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SIMPLE FACTS ABOUT

A N A L Y T I C
VECTORS AND INTEGRABILITY

BY M. FLATO, J. SIMON, H. SNELLMAN AND D. STERNHEIMER

ABSTRACT. — A theorem which completes previous studies (mainly due to E. Nelson)
concerning integrability criteria of representations of finite dimensional real Lie algebras
is presented. This theorem states that if there exists a dense domain of analytic vectors
for a representation by skew symmetric operators of a given basis of a finite dimensional
real Lie algebra in a complex Hilbert space, and if in addition, this domain is invariant
under the basis, then the Lie algebra representation generated by the basis is integrable
to a unitary representation of a Lie group.

Introduction

The question of analytic vectors in representation theory of finite
dimensional real Lie groups has two aspects : a global one, essen-
tially the question of their density in the representation space, and an
infinitesimal one, for which the most interesting problem is that of
exponentiability from a Lie algebra representation to a Lie group repre-
sentation.

Given a continuous representation *S of a real Lie group G in a
quasi-complete locally convex topological vector space H [i. e. S is a
group representation % : G -> £ (H) such that the map (g, y) -> % (g) y
is continuous on GxH], a vector y € H is said analytic (resp. differen-
tiable) if the function g -> V> (g) y is so. It has been shown by
L. Garding [3] and more generally by F. Bruhat [1] that the space of
differentiable vectors is dense in H. When H is a Banach space, it has
been shown with increasing generality and elegance by Harish-Chandra [6],
P. Cartier and J. Dixmier [2], E. Nelson [11] and finally by L. Garding [4],
that the analytic vectors form a dense subspace. In contradistinction
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with the differentiable case this result needs no longer be true for more

general spaces than Banach spaces, as simple examples can show.

The infinitesimal aspect is not so well studied, and it seems that some

confusion exists in the literature. Following Nelson [II], we shall say

that a vector y € H is analytic for an operator X acting on some domain

in H if for some t > 0, the series ^ .—[X^y is defined and absolutely
n ==0

convergent.

When dealing with a Lie algebra of operators having a common invariant

dense domain, some confusion may arise between the following three
notions :

(a) A vector y € H is said to be analytic for the whole Lie algebra

if for some ( > 0 and some basis { Xi, . . ., Xr} of the Lie algebra, the

series ^, —. ^, f X^ . . . X^ y is absolutely convergent. In the Banach
/z=0 i-^ii,..., in^r

case, this condition is equivalent to || X^ . . . X^ y [| ̂  A^ n \ for some

constant A > 0.

(6) A vector < p € H is analytic for every element X in the Lie algebra.

(c) A vector y € H is analytic for every element X^ in a given basis

of the Lie algebra.

We say that a representation T of a real Lie algebra ^ is integrable

if there exists a representation ^ of the connected and simply connected

Lie group G, corresponding to ^, such that T is contained in the diffe-

rential of ^ [i. e. every X€T (<^), which we can write X == T {x)y ^€^ ,

coincides on its domain of definition with the infinitesimal generator

of the one-parameter group % (exp (tx)), ^€R].

Moreover, in the case of unitary representations in Hilbert spaces,

if we have (or can construct) in H a dense invariant domain of analytic

vectors for the whole Lie algebra T (^) [in the sense (a) above], then,

following an argument due to Nelson [11] and developed in a more explicit

form, using the Campbell-Hausdorff-Dynkin formula, by Goodman [5],

the representation T is integrable.

It was also shown by Nelson [11] that analytic vectors for the

" Laplacian 9 ? A = X^ +. . . + X/2 relative to some basis are analytic

for the representation. Therefrom followed the only important known

integrability criterion : if the operators of a local representation T of

a Lie algebra ^ in a Hilbert space are skew-symmetric on a common

invariant dense domain on which the ( < Laplacian 9? A relative to some
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basis is essentially self-adjoint, then T is integrable to a unitary group
representation.

The aim of this article is to present a new integrability condition,

more general than the first Nelson criterion, which can be quite practical

for applications. This new criterion states that in order to ensure inte-

grability it is enough that the skew-symmetric operators of a given

basis have a common dense invariant domain of analytic vectors [namely

analytic in the sense (c) above]. We shall also extend this result to

more general spaces at the cost of supposing the integrability to the
one-parameter groups for a basis.

Such a result shows that analyticity on a dense domain in separate

real coordinate directions of a real Lie group implies the existence of

a dense domain of joint real analyticity, and therefore underlines the

constraints inherent to integrable Lie algebra representations. We shall

indeed have to rely more heavily on the abstract group structure, rather

than merely use the Campbell-Hausdorff formula : We prove our main

theorem upon utilizing some structural preliminaries, formula (6) which
is based on duality, and the vector theory of differential equations.

I. — Structural preliminaries

Let ^ be a real Lie algebra, and denote by G the corresponding connected

and simply connected real Lie group. The aim of this section is to
derive a couple of identities in the Lie algebra ^ involving elements,

their transforms under inner automorphisms defined by elements of G,

and derivatives of local coordinates of the second kind relatively to
some parameter.

As is well known, the exponential ^, for x in some open neighbourhood

V of the origin in ^, will realize some open neighbourhood of the identity

in G. Ifo?i, . . . , o ; r is a basis of ^, V can be chosen small enough so
that for any .rGV we shall have ^ = e

1
^. . . (o<rlrr, the coordinates of

second kind e^ -> (ti, . . ., tr) being a local chart in G over some neigh-

bourhood W of the identity, contained in ^v. Furthermore, we can

suppose W convex, namely that if e
y and e

x
 e

y belong to W, then e^ ^GW

when 0^(^:1 (and even when — £ < < ( < < 1 + £? f01* some £ > 0); this
follows from the fact that (c/*. Helgason [7], p. 34 and 92-94) the

translates t -> e^ e
y
' of the one-parameter groups are the geodesies of

the Cartan-Schouten connection.

Thus if ^€W and 0 ̂  t ̂  1, we shall have e^ = e^. . . e1
^ where

the coordinates ^ are analytic in (.
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To simplify the notations and make the calculations more clear, we

shall suppose (using e. g. Ado theorem) that the Lie algebra ^ is realized

faithfully as a matrix algebra. Thus, some neighbourhood of the iden-

tity in G, containing of course W (and all the products of elements of W

needed below), will also be realized as a matrix group neighbourhood.
Therefore, from the identities

„ e^ = x e^ == e^ x == (̂  ,- Xi +... + — e^... e^-î -i Xr e-^-^"-
1
... e-^ e^

— C^ i g—^-Cr p—tsxs -r "-1 ptaXs ptrXr _1_ _L y r \ ,

~~ e
 [

e
 ' "

e xi
 dt " ' "" ' xr

 dt )
?

we find

( x == ̂ x, +• . • + ̂  Int (t, x,) ... Int (^-i Xr-,) Xr,

\ fit fit
^ X = Int (— tr Xr) . . . Int (— ^ ̂ 2) X, ,-+ . . . + Xr -j-J

where Int (tx) denotes the inner automorphism Ad (e^) of ^ defined
by y -^ e^ ye"^ in any realization.

Moreover if x, y€^ and ^, ^^EW, then, as we have seen, for

O^^l, ^^€W. We can then write :

^tx gy ^ ga^i ^ ^ ^ ga,̂ ^ gy ̂  g3i.n ^ ^ ^ ^Xr

and, from the identity

,. ((e^ 6^) c-') = „ (e^... ̂ xr e-^... e-P^)

— f T,__
1
 4- 4- p^ixi par—i.rr—i-r -^T p—a,—i;c,—-i /»—ai.ci^/,^— \ 1

 dt
 1 " •+ • r

 dt " )

we derive the relation

(2) ^ = —! a;i + . . . + — Int (ai a;i) . . . Int (a^_i a-r-i) ̂ .

In addition, as is well known, we have for all re, y€^ and <eR,

00

(3) e
1
" y e-'- = Int (tx) y =^ ̂ y (ad (to))" y.

7l==0

II. — A basic formula

Let T be a representation of a Lie algebra ^ on a complex Hilbert

space H by skew-symmetric operators defined over a common dense

invariant domain D.
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Such a representation is obviously strongly continuous, namely that

if we have yn -> y in ^ (endowed with the usual Euclidean topology)
then for every y € D, T {yn) y -> T (y) y in H. Indeed, writing

r r

yn=^^n,kXk and y=^^^
A=I ^==1

for a given basis Xi, . . . Xr of ^, we have A^/c -> X/c, hence

r

T (^) 9 - T (y) cp =^(^,, - ̂ ) T (.K,) cp -> 0 in H.
A=l

In what follows, we shall write X = T (^), Y = T ( y ) , . . . . The

formula (3) can be transported to the representation in the following
sense :

LEMMA 1. — For any x, y^^ and y€D, the series

A(<X,Y)cp=^((adX)-Y)9
rt==0

[where (ad X) Y 9 == (XY — YX) 9, . . ."| is convergent for all ^€R and

we have

(4) T ( I n t ( ^ ) y ) c p = A ( X , Y ) c p .

Indeed, (4) follows from (3) and from the above-mentioned strong
continuity. Changing x into tx, we obtain the convergence of the
series A (( X, Y) 9 for all ^€R.

LEMMA 2. — For any x, y€^ and y € D we have

m

(5) YX^ cp =^ (^ XP ((- ad X^-P Y) 9.

y0=0

The verification of this (known) formula is straightforward.

PROPOSITION 1. — Let T and T' be representations of the real Lie

algebra ^ by skew-symmetric operators over common invariant domains D
and D' {respectively), dense in H, with DcD', and such that for any y€^,
Y === T (y) is the restriction to D of Y' = T' (y). TT^n i/* D is a domain

of analytic vectors for some X == T {x) € T (^) we /^a^e, denoting by ^ , )> (/^e
scalar product in H, /br any (€B, y € D ano? ^peD' :

(6) < - e^ Y cp, ^ > = < e^ cp, A (t X', Y') ^ >.

ANN. AC. NORM., (4), V. —— FASC. 3 56
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From a result of Nelson [II], the closure X of X (and of X') is skew-
adjoint and therefore generates a unique one-parameter unitary group which

we denote by e^. For all y€D, the functions ( -> e'^ y and t -> e^ Y 9
are analytic in R. By lemma 1, the function ( -> A ((X', Y') ^,
with ^€ D', is also analytic in R. The functions a ( ( ) = = < — e^ Y y, ^ >
and & ( ( ) = < e'^ y, A (( X', Y') ^ > are therefore also analytic for all
real t. Now we have

^(0)=<-X"Y9,+>,

^ (°) =2 G) < x' ̂  (
ad X')'1-' Y'^ >•

D==0

Since YCY'C—Y'* (and the same for X), we obtain from (5) that
d71

 a d" b
~^n (0) = -^n- (0), hence a (t) = b {t) for all (€B.

COROLLARY 1. — Under the conditions of proposition 1, e-^ ^ belongs

to the domain D (Y*) of the adjoint Y* of Y for all ^eD' and (SB, and

(7) T' (Int (tx) y) ̂  == - e^ y* e-^x ^.

Indeed, due to the continuity in 9 of the right-hand side of (6),
e-^^eD (Y*), whence the formula (since D is dense in H).

Remark. — The analyticity of the vectors in D is not completely
used here (and in the following). We only use the invariance of D
under T (^) and the quasianalytic property of the function a — &,

namely that if ^ (a — b) (0) = 0, then a (() — b {t) = 0 for all ^€B.

It would therefore be enough to suppose that the vectors of D belong
to some " quasianalytic class ", such that all the functions a — b

belong to a quasianalytic class of functions on B [defined e. g. by some

a priori inequalities on the derivatives ^-(a — b) (t)].

III. — Main hypothesis and first consequences

HYPOTHESIS (C). — T is a representation of a Lie algebra ^ on a dense

invariant domain D of vectors that are analytic for all skew-symmetric

representatives X, == T (^) of a basis x^ . . ., Xr of ^.

LEMMA 3. — Hypothesis (C) being satisfied, define H^ as the intersection

of the domains of all monomials X^ .. . X^, for all 1 ̂  i\, . . ., i^^ r
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n€N. Let X,. be the restriction of X, to H^ and define, for all

r r

y =^ ̂  x^, Y' = T (z/) = ,̂ X,

;=l i=l

{with invariant domain HJ. Then T' 15 a representation of ^ 6y 5/cew-

symmetric operators (on HJ amZ we have, for any two elements Xi and Xj

in the basis and ^ € H^ :

(8) A (/ X;, X;-) ^ = e^i Xy e-^i ^.

By definition, H^ contains D and is invariant under all

X^ === X^- == — X* == — X^*,

hence under all Y' which, due to the hypothesis made, are skew-

symmetric. By definition also, T' is linear. Now, if

y

[Xi,Xf} =^djkXk

A:=i

we have, for all ^peH^ and oeD :

< (X, X;- - X;- X;.) ̂  cp > = < ̂  (Xy X, - X, Xy) cp >

== ( T )
 - 2c i jk xk ?'} = ( ̂ ci7k

 xtk ̂  ̂ \ •

\ k / \ k /

Therefore T' is a representation and we can apply formula (7) with
D' = H^ to y = Xj^ whence (8).

LEMMA 4. — Under hypothesis (C), the above-defined domain H ,̂ is

invariant under T' (^) and under all one-parameter groups ^xi, and

if ti, ...,^ are differential^ functions of some parameter t, then for

all y € H^ the rector-valued function

t -> e1^... e^ •r'- 9

has a first derivative in t.

From (8) and the invariance of H^ under T' (^) we obtain

A (t X,, X;,)... A (t X;., X;J ̂  = e^i X;,... X^ e-^ ̂

for all base elements x^ x^^ ...,^ and all ^€H^, and e-^ ^ belongs

to the domain of all operators X^.. .X^, whence the invariance of H^
under the e~

tx
\

The differentiability property follows by induction from the differen-

tiability of the vector-valued function ( -> U {t) <p (() where t -> y {t) € H^
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is strongly differentiable and t -> V (t) is a unitary operator-valued

function strongly differentiable on H^ [such that the map ((, <p) -> U [t) <p

is continuous RX H —>- H],

IV. — Main theorem

THEOREM 1. — Let T be a Lie algebra representation in a complex

Hilbert space satisfying hypothesis (C). Then T is integrable to a unique

unitary group representation.

Let x, y be any elements of ^ close enough to 0 so that e", ^r, ̂  e
y
^

and therefore e^ e
y for 0 ̂  t ̂  1, belong to the neighbourhood W of

the identity of G introduced in section I. We shall write

^tx gy == gaio-i ^ ^x^

(9) e^ == e^ ... e ,̂

ev == e^... e?^.

For any ze^ such that ^eW, we write (in a unique way, once the

basis is chosen) e
z == e^. . .^ra:r and define

(10) ^(e^) = e^...e^.x,.

Since G is generated by finite products of elements of W, we only
have to show that the group law holds in W, i. e. that for any o^, ^€W
such that ^ ̂ €W, we have S (^ ^) = % (^) © (^), and that T (^) is

on D the differential of ^ (G). The unicity is obvious since relation (10)

is a necessary condition.
From lemma 4, for y€H,, % (e^} 9 and % (^ ^) % (e^)-1 y are diffe-

rentiable functions of t. Since

" e1^ cp = X ̂ x* cp == c^x* X, cp,
dti

we have by direct computation

^(e^) 9 === (^Xi +... + ̂ ^^ ... e^-^r-.Xre-^r-^r-.... e-^\^ (e^) cp

and similarly

d ̂  (e^) cp == % (e^) ( ̂  e-A... e-<»^ Xi e^... e^r +... + ̂  x^ cp.

From relations (1), (4), (8), (9), and (10) we then get :

d ̂  (e^) cp = X' ̂  (e^) 9 = % (e^) X' co.(11)
 d

 ^ (e^) cp = X' ̂  (e^) 9 = % (e^) X' co.
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On the other hand we have by direct computation, for all y € H ^

d<Q(etxer)<Q(ey)-i 9

= (— Xi +... + d
— e^... e^x,-, x^ e- ̂ r-^r-i... e-^\ ̂  (e^ ev) % (e^)-

1 cp.

Hence, from relations (2), (4), (8), (9) and (10) we obtain that for

all y€H,, ^ (e^ e^ % ((?r)-1 9, which belongs to H,, is also a diffe-

rentiable solution of the vector-valued differential equation (with values

in H^ and derivation in the H-topology)

(12) ^(Q^X'^O, "(O€H,.

Such an equation has a unique solution [cf. e. g. Kato [9], p. 481).

Indeed one checks easily that for any solution u ( 5 ) e H ^ , and

0 ̂  s ̂  t ̂  1, % {e ((<-^) u (s) is differentiable in s and that

d (% (e^-^) u (s)) = - ̂  (e^-^) X' u (s) + % (e^-^) X' u (s) = 0.

Therefore % (^-y)a') u {s) does not depend on 5. Equalling its values

for 5 = 0 and s = t we obtain u (() == % (<?^) u (0), whence the unicity

of the solution of (12) in H^ and the group law (which we can extend

from H^ to H by continuity)

% (e^ ev) = ̂  (e^) ̂  (e^).

Moreover, relation (11) shows that T (^) is the restriction to D of

the differential of ® (G).

V. — Complements

1. HYPOTHESIS (B). — T is a representation of a Lie algebra ^ in a

Hilbert space H by skew-symmetric operators X = T (x) € ̂  having a

common dense invariant domain D of analytic vectors.

This hypothesis, more restrictive than hypothesis (C), can be of

independent interest when extended to more general spaces. The

proof of integrability is simpler in that case : Using an argument similar

to that of proposition 1 one shows that the smallest domain H^ contain-

ing D and invariant under the operators ^x, xG<^ (obtained by acting

upon D with all polynomials in such operators) is an invariant set of

analytic vectors for all operators X ,^€^ ; this domain can replace H^
in the proof.



432 M. FLATO, J. SIMON, H. SNELLMAN AND D. STERNHEIMER

2. MORE GENERAL REPRESENTATIONS. — Let T be a representation

of a Lie algebra ^ by operators defined over a dense domain D in a

quasi-complete locally convex space H. Then lemmas 1 and 2 still hold.

In order to have an equivalent of proposition 1, we have to suppose

the existence of one-parameter groups. This existence was automatic

in the case of skew-symmetric operators in Hilbert space having a

dense domain of analytic vectors, but it is a difficult question in the

more general case. We shall mention here only the Hille-Yosida necessary

and sufficient condition for a closed operator to generate a continuous

one-parameter group of operators on a Banach space in terms of the

resolvent (cf. Hille-Phillips [8], p. 364).

Let us denote by H* the antidual of the quasi-complete locally convex

space H, namely the space of semilinear continuous functionals H -> C

endowed with the strong topology, the antiduality being realized by

the sesquilinear form which we write (f^, y) -> <( ^p, <p )>. We shall denote

by Y* the adjoint of a densely defined operator Y in H. We recall

that in the integrable case, the contragredient of a continuous Lie

group representation in a non-semi-reflexive space H needs not be conti-

nuous on the whole dual (c/*. e. g. Bruhat [1]) but will be continuous

on a closed invariant subspace of H*. We have then :

PROPOSITION 2. — Suppose that there exist both a dense domain D in

H and some domain D* in H* such that :

(i) D is invariant under the operators Y == T (y), y€^.

D* is invariant under the operators Y*.

(ii) D* is composed of analytic vectors for some X* == T (^)*,

or (ii)' D is composed of analytic vectors for some X === T (re).

(iii) X* coincides on D* with the weak* generator of a weakly continuous

one-parameter group ^ ((),

or (iii)' X coincides on D with the weak generator of a weakly continuous

one-parameter group ̂  (t) on H.

Then we have, for all 9 € D, ^ € D* :

under hypotheses (i), (ii), (iii)

(13) < ^ ( O Y * ^ c p > = = < ^ ( 0 ^ , A ( - / X , Y ) c p >

and under hypotheses (i), (ii)', (iii)'

(13)' • < ̂  %, (0 Y cp > = < A (- t X*, Y*) ^, %, (0 c? >.
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Indeed, denote the left-hand side by a {t) and the right-hand side by b (().
Then these real-analytic functions are equal since, because of (5) :

n

^(0)=<X^Y*+.cp>=^(^<X*^,((-adX)^Y)c?>=^(0)
p=o

in the first case, and similarly in the second case since y -^ — Y* defines
a representation of ^ on D*.

Here also, as we noticed in the end of paragraph II, a quasianalyticity

property of a— b would be enough, a fact which might be useful when H
is not a Banach space.

To proceed further we shall suppose that H is semi-reflexive, i. e. alge-

braically equal to its bidual H**, and that D* is dense in H*. Then X

is closable with closure X = X** and we have, under hypotheses (i)?
(ii), (iii) of proposition 2 :

(14) T (Int (tx) y) cp = ̂  (Q Y ̂  (- f) cp

for all ?€D, where Y is the adjoint of the restriction of Y* to D* and

^ (<) is the adjoint of ^ (<).

HYPOTHESIS (C'). — T is a representation of a Lie algebra ^ on a dense

invariant domain D in a semi-reflexive locally convex space H such that :

(C\) There exists a dense invariant domain D* in the antidual H* of H
for all Y*, the operators Y = T (y), y€^, being defined with domain D.

(C^) D* is composed of analytic vectors for all X,* = T (r^)* representatives

of a given basis [ X i : } (i = 1, . . ., r) of ̂ , and X* is the closure of its restric-

tion to D^.

(63) The closures Xi of the Xi generate continuous one-parameter groups

e^
1
 on H (i. e. such that the associated maps RX H -^ H are continuous).

We then prove exactly in the same way as before :

THEOREM 3. — Under hypothesis (C'), T is integrable.

Remark 1. — When H is barreled (hence isomorphic to its strong
bidual H**) one can show that, under hypothesis (C'), the contragredient
representation T* : y -> — T (y)* (with domain D*) is also integrable
[even if the analogue of (C'J for T* is not true].

Remark 2. — After completing this article one of us (M. F.) was told

by E. Nelson (who is cordially acknowledged) that R. T. Moore [10] also

dealt with the problem of exponentiation of Lie algebras of operators.
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However, after contacting R. T. Moore (who is also cordially acknowledged),

it appears that his assumptions, as well as those of a related paper [12],
are quite different.

NOTE ADDED IN PROOF. — After this article has been submitted for

publication, one of us (J. S., to be published in Comm. Math. Phys.)

generalized the result of the main theorem from a linear basis to a set of

generators in the commutator sense, relying on results and techniques
developed in the present paper.

ACKNOWLEDGEMENT. — The authors wish to thank Jacques Dixmier

for interesting comments and a careful reading of the manuscript.
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