14]. These definitions may additionally

require all taxa in a cluster to be connected by short branches with

less than a threshold length [11], or similarly require that the

genetic sequences corresponding to each taxon be separated by a

genetic distance less than a given threshold [8,14]. Definitions of

clustering based on statistical support for monophyly are very

difficult to operationalize in a mathematical model, and in

particular, it is not clear how the statistical significance of internal

nodes relates to population dynamics. Consequently, we have

devised a conceptually similar definition of clusters that relies on

the estimated time to most recent common ancestor (TMRCA) of

a set of taxa [15]. A formal definition is provided below.

The sizes of the groupings that arise from a clustering algorithm

have been interpreted as a reflection of the heterogeneity of

epidemiological transmission. The distribution of cluster sizes of

HIV is often skewed right, and depending on the definition of

clustering used, can have a heavy tail [14,15]. This is consistent

with the prevailing view among modelers of sexually transmitted

infections that there is a skewed and in some cases power-law

distribution in the number of risky sexual contacts in the
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population, however it is not straightforward to make inferences

about sexual network properties from cluster size distributions

[16]. In the case of HIV, the distribution of branch lengths within

clusters may also reflect the disproportionate impact of early and

acute HIV infection on forward transmission, which is due to

higher viral loads in the early stages of infection, higher

transmissibility per act [17], and fluctuating risk behavior [18].

When the taxa of the phylogeny are labeled, such as with the

demographic, behavioral or clinical attributes of the the individ-

uals from whom the virus was sampled, one can further analyze

statistical properties of clustered taxa. Similar taxa, such as those

arising from acute infections, may cluster together (or co-cluster) at

greater rates. Patterns of co-clustering might be informative about

the fraction of transmissions that occur at different stages of

infection or between different demographic categories. HIV

phylogenies from men who have sex with men (MSM) have been

widely observed [12,13,19] to have individuals with early/acute

HIV infection that are much more likely to appear in a

phylogenetic cluster. And moreover, if early-stage individuals are

in a cluster, they are much more likely to be clustered with other

early infections. Both Lewis et al. and Brenner et al. [8,9] have

hypothesized that co-clustering of early infection is caused by

higher transmissibility per act during early infection. For example,

in phylogenies with time-scaled branch lengths, if a large fraction

of clusters have a maximum branch length of six months [8,15],

this suggests that at least that fraction of transmissions also occur

within six months. In this article we demonstrate that the

mechanisms that generate co-clustering of early infections are

complex, and involve many attributes of the epidemic in addition

to higher transmissibility per act [17]. To summarize, several

features of the phylogenetic structure of HIV in MSM have been

independently observed by several investigators:

N Many more early infections are phylogenetically clustered than

late infections. For future reference, we will refer to this as

excess clustering of early/acute infections.

N If an early infection is clustered, it is more likely to be co-

clustered with another early infection than expected by chance

alone. For future reference, we will refer to this as excess co-

clustering of early/acute infections.

N The distribution of phylogenetic cluster sizes is skewed to the

right and is potentially heavy-tailed.

Below, we illustrate these clustering patterns using 1235 HIV-1

subtype B pol sequences collected between 2004 and 2010 in

Detroit, Michigan, USA.

These common clustering features motivate several questions.

How informative are clustering patters about the underlying

epidemic? In particular, how does higher transmissibility per act

during early infection shape the phylogeny of virus ? To address

these questions, we have developed a simple mathematical

framework that demonstrates the connection between epidemio-

logical dynamics and the expected patterns of clustering from a

transmission tree and the corresponding phylogeny.

Our modeling work suggests that common features of HIV

phylogenies are not coincidences, but universal features of certain

viral phylogenies. We expect to see similar patterns for any disease

such that the natural history features an early period of intensified

transmission. High transmission rates during early infection may

be a consequence of higher transmissibility per act due to high

viral loads, but are also influenced by behavioral factors, such as

fluctuating risk behavior [18], concurrency [20], and a lack of

awareness of the infection. We do not explicitly model immuno-

logical or behavioral factors, but rather consider a compound

parameter that describes the rate of transmission during the early/

acute period. We find that while higher transmission rates increase

the frequency of early/acute clustering, virus collected from early/

acute patients clusters at a higher rate even when transmission

rates are uniform over the infectious period.

Materials and Methods

Ethics statement
This research was reviewed by the Institutional Review Board at

the University of Michigan. Data used in this research was

originally collected for HIV surveillance purposes. Data were

anonymized by staff at the Michigan Department of Community

Health before being provided to investigators. Because this

research falls under the original mandate for HIV surveillance, it

was not classified as human subjects research.

Phylogenetic clustering of Michigan HIV-1 sequences
Our analysis consists of an empirical component which

establishes clustering patterns for a geographically and temporally

delineated set of HIV sequences, and an analytical component

which establishes a possible mechanism that could generate the

observed patterns.

We examined the phylogenetic relationships of 1235 HIV-1

subtype B partial-pol sequences originally collected for drug-

resistance testing. All sequences were collected in the Detroit

metropolitan statistical area between 2004 and 2010. Sequences

were tested for quality and subtype using the LANL quality control

tool [21–23], and aligned against a subtype-B reference

(HXB2).Drug resistance sites [24] were treated as missing data.

A maximum clade credibility phylogeny was estimated with

BEAST 1.6.2 [25]. The phylogeny was estimated using a relaxed

molecular clock and and HKY85 model of nucleotide substitution

with Gamma rate variation between sites (4 categories). The

MCMC was run for 50 million iterations with sampling every 104

iterations. The first million iterations were discarded. The effective

sample size of all parameters exceeded 50.

The phylogeny was converted into a matrix of pairwise

distances between taxa expressed in units of calendar time. The

distance between a pair of taxa was the TMRCA estimated by

BEAST. Taxa were then classified into clusters using hierarchical

clustering algorithms. A pair of taxa were considered to be

clustered if the estimated TMRCA did not exceed a given

threshold, and a range of thresholds was examined, from 0.5% of

the maximum distance to the distance corresponding to the point

where 90% of taxa are clustered with at least one other taxon.

Co-clustering of early/acute infections was investigated using a

clinical variable (CD4 count) and a measure of genetic diversity of

the virus. Both CD4 and sequence diversity are imprecise

Author Summary

Diversity of viral genetic sequences depends on epidemi-
ological mechanisms and dynamics, however the exact
mechanisms responsible for patterns observed in phylog-
enies of HIV remain poorly understood. We observe that
virus taken from patients with early/acute HIV infection are
more likely to be closely related. By developing a
mathematical model of HIV transmission, we show how
these and other patterns arise as a simple consequence of
intensified transmission during the early/acute stage of
HIV infection, however observing these patterns is highly
dependent on sampling a significant fraction of prevalent
infections.
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indicators of stage of infection. Nevertheless, with a large

population-based sample, even noisy indicators of stage of

infection are useful for illustrating phylodynamic patterns.

In most cases, CD4 counts were assessed contemporaneously

with samples collected for sequencing. The CD4 cell counts can be

informative about disease progression and can be used as a noisy

predictor of the unknown date of infection [26]. Individuals with

very high cell counts are unlikely to represent late/chronic

infections, and we hypothesize that virus from these patients will

be more likely to be phylogenetically clustered. Clustering of

patients with high CD4 was previously observed by Pao et al. [10]

Recent work [27] has also highlighted the potential for sequence

diversity to be informative of the date of infection. The frequency

of ambiguous sites (FAS) in consensus sequences provides an

approximate measure of sequence diversity in the host. HIV

infection is initiated by one or a few founder lineages [4,5]; initially

the diversity of the viral population within the host is low, but

diversity increases steadily over the course of infection [28]. By

convention, consensus sequences report ambiguous sites as those

where the most frequent nucleotide is read with a frequency less

than 80%. We hypothesize that having few ambiguous sites is an

indicator of early/acute infection; sequences with fewer ambigu-

ous sites will be more likely to be in a phylogenetic cluster and to

be clustered with other sequences with few ambiguous sites.

A simple analysis was conducted to establish the existence of

excess clustering and co-clustering in the Michigan sequences.

This analysis is not designed to classify our sample into a early/

acute component or to estimate the date of infection for each unit.

To illustrate excess clustering of early/acute infections, we

calculated the mean CD4 cell count and FAS for each sample unit

in a phylogenetic cluster. Because all clustering thresholds are

arbitrary, we explored a large range of values, up to the point

where 90% of the sample was clustered with at least one other

unit. The standard error of the estimated mean was calculated

assuming simple random sampling. For small threshold distances,

very few taxa are clustered, and the standard error is large, but

decreases monotonically as the threshold is increased and more

taxa are clustered.

To illustrate excess co-clustering, we classified taxa into three

categories of CD4: those with CD4 v200, representing AIDS

cases; those with CD4 w800, and those with CD4 between 200

and 800. Taxa were also classified into quartiles by FAS. We then

counted the number of pairwise clusterings of taxa within and

between each category. These counts were arranged in a matrix.

Large counts along the diagonal (within categories) represent co-

clustering by stage of infection. To establish excess co-clustering,

we compared the counts to the expectation if clusters were being

formed at random, e.g. if two taxa were selected uniformly at

random without replacement.We denote the symmetric matrix of

co-clustering counts as M, so that Mij represents the number of

times that a taxon in category i is clustered with a taxon in

category j. The sum of counts in the i’th row of M will be denoted

mi. Following the methods described in [29], the expected value of

M under random pair formation is

SMijT~mimj=
X

ij

Mij :

Below, we illustrate the difference Mij{SMijT. We can also

calculate the assortativity coefficient [29], r, which describes the

total amount of co-clustering in the matrix. To construct the co-

clustering matrices, we selected the value of the distance threshold

which maximized the assortativity coefficient.

Mathematical model
Following the approach outlined in [6] and [30], we develop a

deterministic coalescent model derived from a compartmental

susceptible-infected-recovered (SIR) model. A system of several

ordinary differential equations describe the dynamics of preva-

lence of early and late HIV infection. Individuals pass from a

susceptible state, to an early/acute infection state, to a chronic

infection state followed by removal (treatment or death). S,I1,

and I2 will denote the numbers susceptible, acute, and chronically

infected respectively, and the population size will be denoted N.

For didactic purposes, we will suppose that treatment is

completely effective at preventing forward transmissions. The

HIV model is described by the following equations:

_SS~{
S

N
(b1I1zb2I2)h(t)zb(t){mS

_II1~
S

N
(b1I1zb2I2)h(t){c1I1{mI1 ð1Þ

_II2~c1I1{c2I2{mI2

In these equations, b1 and b2 are respectively the frequency-

dependent transmission rates for early and chronic infected

individuals. The average duration of early and chronic infection

are respectively 1=c1 and 1=c2. Natural mortality occurs at the

rate m and immigration into the susceptible state occurs at the

rate b(t)~m(SzI1zI2)zc2I2, which maintains a constant

population size N~104. h(t) is a term which modulates the

way incidence of infection scales with prevalence. For the results

presented below, we choose h(t)~e{a(I1zI2)=N . This term

corrects for observed patterns of decreasing incidence with

prevalence; this can occur as a result of population heterogene-

ities (including sexual network structure) or as the result of

decreasing risk behavior as knowledge of the epidemic spread.

Many more relevant details could be included in a model of the

HIV epidemic in MSM, however our purpose is to demonstrate

how these simple dynamics lead to observed phylogenetic

patterns.

In [6], a similar HIV model was presented along with a method

to fit such models to a sequence of phylogenetic divergence times

(the heights of nodes in a time-scaled phylogeny). Where possible,

we will use the parameter estimates from [6]. The parameters are

reported in table 1. Together, these parameters imply R0~2:24
and that 41% of transmissions occur during the acute stage.

Corresponding to an epidemic model of the form 1, we can

define a coalescent process [31,32] that describes the properties of

the transmission tree and by extension the phylogeny of virus.

The taxa descended from a lineage at time t in the past form a

clade, which we will also call a cluster. The number of taxa in a

randomly selected cluster will be a random variable. The cluster

size distribution (CSD) is a function of a threshold TMRCA t, and

describes the probability of having a size m cluster if a lineage (i.e.

branch) at time t is selected uniformly at random from the set of

all lineages at t and the size of the cluster descended from that

branch is counted. A schematic of how clusters and the CSD are

constructed given a tree and a threshold is shown in figure S5. In

[6] we derived differential equations that describe the moments of

the CSD.

Some of the properties of phylogenies that we seek to reproduce

with the model developed below are:

Simple Epidemiological Dynamics
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N The number of lineages as a function of time (NLFT), also

known as the ancestor function.

N The fraction of sampled early/acute and chronic infections

which are clustered given a threshold TMRCA.

N Within a given cluster there will a number of early/acute taxa

and a number of chronic taxa. We will calculate the

correlation coefficient between these counts across all clusters

given a threshold TMRCA.

N The moments of the distribution of cluster sizes, including the

mean, variance, and skew of cluster sizes.

Figure 1 shows a simple genealogy that could be generated by

the HIV model. Four events can occur in this genealogy

representing coalescence or the changing stage of a lineage. By

quantifying the rate that these events occur using a coalescent

model, we can calculate the clustering properties of these

genealogies. These methods are described below and in detail in

supporting Text S1.

The ancestor function is strictly decreasing in reverse time and

converges to one (a single lineage) when the most recent common

ancestor of the sample is reached. The initial value of the ancestor

function (when the population is sampled) is equal to the sample

size n. For the purposes of modeling phylogenetic properties of

HIV, we will be interested in phylogenies such that the taxa are

labeled with the state of the sampled individual (e.g. the individual

will have early or late infection corresponding to the states in

equation 1). In this case, we will have two ancestor functions, since

a lineage may correspond to an infected individual with either

early or late infection.

The ancestor functions derived from equations 1, and which are

derived in the Text S1 are as follows:

d

dt
A1~c1I1

A2

I2
{b1S

I1

N

A1

I1

� �2

h

{b2S
I2

N

A1

I1

h

ð2Þ

d

dt
A2~{c1I1

A2

I2

zb2S
I2

N

A1

I1

I2{A2

I2

h:

In these equations, A1 is the number of lineages corresponding to

early infections and A2 is the number of lineages corresponding to

late infections. These equations provide a deterministic approx-

imation to the NLFT, which is A(t)~A1(t)zA2(t). Each term in

these equations accounts for loss or gain of lineages due to the

concurrent processes of transmission (at rates b1S
I1

N
h and

b2S
I2

N
h) and transition between states (at rates c1I1). This

approximation becomes exact in the limit of large sample and

population size. Note that since the model is continuous in both

time and state variables, the ancestor functions are not integers in

contrast to most coalescent frameworks based on discrete

mathematics.

Real epidemics in a finite population will have transmission trees

such that the number of lineages at any time is a random variable.

The mean-field model presented in equation 1 can be viewed as a

description of the dynamics of a stochastic system in the limit of

large population size. In this case, we can adapt the coalescent to

make approximate descriptions of the stochastic properties of the

transmission tree in large populations. The ancestor functions will

reflect the approximation of the actual (random) number of lineages.

Previous work has demonstrated that deterministic descriptions can

be excellent approximations for the number of lineages over time

[6,33]. In the following section, we compare our deterministic

coalescent to stochastic simulations, confirming that it is a good

approximation over a wide range of parameters.

Given a clustering threshold TMRCA t, the random variable

Xk(l; t) will be the number of stage-k taxa descended from a given

lineage l that is extant at time t in the past. As before, Ak(t) will be

the number of type k lineages at the time t in the past. In our model,

infected can be of two types (early/acute and chronic infected), so

there are only two types: k~1 corresponds to earl/acute and k~2
corresponds to chronic. We will denote the set of all lineages of type

k at time t in the past as S(k; t). Then we define the i and j’th
moment of cluster sizes descended from a type k lineage to be

Mi,j(k; t)~
1

Ak(t)

X
l[S(k;t)

X i
1(l; t)X

j
2(l; t): ð3Þ

Many summary statistics that are potentially informative about

transmission dynamics can be derived from these moments. The

moments are difficult to interpret, so in practice we use them to

calculate summary statistics such as variance and skew of the CSD.

Below, we examine 30 summary statistics derived from the first

three moments and multiple clustering thresholds.

For example, the variance of cluster sizes counting only type 1
taxa descended from type k lineages is

Var(X1; k)~M2,0(k){ M1,0(k)ð Þ2: ð4Þ

The total variance of cluster sizes counting only stage 1 taxa is

found with the weighted average over lineage types:

Var(X1)~
A1Var(X1; 1)zA2Var(X1; 2)

A1zA2
: ð5Þ

A similar set of equations can be developed for the cluster sizes

aggregated over taxon types, that is, for X1zX2. Detailed

derivations are provided in Text S1 for differential equations that

describe these moments as function of the threshold t.

Event-driven stochastic simulations were conducted to verify the

suitability of the deterministic approximations for inference.

Simulations implemented a variation on the Gillespie algorithm

[34]. Populations consisted of N~5|104 agents, and were

simulated for 15 or 30 years starting with one hundred initial

infections. At the end of each simulation, a sample of either 20%

Table 1. Epidemiological parameters.

Parameter Symbol Value

Transmission rate of early/acute b1 1 per 47 days

Transmission rate of chronic b2 1 per 1207 days

Mean duration of risk behavior 1=m 19.5 years

Mean duration of early/acute period 1=c1 180 days

Mean duration of chronic period 1=c2 10 years

doi:10.1371/journal.pcbi.1002552.t001
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or 100% of prevalent infections was taken and used to reconstruct

a transmission tree. Five hundred simulations were conducted for

each sample fraction and sample time. Corresponding to each

simulation, 10 transmission trees were generated based on a

random sampling of using distinct clustering thresholds. The CSDs

were then estimated from each tree and the moments of these

distributions were compared to the moment equations (3–5).

We have further conducted an investigation into the potential of

various summary statistics of the viral phylogeny for inference of

underlying epidemiological parameters. Of particular interest is

the fraction of transmissions that occur during early HIV infection.

As indicated above, it is possible that phylogenetic clustering of

early infections reflects elevated transmission during early/acute

HIV infection, which we will define as the infectious period from

zero to six months. The following simulation experiment was

carried out to identify informative statistics:

1. Parameters bl ,bh,N were sampled from a multivariate uniform

distribution. 1800 replicates were sampled.

2. For each set of parameters, the HIV ODE model was

integrated. The number of transmissions by early/acute and

chronic cases was recorded. The number of stage transitions

from acute to chronic was also recorded.

3. For each record of transmissions and stage transitions, a

coalescent tree was simulated using the method described in [35].

4. For each coalescent tree, summary statistics were calculated

and recorded. These statistics consisted of the following: The

number of lineages as a function of time before the most recent

sample; the correlation between between the number of early/

acute and chronic infections with threshold TMRCA; the

fraction of acute/recent taxa which remain unclustered (not

clustered with any other taxa); the fraction of chronic taxa

which remain unclustered; the mean number of taxa clustered

with a early/acute infection; the mean number of taxa

clustered with a chronic infection. Each of these statistics was

calculated using 5 threshold TMRCA uniformly distributed

between one year and 25 years before the most recent sample.

The coalescent tree was simulated such that the sample size

matched that of the Detroit MSM phylogeny, and the heteroch-

ronous sampling of that phylogeny was reproduced in the

coalescent tree. Furthermore, the number of early/acute versus

chronic taxa sampled was determined using the BED test for

recency of infection for each patient [36], and simulations were

also made to match the numbers of early/acute and chronic taxa

sampled. Virus from patients with early/acute infection accounted

for 24% of the samples.

Summary statistics were centralized around the mean and

rescaled by their standard deviation (
X{E½X �

s(X )
). The dependent

variable of interest is the fraction of transmissions attributable to the

acute stage at the beginning of the epidemic, which may be defined

t~R1
0=R0

~
b1=c1

b1=c1zb2=c2

,
ð6Þ

Figure 1. A simple gene genealogy that could be generated by
the HIV model. Dark branches with taxa labeled A correspond to
stage-1 (early/acute infected hosts). Light branches with taxa labeled C
correspond to stage-2 (chronic infections). Event 1 represents the
coalescence of two lineages corresponding to early/acute infection.
Event 2 represents coalescence of an early and a late infection. Event 3
represents the stage transition of an early infection to a late infection.

Event 4 represents the transmission by a late infection which is not
ancestral to the sample. Top: Includes an unsampled lineage (dashed).
Middle: The unsampled lineage has been pruned from the tree. The
point where the lineage is pruned corresponds to event 4. Bottom: The
number of lineages as a function of time (NLFT) which correspond to a
host with early/acute infection (black) or chronic infection (grey).
doi:10.1371/journal.pcbi.1002552.g001
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where R1
0 is the expected number of transmissions generated during

early/acute infection at the beginning of the epidemic, and R0 is the

expected number of transmissions over the entire infectious period.

Pearson correlation coefficients were calculated for each statistic

and t. To give a better indication which statistics would be useful for

estimating the ratio of acute to chronic transmission rates, we

conducted a partial least-squares (PLS) regression [37], which has

been used by other investigators when estimating parameters by

approximate Bayesian computation (ABC) methods [38]. Prediction

error was assessed with 10-fold cross validation. We controlled for

the sample fraction by including the prevalence of infection at the

time of the most recent sample as a covariate.

Results

The mean CD4 cell count and FAS for clustered taxa is shown

in figure 2. Consistent with our hypotheses, patients with higher

CD4 count are more likely to yield phylogenetically clustered

virus, and the mean CD4 count among clustered patients has an

inverse relationship with the threshold TMRCA for clustering.

Also consistent with our hypothesis, patients which yield virus with

lower FAS (less diverse virus) are more likely to be phylogenetically

clustered, and mean FAS has a positive relationship with the

threshold TMRCA for clustering. Patients were strongly co-

clustered within quantiles. Maximum assortativity values, which

measures the similarity of co-clustered taxa were 13% for CD4

and 4.5% for FAS. The maximum assortativity also occurs at low

threshold TMRCA for FAS and CD4 (1700 and 1467 days). Very

little clustering is observed between the first and last quantiles.

In general, the deterministic model offers an excellent approx-

imation to the stochastic system. All trajectories pass through or

close to the median of simulation predictions. Figure 3 illustrates

the prevalence of early/acute and chronic infections from a typical

simulation of the HIV model and the corresponding deterministic

approximations. This correspondence occurs despite large fluctu-

ations in prevalence when the number of infections is small. In [6]

it was shown that the correspondence between the stochastic and

deterministic systems can be very good even if the epidemic is

started from a single infection and the coalescent is fit to the

resulting transmission tree.

In figure 3, late infections outnumber early infections by

approximately 20 to 1. As a consequence, NLFT for late infections

are more stable due to larger sample sizes, and the NLFT are

more noisy for the sample of early infections. The prevalence of

infection plateaus prior to the 15 year sample time, so there is not

much difference in the phylogenetic features observed at 15 and

30 year sampling times.

Many summary statistics calculated from an HIV gene

genealogy can be informative about the fraction of transmissions

attributable to early/acute infection, t (equation 6). Figure 4 shows

the value of four statistics as t is varied. The dependancy of these

summary statistics on the sample fraction is also shown in figure

S4. r(X1,X2) (upper left) is the Pearson correlation coefficient

between the number of early/acute taxa and chronic taxa in a

cluster and is most sensitive to t. Also shown are the mean cluster

size, the number of extant lineages at the threshold TMRCA, and

the fraction of taxa in a phylogenetic cluster. As the fraction of

transmissions from the early/acute stage is varied, transmission

rates b1 and b2 are adjusted so that R0 remains constant. The

smallest value of t shown in figure 4 corresponds to the point

where b1~b2, such that there is no excess transmission in the

early/acute stage. The most recent sample is assumed to be at 35

Figure 2. Excess clustering and excess co-clustering of virus from patients with early/acute infections. Left: The mean CD4 cell count
(top) and frequency of ambiguous sites (bottom) versus the threshold TMRCA used to form clusters. Middle: The assortativity coefficient, a measure of
similarity of co-clustered taxa, versus the treshold TMRCA used to form clusters. Assortativity of CD4 is at top, and frequency of ambiguous sites is
bottom. Right: The size of each matrix element is proportional to number of co-clusterings between taxa categorized by CD4 (top,
x1v200vx2v800vx3) or quartile of frequency of ambiguous sites (bottom). The color represents the extent to which the count of co-clusterings
exceeds the expectation if clusters were forming at random. The color scale (far right) shows strong assortativity within quartiles. The vertical red bar
represents the threshold which was used to create clusters and the matrix derived from the set of clusters. This threshold corresponds to the
maximum of the assortativity coefficient for the derived matrix.
doi:10.1371/journal.pcbi.1002552.g002
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years following the initial infection. Epidemic prevalence after 35

years is approximately constant. The threshold TMRCA was five

years before the most recent sample. Sample size and distribution

of samples over time was matched to the Detroit MSM phylogeny.

Furthermore, the number of early/acute versus chronic taxa

sampled was made to match the Detroit data by use of the BED

test [36] for determining recency of infection.

The fraction of taxa which are phylogenetically clustered also

varies with t (figure 4, upper left). The fraction of early/acute taxa

clustered is more sensitive to t than the fraction from chronic taxa.

Early/acute taxa are always clustered at a greater rate than

chronic taxa, even when b1~b2 corresponding to the minimum

value of t. This is because virus from early/acute patients was

recently transmitted, making it much more likely that the lineage

will coalesce in the recent past regardless of the source of the

infection.

Using the mathematical model, we explored many parameters

including the threshold TMRCA for clustering, the sample

fraction, and the time relative to the beginning of the epidemic

at which sampling occurs. Figures S1, S2, S3 demonstrate that the

deterministic model is capable of reproducing many phylogenetic

signatures that have been associated with HIV epidemics in MSM.

For example, figure S5 shows the fraction of the sample (both early

and late infections) which remain unclustered with any other

sample unit. When the threshold TMRCA is zero (corresponding

to the far right of the time axis), the entire sample remains

unclustered. As the threshold TMRCA increases (moving left-

wards on the time axis), more sample units become clustered and

the fraction of taxa remaining unclustered decreases.

The time of sampling makes little absolute difference to the

qualitative nature of the tree statistics if sampling occurs after the

peak epidemic prevalence (around 15 years). However the sample

fraction (the fraction of prevalent infections sampled) has a large

effect on all tree statistics. When the sample fraction is large, the

fraction remaining unclustered drops much more precipitously

than when it is small as the threshold TMRCA increases. This

occurs because each transmission can cause a sample unit to

become clustered; a large sample size implies that transmissions

will have a greater probability of resulting in an observable

coalescent event (e.g. it results in a larger ratio Ai=Ii).

Early infections become clustered at a much greater rate than

late infections. This corresponds to the excess clustering of early/

acute infections observed in many phylogenies. By virtue of being

infected in the recent past, an acute infection inevitably has a very

recent common ancestor with another infection who transmitted

to that individual. Mathematically, this is reflected in transmission

terms of the form b1S(I1=N)(A1=I1)2 which appear in the

ancestor function for early, but not late infections.

When the sample fraction is non-negligible, the fraction of the

sample in a cluster levels off for intermediate thresholds. Similar

phenomena were noted by Lewis et al. [8] and Hughes et al. [14]

who observed that the fraction of the sample in a cluster did not

change substantially beyond a small threshold, though these

studies probably had high sample fractions. The plateau is due to

the bimodality of coalescence times induced by early infection

dynamics. Many coalesce events occurs at thresholds close to the

sampling time, which corresponds to lineages of early infection

coalescing.A larger group of coalescence times occurs close to the

beginning of the epidemic when the effective population size is

small. We hypothesize that the amount of excess clustering of early

infections can be informative for estimating the sample fraction

when it is not known.

Figure S2 shows the Pearson correlation coefficient for the

number of co-clustered early and chronic infections as a function

of the clustering threshold (r(X1(l),X2(l))). Given that a sample

unit is in a cluster, under certain circumstances, it is much more

likely to be clustered with another unit of the same type. This is

reflected by large negative correlation coefficients for the number

of co-clustered early and late infections for small threshold

TMRCA. But negative correlation between the number of early

and late infections is only observed for small sample fractions and

small threshold TMRCA. The region of negative correlation

appears very briefly for a 100% sample fraction; the region is

much longer for small samples. This implies that if a patient with

early infection is clustered, it is much more likely to be clustered

with another early infection than expected by chance alone.

The skewness of the CSD shows a similar trend (figure S3). The

skewness is always positive (to the right) and rapidly decreases as

the threshold TMRCA is increased reflecting greater probability

mass in the tail of the distribution. Skew is greatest for small

threshold TMRCA, when most clusters are of size 1. The

distribution remains positively skewed, though it quickly levels off

for intermediate threshold TMRCA. The mathematical model

shows that all moments of the CSD are finite and diverge to

infinity in the limit of large sample size and threshold TMRCA.

A practical consequence of having an intermediate to large

sample fraction is that chains of acute-stage transmission will

account for many of the clusters observed at low thresholds. If a

taxon is clustered with an early infection, then it is more likely that

the unit will be clustered with additional early infections since such

cases are highly infectious and have likely transmitted in the recent

past. This provides a justification for the theory expounded in

Lewis et al. [8] that high clustering of cases with recent MRCA’s

indicates episodic transmission; chains of transmission by early

infections are interrupted by occasional long intervals until a

transmission by late stage infections.

Corroborating figure 4 which shows that many statistics are

correlated with t, the PLS regression did not single out any

particular group of statistics as being informative of early/acute

stage transmission rates. The first component distinguishes

between statistics that describe co-clustering (correlation of the

number of acute and chronic taxa in a cluster) and statistics that

describe excess clustering (e.g. the fraction of early/acute taxa that

are not clustered with any other taxa). Four principal components

were required to explain 42% of the variance of the transmission

fraction with additional components only explaining an additional

2%. All statistics were well represented in the model with four

components.

Discussion

We have used coalescent models to characterize the phyloge-

netic patterns of a virus which produces an early stage of

intensified transmission followed by a long period of low

infectiousness. These patterns have been observed in multiple

phylogenies of HIV-1 from MSM and IDU, and our model

suggests that these should be general features for epidemics which

feature early and intense transmission. These patterns are not

necessarily a consequence of complex sexual network structure

[14]. Complex transmission dynamics driven by sexual networks

are undoubtedly taking place, but detecting the phylogenetic

signature of sexual network structure will require carefully-chosen

summary statistics [15]. We have characterized phylogenies using

the cluster size distribution (CSD) which is similar to commonly

used clustering methods based on strong support for monophyly

but is nevertheless tractable for mathematical modeling in a

dynamical systems framework. Moments of the CSD reflect a wide

range of tree topologies, such as the distribution of branch lengths
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and tree balance, and are potentially informative of a wide range

population genetic processes. For example, a highly unbalanced

tree would have produce very skewed CSD, and a very star-like

tree would have a CSD that is insensitive to changes in the

clustering threshold.

While there has been much discussion of how clustering of acute

infections is caused by the intensity of transmission during the

acute stage, the amount of excess clustering that will be observed is

also very sensitive to the sample fraction. And even if transmission

rates in the early/acute stage are equal to those in the late/chronic

stage, we would still observe excess clustering of early/acute

provided the sample fraction was large enough. This is a simple

consequence of early/acute infections being connected by short

branch lengths to the individual who transmitted infection. An

advantage of the coalescent framework used in this investigation is

that it is accurate even with large sample fractions [35].

Some of the statistics which are most informative of the

underlying epidemiological processes are those based on co-

clustering of labeled taxa, such as the correlation between the

number of early and late infections in a cluster. Such statistics tend

to be the most responsive to variation of the intensity of

transmission during early infection, and are therefore good

candidates for future estimation of the fraction of transmissions

that occur during the first few months of infection with HIV.

Knowing the frequency of early transmission is essential to

prevention efforts, since these transmissions are the most difficult

to prevent. Individuals with early and acute infection are usually

not aware of the infection, and are therefore not susceptible to

many interventions. Modeling to evaluate strategies such seek, test,

and treat (STT) [39,40] and pre-exposure prophylaxis(PrEP) [41] will

require good estimates for the frequency of early-stage transmis-

sion in diverse populations, and phylogenetic data promise to

refine these estimates.

Future work could focus on finding ways to use statistics derived

from the CSD for estimation of epidemiological parameters within

an approximate Bayesian framework [38,42,43]. Alternatively,

Figure 3. Two simulated epidemics and the deterministic approximations for the prevalent number of early and late infections and
the ancestor functions (the number of lineages over time). The x-axis gives the time since the beginning of the epidemic, or equivalently, the
threshold TMRCA used to calculate the number of lineages over time. Green describes the simulated number of late infections. Blue describes the
simulated number of early infections. Dots show the simulated ancestor function for the number of lineages that correspond to late infections. And
x’s show the simulated ancestor function for lineages in early infection. Dashed lines show the prediction of the deterministic coalescent. The top row
shows results for a sample taken at 15 years following the initial infections, and the bottom shows results for a sample at 30 years. The right column
shows results for a sample fractions of 20%, and the left column for a census of prevalent infections(100%).
doi:10.1371/journal.pcbi.1002552.g003
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advances [35] in coalescent theory may make it possible to

calculate the likelihood of a gene genealogy conditional on a

complex demographic history, such as those generated by the HIV

model discussed here. Current techniques are limited in the

amount of phylogenetic data that can be used for inference of

demographic and epidemiological parameters. Estimation of the

intensity of early stage transmission will likely require co-clustering

statistics similar to the moments derived from the CSD. In cases

where the simple compartmental models fail to reproduce

phylogenetic patterns, a more complex transmission system model

and its corresponding coalescent should be investigated which

might involve sexual networks or geographical [44] and risk

heterogeneity. We further conclude that care must be taken in

using phylogenetic clusters for epidemiological inference. Mech-

anisms that generates clustering are often complex and counter-

intuitive. We recommend that investigators shift from individual-

based inference using small clusters to model-based inference using

population-based surveys of sequence diversity.

Supporting Information

Figure S1 Two simulated epidemics and the determin-
istic approximations for the fraction of the sample

which remains un-clustered as a function of the
threshold TMRCA. The fraction un-clustered is shown for

sample units classified as early infections (solid lines) as well as

sample units that are late infections (dashed). The x-axis gives the

clustering threshold in units of days since the start of the epidemic.

All variables are illustrated for a sample at 30 years following the

initial infections and at two possible sample fractions (100% or

20%).

(EPS)

Figure S2 Simulated epidemics and the deterministic
approximations for the Pearson correlation coefficient
between the number of co-clustered early and late
infections. Variables are shown as a function of the threshold

TMRCA in units of days since the beginning of the epidemic. All of

these variables are illustrated for a sample at 30 years following the

initial infections and at two possible sample fractions (100% or 20%).

(EPS)

Figure S3 Two simulated epidemics and the determin-
istic approximations for the skewness of the cluster size
distribution (third central moment divided by the
standard deviation cubed). Variables are shown as a function

of the threshold TMRCA in units of days since the beginning of

Figure 4. Summary statistics from HIV gene genealogies versus the fraction of transmissions attributable to early/acute infection.
The threshold TMRCA was five years before the most recent sample. Sample size and distribution of samples over time was matched to the Detroit
MSM phylogeny.
doi:10.1371/journal.pcbi.1002552.g004
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the epidemic. All variables are illustrated for a sample at 30 years

following the initial infections and at two possible sample fractions

(100% or 20%).

(EPS)

Figure S4 Summary statistics from HIV gene genealo-
gies versus the fraction of infections sampled after 35
years. The threshold TMRCA was five years before the most

recent sample. Sampling was homochronous.

(EPS)

Figure S5 Construction of the cluster size distribution
(CSD). Given a tree and a threshold time to most recent common

ancestor, represented by red, green, and blue lines, the set of taxa

at the base of the tree are classified into disjoint sets or clusters. The

distribution of cluster sizes for each threshold is shown at right.

(EPS)

Text S1 Detailed derivations and simulation methods.
(PDF)
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