
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 351, Number 5, Pages 1871–1894
S 0002-9947(99)02244-8
Article electronically published on January 26, 1999

SIMPLE FAMILIES OF THUE INEQUALITIES

GÜNTER LETTL, ATTILA PETHŐ, AND PAUL VOUTIER

Abstract. We use the hypergeometric method to solve three families of Thue
inequalities of degree 3, 4 and 6, respectively, each of which is parametrized
by an integral parameter. We obtain bounds for the solutions, which are
astonishingly small compared to similar results which use estimates of linear
forms in logarithms.

1. Introduction

Although it is nowadays a routine matter to solve a single Thue equation, it
was not until 1990 that a parametrized family of Thue equations was solved at one
stroke by E. Thomas ([23]) and subsequently by other authors (see [14], [18], [16],
[10]). In all these papers, linear forms of logarithms played a crucial role.

In the early 1960’s, A. Baker [1] used the hypergeometric method, which goes
back to A. Thue and C.L. Siegel, to obtain the first effective irrationality measure for
algebraic numbers of degree at least three. Later, Chudnovsky [5] determined the
precise asymptotic behaviour of the quantities which arise in this method. In this
way, he was able to obtain much better effective irrationality measures for a wider
class of algebraic numbers. He did not determine explicitly the constants involved.
This was done shortly afterwards by Easton [7], whose results have recently been
refined by Bennett [2] and Voutier [24] working independently.

Apart from A. Baker, who used his results to solve the Thue equation X3−2Y 3 =
n for 0 ≤ n ≤ 1000 (unpublished thesis, Cambridge, 1965), this method was not
used to determine all solutions of a given Thue equation until the work of Jian Hua
Chen [3]. Recently, Chen and Voutier [4] have applied the hypergeometric method
to give the complete solution of the family of Thue equations F

(4)
t (X,Y ) = ±1

for t ≥ 128 (see the notations below). Applying this method, one does not have
to investigate the arithmetic of the underlying number field any more, e.g. neither
fundamental units nor a description of the elements with given norm is needed.
When this method does work, it almost always yields far better numerical results
than using lower bounds for linear forms in logarithms.
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1872 GÜNTER LETTL, ATTILA PETHŐ, AND PAUL VOUTIER

In the present paper we apply the hypergeometric method to solve the following
three “simple” families of Thue inequalities:

|F (j)
t (X,Y )| ≤ k(t) ,

where t ∈ Z \ Tj , j ∈ {3, 4, 6} , k : Z → N and

F
(3)
t (X,Y ) = X3 − tX2Y − (t+ 3)XY 2 − Y 3

F
(4)
t (X,Y ) = X4 − tX3Y − 6X2Y 2 + tXY 3 + Y 4

F
(6)
t (X,Y ) = X6 − 2tX5Y − (5t+ 15)X4Y 2

− 20X3Y 3 + 5tX2Y 4 + (2t+ 6)XY 5 + Y 6 .

(1)

Here Tj denotes a relatively small set of parameter values, for which this method
does not apply, e.g. T3 = {t ∈ Z | −32 ≤ t ≤ 29} . This is not caused by
the incapacity of the authors, but by an intrinsic feature of the hypergeometric
method. Through more elaborate computations in the proof of Proposition 2, one
could replace the Tj’s by slightly smaller sets, but these sets would never be empty,
as one realizes from the asymptotic results in [5].

Let us remark that the families F
(3)
t (X,Y ) = ±1 and F

(4)
t (X,Y ) = c with

c ∈ {±1,±4} were completely solved in [14], [10] and [4]. For families of Thue
equations of degree 6 there are – to our knowledge – no results up to now.

As usual, we call a solution (x, y) ∈ Z2 of a Thue inequality primitive if
gcd (x, y) = 1 , and (0, 0) is called the trivial solution. Since F

(j)
t (ux, uy) =

ujF
(j)
t (x, y) , we will only consider primitive solutions.

The forms F (j)
t (X,Y ) have non-trivial automorphisms, which produce from each

solution an orbit of solutions. Therefore it suffices to find all solutions (x, y) ∈ Z
with y

2 < x ≤ y (or |x| ≤ y ), as will be explained in Lemmas 2, 9 and 10.
From the theorems of this paper we will deduce the following particular results:

Corollary 1. For t ≥ 89 , the only primitive solutions (x, y) ∈ Z2 of

|F (6)
t (x, y)| ≤ 120 t+ 323

with − y
2 < x ≤ y are (0, 1), (1, 1), (1, 2), (−1, 3) .

Corollary 2. For t ≥ 58 , the only primitive solutions (x, y) ∈ Z2 of

|F (4)
t (x, y)| ≤ 6 t+ 7

with |x| ≤ y are (0, 1), (±1, 1), (±1, 2) .

Corollary 3. For t ≥ 30 let (x, y) ∈ Z2 be a primitive solution of

|F (3)
t (x, y)| ≤ k(t)

with 8k(t)
2t+3 ≤ y and − y

2 < x ≤ y . Then we have

|y| < 0.4 (120 k(t))1+ε(t) with ε(t) =
2.14

log(t+ 3
2 )− 3.44

.

The Thue inequality of Corollary 3 was investigated and, for k(t) = 2t + 3 ,
completely solved in [15] by using linear forms in logarithms. The power of the
hypergeometric method can be seen by comparing Corollary 3 with Theorem 1 in
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SIMPLE FAMILIES OF THUE INEQUALITIES 1873

[15]. For example, for t = 1649 the first yields |y| < 635 k(t)1.54 , whereas the
latter gives |y| < 1046649k(t)228 .

From the proofs of our theorems one can easily obtain effective measures of
irrationality for the roots β of F

(j)
t (X, 1) , t /∈ Tj , of the form∣∣∣∣β − p

q

∣∣∣∣ > 1
c |t| |q|2+O((log |t|)−1)

for any (p, q) ∈ Z×N and some constant c . For t→∞ , this result approaches
Roth’s bound, whereas the results of Theorem 2 in [15] tend to Liouville’s bound –
as it always happens when using linear forms in logarithms.

In the next section we will indicate our reasons for calling the above three families
of forms simple and show that any Thue inequality arising from a simple form can
be transformed to one of the above shape. In particular, any cubic Thue inequality
|F (X,Y )| ≤ k′ , for which F (X, 1) has a cyclic Galois group, is equivalent to
a Thue inequality |F (3)

t0 (X,Y )| ≤ k0 and thus can be solved with Corollary 3,
provided t0 /∈ T3 (see Section 2 for more details).

In Section 3 we will investigate F
(6)
t in detail, and in Theorem 1 state our

results about the family of Thue inequalities

|F (6)
t (X,Y )| ≤ k(t) .

The hypergeometric method is presented in Section 4. Proposition 2 gives a
careful analysis of numerator and denominator of the approximating polynomials,
which enables us to apply the hypergeometric method close to its natural limitation
(e.g. we can treat F

(4)
t for t ≥ 58 , compared with t ≥ 128 in [4]).

Section 5 contains the proofs of Theorem 1 and Corollary 1. Finally, in Sections 6
and 7 we will present and prove the results for the simple quartic and cubic families,
respectively.

2. Simple rational forms

For A =
(

a b
c d

) ∈ GL2(Q) and F ∈ Q[X,Y ] we put

FA := F (aX + bY, cX + dY ) ∈ Q[X,Y ] .

This defines an action of GL2(Q) on Q[X,Y ] , in fact an isomorphism between
GL2(Q) and the group of homogeneous automorphisms of Q[X,Y ] .

We call forms F,G ∈ Q[X,Y ] equivalent if there exist some A ∈ GL2(Q) and
r ∈ Q× (i.e. r 6= 0 ) with rG = FA . This obviously defines an equivalence
relation on the set of all rational forms.

If F,G ∈ Z[X,Y ] are equivalent forms with integer coefficients there is some
A ∈ GL2(Q) with integer entries and some r ∈ Q× such that rG = FA .
Then for any k′ > 0 , any solution (x′, y′) ∈ Z2 of |G(x′, y′)| ≤ k′ can be
obtained from some solution (x, y) ∈ Z2 of |F (x, y)| ≤ k with k = |r|k′ by
solving x = ax′ + by′, y = cx′ + dy′ . Therefore it suffices to solve the diophantine
inequality |F | ≤ k with arbitrary k for one F in each class of equivalent forms.

Definition 1. A form F ∈ Q[X,Y ] is called simple if F is irreducible over Q
with deg (F ) ≥ 3 and if there exists some non-trivial A ∈ PGL2(Q) = GL2(Q)

/
Q×( 1 0

0 1

)
such that ψA : z 7→ Az := az+b

cz+d permutes the zeroes of the underlying
polynomial P = F (X, 1) transitively. Here

(
a b
c d

) ∈ GL2(Q) represents A .
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1874 GÜNTER LETTL, ATTILA PETHŐ, AND PAUL VOUTIER

Remarks. 1. Let F be a simple form and ψA permute the roots of P . Then
there is some r ∈ Q× with FA = rF . For any B ∈ GL2(Q) , FB is also
simple and B−1AB permutes the roots of PB := FB(X, 1) .

2. Be aware that in Definition 1 we require ψA to operate transitively on the
roots of P . For example, F = X4−2Y 4 satisfies all conditions of Definiton
1 (with A =

(−1 0
0 1

)
) but this last one.

3. Definition 1 implies that the roots of P generate a cyclic number field of
degree deg (F ) , where the Galois action on the roots of P is given by ψA .
These fields are well-known and some of them are the so-called “simplest”
number fields (see [22], [9], [8], Appendix of [21]).

4. It is easy to see that any irreducible form F ∈ Q[X,Y ] of degree 3 , for
which P = F (X, 1) has a cyclic Galois group, is simple. Indeed, if β′ is
conjugated to a root β of P , we can write β′ = r0+r1β+r2β2 with ri ∈ Q
and r2 6= 0 , and one can check that r0 + r1β + r2β

2 = aβ+b
cβ+d has solutions

(a, b, c, d) ∈ Q4. Thus by Lemma 1.b) below, any cyclic cubic number field
can be generated by the roots of F

(3)
t (X, 1) for some t ∈ Z .

5. A problem similar to Lemma 1.a) below is dealt with in [6].

Lemma 1.
a) Each non-trivial torsion element of PGL2(Q) has order 2, 3, 4 or 6 and is
conjugated to some power of

(
0 1
c 0

)
or

(
1 −1
1 m

)
with c ∈ Q× , m ∈ {0, 1, 2} .

b) Up to equivalence — the only simple forms in Q[X,Y ] are

F
(3)
t with t ∈ Z,

F
(4)
t with t ∈ Z \ {−3, 0, 3},
F

(6)
t with t ∈ Z \ {−8,−3, 0, 5}.

Proof. a) Let A ∈ GL2(Q) represent a non-trivial torsion element of PGL2(Q)
of order j ≥ 2 . Then Aj =

(
r 0
0 r

)
with r = λj

1 = λj
2 , where λ1, λ2 are the

eigenvalues of A . Thus λ1/λ2 is a root of unity and one easily shows that its
order must be j . Since λ1/λ2 belongs to a quadratic number field over Q , only
j = 2, 3, 4, 6 is possible. If X2 − aX − b is the characteristic polynomial of A ,
we use Frobenius’ normal form (see e.g. [12], Kap. IX, §4) to obtain A ∼ ( 0 1

b a

)
.

If a = 0 , we obtain the torsion elements of order 2 . If a 6= 0 , we change A
to 1

aA ∼ ( 0 1
c 1

)
with c = b

a2 . Thus we have only to check for which c ∈ Q and
j ≤ 6 we obtain

(
0 1
c 1

)j ∈ Q×( 1 0
0 1

)
, and this yields — up to conjugation — the

elements as stated in the lemma.
b) Let F ∈ Q[X,Y ] be a simple form and A ∈ PGL2(Q) be such that ψA

permutes the roots of P = F (X, 1) transitively. Since P has degree deg(P ) ≥ 3
and is irreducible, A must be a torsion element of order deg(P ) .

Put T3 =
(

1 1−1 0

)
, which is conjugated to

(
1 −1
1 0

)
, T4 =

(
1 −1
1 1

)
and T6 =(

1 −1
1 2

)
. One can calculate that for j ∈ {3, 4, 6} , F

(j)
t =

∏j
i=1(X − ψT i

j
(β)Y ) ,

where t (resp. 2t for j = 6 ) equals the sum of the roots ψT i
j
(β) (i = 1, . . . , j) .

The irreducibility of F (j)
t for the indicated values of t can easily be verified for

j = 3, 4 , and is proved in [8], Prop. 3.3, for j = 6 . Be aware that our parameter
t corresponds to t−6

4 in Gras’ notation. Remark 1 above concludes the proof.
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SIMPLE FAMILIES OF THUE INEQUALITIES 1875

3. The simple family of degree 6

In this section we investigate the Thue inequality

|F (6)
t | ≤ k(t) ,(2)

where k : Z → N is a function with positive values. For t ≥ 89 we derive
bounds for the solutions of (2) and solve it in the special case k(t) = 120 t+ 323 .
The reason for this special choice of k(t) is that F

(6)
t (1, 2) = 37 + 120 t and

F
(6)
t (−1, 3) = −323 − 120 t are the least non-constant values of |F (6)

t | , as the
reader can verify. Furthermore we have F

(6)
t (1, 1) = −27 and F

(6)
t (0, 1) = 1 ; thus

Corollary 1 implies that the latter is the only primitive solution of |F (6)
t (X,Y )| = 1 .

To solve the inequality also for the remaining values t ∈ T6 , one has to invoke
the usual method of using linear forms of logarithms. This requires a detailed study
of the underlying sextic number field and is the subject of [11].

First, let us collect some important transformation properties of F
(6)
t .

Lemma 2.
a) The following relations hold:

F
(6)
t (X − Y,X + 2Y ) = −27F (6)

t (X,Y ),

F
(6)
t (X,Y ) = F

(6)
t (−Y,X + Y ) = F

(6)
t (−X − Y,X) = F

(6)
t (−X,−Y ),

F
(6)
t (Y,X) = F

(6)
−t−3(X,Y ).

b) If (x, y) ∈ Z2 is a solution of (2), then every pair of the orbit{
(x, y), (−y, x+ y), (−x− y, x), (−x,−y), (y,−x− y), (x + y,−x)}

is also a solution of (2). The set of all solutions of (2) for fixed t and k(t) is a
disjoint union of such orbits.
c) If an orbit of solutions of (2) contains one primitive solution, then all solutions
in this orbit are primitive.
d) Any orbit of non-trivial solutions of (2) contains a pair (x, y) with y > 0 and
− y

2 < x ≤ y .

Proof. a) – c) These assertions are easy to verify. We only mention that T =(
0 −1
1 1

)
= 1

3T
2
6 yields an automorphism of the form F

(6)
t , which also permutes the

elements of each orbit of solutions.
d) Each orbit of non-trivial solutions of (2) contains an element (x, y) with

y > 0 . If |x| > y then either (x′, y′) = (−y, x + y) or (x′, y′) = (x + y,−x)
satisfies |x′| ≤ y′ and 0 < y′ . If −y′ ≤ x′ ≤ − y′

2 , then (x0, y0) = (x′ + y′,−x′)
is an element of the orbit, which has all required properties.

This lemma shows that to solve the Thue inequality (2) it is sufficient to consider
only parameters t ∈ Z with −1 ≤ t 6= 0, 5 and to restrict to primitive solutions
(x, y) ∈ Z2 with − y

2 < x ≤ y . All solutions are then obtained from the orbit of
(x, y) and multiples (ux, uy) , as long as |F (6)

t (x, y)| ≤ k(t)
u6 .
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Before stating our main results, let us fix a numbering of the roots of the under-
lying polynomial. We put

P := F
(6)
t (X, 1) = X6 − 2tX5 − (5t+ 15)X4 − 20X3

+ 5tX2 + (2t+ 6)X + 1 =
6∏

i=1

(X − βi) ,
(3)

no longer carrying the parameter t ∈ Z explicitly in our notation. From the
preceding section we know that the rational map ψT6 : z 7→ z−1

z+2 permutes the
roots βi of P .

Lemma 3.
a) For t ≥ 6 the following estimations hold:

2t+
5
2

+
10
3t

< β1 = β < 2t+
5
2

+
35
8t
,

1− 3
2t

+
8

3t2
< β2 =

β − 1
β + 2

< 1− 3
2t

+
27
8t2

,

− 1
2t

+
7

8t2
− 1
t3
< β3 =

−1
β + 1

< − 1
2t

+
7

8t2
,

−1
2
− 3

8t
+

1
2t2

< β4 = − β + 2
2β + 1

< −1
2
− 3

8t
+

9
16t2

,

−1− 1
2t

+
3

5t2
< β5 = −β + 1

β
< −1− 1

2t
+

11
16t2

,

−2− 3
2t

+
9

8t2
< β6 = −2β + 1

β − 1
< −2− 3

2t
+

4
3t2

.

b) For m ∈ {2, 3} the continued fraction expansions of βm are

β2 = [0; 1,
[
2t+1

3

]
, . . . ] for t ≥ 6 ,

β3 = [−1; 1, 2t+ 2, 1, . . . ] for t ≥ 8 .

Proof. a) One checks that P changes its sign between the indicated bounds for
each βi .

b) If β = [a0; a1, a2, . . . ] is the continued fraction expansion of some real number
β the ai’s are determined by the property that β lies between [a0; a1, . . . , ai]
and [a0; a1, . . . , ai +1] . For t ≥ 6 , the bounds for βm from part a) immediately
yield the claimed values for a0 and a1 . For t ≥ 8 we have 0+ 1

1+ 3
2t−1

< β2 < 0+
1

1+ 3
2t+2

, since P changes its sign between these bounds. Thus 2t−1
3 ≤ a2 <

2t+2
3 ,

which implies a2 =
[

2t+1
3

]
. For t = 6, 7 we verified a2 =

[
2t+1

3

]
by direct

calculation. The proof for β3 runs in the same way.

Theorem 1. Let t ≥ 6 and assume that (x, y) ∈ Z2 is a primitive solution of

(2) with − y
2 < x ≤ y and 1.572 4

√
k(t)

t ≤ y .
a) Then x

y is a convergent to β2 or β3 , and we have either y = 1 or∣∣∣x
y
− β2

∣∣∣ < k(t)
y6(18t− 27)

and y ≥ 2t+ 2
3
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SIMPLE FAMILIES OF THUE INEQUALITIES 1877

or ∣∣∣x
y
− β3

∣∣∣ < k(t)
y6(2t+ 1)

and y ≥ 2t+ 3 .

b) Assume t ≥ 89 and put

κ =
log
(√
t2 + 3t+ 9

)
+ 2.56

log
(
t+ 3

2

)− 3.09
< 1 +

5.66
log
(
t+ 3

2

)− 3.09
.(4)

If x
y is a convergent to β2 we have

y5−κ <
3.57 k(t)

7.5κ
.(5)

If x
y is a convergent to β3 we have

y5−κ <
31.41 k(t)

12.99κ
.(6)

Remarks. 1. From (5) and (6) one obtains upper bounds for y only if κ < 5 ,
which happens for t ≥ 89 . These bounds have the form

y <
(
N(t) k(t)

)ε(t)
which decrease very rapidly. Some numerical examples are shown in the
following table:

t 89 90 100 150 200 1000 ∞
ε(t) 128.81 25.96 3.26 0.93 0.69 0.40 0.25

N(t) for (5) 1.5 · 10−4 1.6 · 10−4 2.8 · 10−4 0.0013 0.0028 0.024 0.476
N(t) for (6) 8.7 · 10−5 9.4 · 10−5 1.9 · 10−4 0.0013 0.0035 0.054 2.42

2. Playing the lower bound for |y| off against the upper bound in Theorem 1,
one can show that for t ≥ 1642 any primitive solution (x, y) ∈ Z2 of

|F (6)
t (x, y)| ≤ t3

with − y
2 < x ≤ y must satisfy y < 1.572

√
t .

4. The hypergeometric method

In this section we will establish notations and collect all the results which we
will need to apply the hypergeometric method for solving our Thue inequalities.
For references about the history of this method we refer to [5]. We will also use
most notations as introduced in [4], only for some polynomials we use boldface or
calligraphic letters to avoid ambiguity.

For n, r ∈ N put

Xn,r = 2F1

(
−r,−r − 1

n , 1− 1
n , X

)
∈ Q[X ] and X ∗

n,r = Y rXn,r

(
X

Y

)
∈Q[X,Y ].

Here 2F1 denotes the classical hypergeometric function, and thus Xn,r and X ∗
n,r

are rational polynomials of degree r .
The following proposition is a version of Thue’s “Fundamentaltheorem” together

with its relation to the hypergeometric function, as discovered by Siegel (see Lemma
2.1 in [4]; we substituted and simplified the expressions of [4] to obtain (8) below).
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Proposition 1. Let P ∈ Q[X ] be a polynomial of degree n ≥ 2 and assume
that there is a quadratic polynomial U ∈ Q[X ] with non-vanishing discriminant
disc (U) such that

UP ′′ − (n− 1)U ′P ′ +
n(n− 1)

2
U ′′P = 0(7)

holds, where the prime denotes differentiation with respect to X . We put Y1 =
2UP ′ − nU ′P and λ = 1

4 disc (U) , and define the following polynomials:

a =
n2 − 1

6
(√
λU ′ + 2λ

)
,

b =
n2 − 1

6
(√
λU ′ − 2λ

)
,

c =
n2 − 1

6
(√
λ (U ′X − 2U) + 2λX

)
,

d =
n2 − 1

6
(√
λ (U ′X − 2U)− 2λX

)
,

(8)

z =
1
2

(
Y1

2n
√
λ

+ P

)
, u = z− P , w =

z
u
.(9)

Then for r ∈ N there are rational polynomials Ar, Br ∈ Q[X ] given by(√
λ
)r
Ar = aX ∗

n,r(z,u) − bX ∗
n,r(u, z),(√

λ
)r
Br = cX ∗

n,r(z,u) − dX ∗
n,r(u, z)

(10)

such that for any root β of P the polynomial

Cr = βAr −Br

is divisible by (X − β)2r+1 .

The following lemma collects the results of Lemmas 2.3, 2.5 and 2.6 of [4]. For
roots of complex numbers we will agree to choose that number whose argument has
minimal absolute value (and is positive if there is ambiguity); i.e. in the lemma
below we have −π

n < arg (w(ξ)1/n) ≤ π
n .

Lemma 4. Let the notations be as in Proposition 1.
a) For any 0 6= ξ ∈ C such that w = w(ξ) is not a negative real number or zero,

(√
λ
)r
Cr(ξ) =

(
β
(
a(ξ)w(ξ)1/n − b(ξ)

)− (c(ξ)w(ξ)1/n − d(ξ)
))X ∗

n,r(u(ξ), z(ξ))

− (βa(ξ) − c(ξ)
)
u(ξ)r Rn,r(w(ξ))

(11)

with

Rn,r(w) =
Γ(r + 1 + 1/n)
r! Γ(1/n)

∫ w

1

(1 − x)r (x− w)r x−(r+1−1/n) dx ,

where the path of integration is the straight line from 1 to w .
b) Let w = eiϕ with 0 < ϕ < π and put

√
w = eiϕ/2 . Then

|Rn,r(w)| ≤ Γ(r + 1 + 1/n)
Γ(1/n) r!

ϕ |1 −√w|2r(12)

and

|Xn,r(w)| ≤ 4
Γ(1 − 1/n) r!

Γ(r + 1− 1/n)
|1 +

√
w|2r−2 .(13)
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SIMPLE FAMILIES OF THUE INEQUALITIES 1879

If we substitute for X a rational number ν ∈ Q lying near the root β ,
Proposition 1 provides us with two sequences Ar(ν), Br(ν) (r ∈ N) of rational
numbers from which to obtain very good rational approximations to the algebraic
number β we wish to consider. To get integer sequences, which are necessary
for applying Lemma 7 below, we simply clear the denominators. However, we
will proceed somewhat carefully as there are benefits to be obtained from sharp
estimates for these denominators.

Let ∆n,r denote the smallest positive integer such that ∆n,rX ∗
n,r(X,Y ) ∈

Z [X,Y ] . Chudnovsky [5], Section 4, has determined the asymptotic behaviour of
∆n,r as r → ∞ . In [24], one of us used the ideas contained in Chudnovsky’s
proof to determine precise information about the prime divisors of ∆n,r and their
multiplicities. The following lemma is a corollary to Proposition 1 of [24]. We
denote the set of all rational primes with P .

Lemma 5. Let n ∈ {3, 4, 6} , r ∈ N and p ∈ P with p | ∆n,r .
a) We have

p ≡ −1 mod (n) and vp(∆n,r) ≤
[
log(nr)
2 log p

+
1
2

]
,

where vp(m) denotes the exponent to which p divides m ∈ Z \ {0} .
b) If p ≥ 3

√
nr then p2 - ∆n,r and there exists an A ∈ N ∪ {0} with

nr

nA+ n− 1
< p ≤ nr

nA+ 1
.

To obtain upper bounds for ∆n,r from this lemma, we shall need some ana-
lytic estimates. Fortunately for our work, Ramaré and Rumely [19] have recently
determined sharp estimates of the type required here. For x ∈ R , let π(x) be
the number of primes less than or equal to x and θ(x; k, l) =

∑
p∈P, p≤x

p≡l mod (k)

log p .

Lemma 6. a) For x > 1 , we have π(x) < 1.26
x

log x
.

b) For n ∈ {3, 4, 6} and x ≥ 3 800 , we have 0.491 x < θ(x;n, n− 1) < 0.505 x .

Proof. a) This is Corollary 2 of [20]. b) Since 1.7982
√
x < 0.005 x < 0.009 x for

x ≥ 130 000 , from the entries for k = 3, 4 and 6 in Tables 1 and 2 of [19], the
stated inequalities for θ(x;n, n−1) hold for such x. It is a straightforward matter
to calculate θ(x;n, n− 1) for x < 130 000 . These calculations demonstrate that
part b) is true.

The following proposition will prove more useful than just bounding ∆n,r from
above.

Proposition 2. Let r ∈ N , µn =
∏

p∈P, p|n
p1/(p−1) and Nn,r be the greatest

common divisor of the numerators of the coefficients of Xn,r(1− nµnX) .
a) Nn,r is divisible by nr · ∏

p∈P, p|n
pvp(r!) .

b) We have

4r∆3,r

N3,r

Γ(2/3) r!
Γ(r + 2/3)

< 1.9 e0.83r and
(

27
4

)r ∆3,r

N3,r

Γ(r + 4/3)
Γ(1/3) r!

< 0.87 e1.3r .
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c) We have

4r ∆4,r

N4,r

Γ(3/4) r!
Γ(r + 3/4)

< 0.83 e0.99r and
16r ∆4,r

N4,r

Γ(r + 5/4)
Γ(1/4) r!

< 0.2 e2.37r .

d) We have

16r ∆6,r

N6,r

Γ(5/6) r!
Γ(r + 5/6)

< 1.2 e2.56r and
27r ∆6,r

N6,r

Γ(r + 7/6)
Γ(1/6) r!

< 0.16 e3.09r .

Proof. a) This is Proposition 5.1 of [5].
b) It is easy to calculate X3,r and the other relevant quantities for small r . Note

that to find N3,r , we used equations (5.2)–(5.4) of [5]. We performed the required
computations for each 1 ≤ r ≤ 1000 and showed that the stated inequalities hold
for all r in this range. This took about 430 seconds. 1 We nearly get equality
between the terms in the first inequality at r = 4 and it is from consideration of
this value of r that we select the constant 1.9 . The constant 0.87 , in the second
inequality, arises in the same way from the values of the terms in that inequality
for r = 10 .

For r > 1000 , direct calculation of the quantities themselves soon becomes
prohibitive, but we are not yet able to obtain good analytic estimates. So, at
this point, we combine calculation and some elementary analysis to show that our
inequalities hold for intermediate-sized r’s.

Let us first estimate
4r

N3,r

Γ(2/3) r!
Γ(r + 2/3)

. From part a), we know that 3r+v3(r!) ≤
N3,r . Moreover, one can show that for r ∈ N and p ∈ P one has

vp(r!) ≥ r

p− 1
− log(r + 1)

log p
.

Therefore, N3,r ≥ 33r/2

r + 1
. Next,

Γ(2/3) r!
Γ(r + 2/3)

=
3
2

r∏
i=2

i

i− 1/3
<

3
2

exp
(∫ r

1

log
x

x− 1/3
dx

)
<

(
3er
2

)1/3

,

for r ≥ 1 . Therefore,

4r

N3,r

Γ(2/3) r!
Γ(r + 2/3)

< 3.2 r4/3

(
4

3
√

3

)r

.(14)

We now consider
(

27
4

)r 1
N3,r

Γ(r + 4/3)
Γ(1/3) r!

. From before, we have
33r/2

r + 1
≤ N3,r .

We also estimate the Γ-factors as above, finding that

Γ(r + 4/3)
Γ(1/3) r!

=
4
9

r∏
i=2

i+ 1/3
i

<
4
9

exp
(∫ r

1

log
x+ 1/3

x
dx

)
<

1
3

(er)1/3 .

1The computation mentioned above as well as the others mentioned in this section were per-

formed using the number-theoretic software package UBASIC 8.74 on an IBM-PC compatible
with an Intel 80486DX2 running at 66 MHz. Some of these calculations were also checked using
Maple V Release 3 on the same machine as well as, occasionally, by hand. In no case were any
discrepancies found.
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Combining these estimates, we obtain(
27
4

)r 1
N3,r

Γ(r + 4/3)
Γ(1/3) r!

< r4/3

(
3
√

3
4

)r

.(15)

To estimate ∆3,r , we turn to Lemma 5. Let ∆3,r,small be the contribution to
∆3,r from those primes less than 3

√
3r and let ∆3,r,large be the contribution from

the larger primes. From Lemma 5.a), we know that

∆3,r,small <
∏

p<(3r)1/3

p≡2 mod (3)

(3r)1/2p1/2 < exp

(
π( 3
√

3r) log(3r) + θ( 3
√

3r; 3, 2)
2

)
.

Using our upper bound for θ(x; 3, 2) from Lemma 6.b) and a direct calculation
of θ(x; 3, 2) for all x < 3 800 , we find that θ(x; 3, 2) < 0.5094x for all x > 0 .
This is also Theorem 5.1 of [13]. Combining this with our upper bound for π(x)
in Lemma 6.a), we obtain

∆3,r,small < exp
(
3.2 3
√
r
)
.(16)

From Lemma 5.b), we see that

∆3,r,large ≤ exp

(
N∑

A=0

(
θ
( 3r

3A+ 1
; 3, 2

)
− θ
( 3r

3A+ 2
; 3, 2

)))
,

where N is the largest positive integer for which 3r
3N+1 > (3r)1/3 . We can

easily calculate this quantity directly, which we do for each 1000 < r ≤ 20 000 ,
a computation taking about 5250 seconds. Combining the estimates we obtain in
this way with the bounds in (14), (15) and (16), we determined upper bounds for
the quantities in question for each 1000 < r ≤ 20 000, and always found that the
inequalities in part b) hold. This concludes the proof for such r .

Finally, we turn to the case r > 20 000 . From (16), we obtain

∆3,r,small < e0.0044r ,(17)

so it remains to consider ∆3,r,large . For any positive integer N , we have

∆3,r,large ≤ exp

(
N∑

A=0

θ
( 3r

3A+ 1
; 3, 2

)
−

N−1∑
A=0

θ
( 3r

3A+ 2
; 3, 2

))
.

Since r > 20 000 , each of the quantities 3r
3A+1 for A = 0, . . . , 4 and 3r

3A+2 for
A = 0, . . . , 3 are greater 3800 . So choosing N = 4 , we have

∆3,r,large ≤ exp

(
4∑

A=0

0.505
3r

3A+ 1
−

3∑
A=0

0.491
3r

3A+ 2

)
< e1.03r ,

from Lemma 6.b). Combining this inequality with (17) yields ∆3,r < e1.0344r .
Now we just use the fact that 3.2 r4/3 < e0.00072r , log

(
4

3
√

3

)
= −0.26162 . . . ,

along with (14) and (15) to complete the proof of part b) of the proposition.
c) We proceed in the exact same way here as in the proof of part b). A direct

calculation of the relevant quantities for each 1 ≤ r ≤ 1000 demonstrates that
this part of the proposition holds for all such r. The constants 0.83 and 0.2 are
obtained from r = 3 .
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As above, we have

4r

N4,r

Γ(3/4) r!
Γ(r + 3/4)

< 2.76
r5/4

2r
,

16r

N4,r

Γ(r + 5/4)
Γ(1/4) r!

< 0.63 r5/4 2r

and

∆4,r,small < exp
(
3.43 3

√
r
)
,

where ∆4,r,small is the contribution to ∆4,r from those primes less than 3
√

4r
and ∆4,r,large the contribution from the larger primes. We use the fact that
θ(x; 4, 3) < 0.529x for all x > 0 , which we can easily obtain from Lemma 6.b)
with the help of a little computation, along with Lemma 6.a) to prove this last
inequality.

We estimate ∆4,r,large from above as before for 1000 < r ≤ 20 000 . Our
bounds show that part c) of the proposition holds for such r .

For larger r , we also proceed as above using N = 5 this time. This yields
∆4,r,large < e1.6708r for these r . Combining all these estimates completes the
proof of this part of the proposition.

d) Again, we prove this part of the lemma in the same way as we proved part
b). The constants 1.2 and 0.16 both arise from r = 30 . We find that

16r

N6,r

Γ(5/6) r!
Γ(r + 5/6)

≤ 4.8 r13/6

(
4

3
√

3

)r

,
27r

N6,r

Γ(r + 7/6)
Γ(1/6) r!

< 0.8 r13/6

(
3
√

3
4

)r

,

and

∆6,r,small < exp
(
3.9 3
√
r
)
.

Here ∆6,r,small is the contribution to ∆6,r from those primes less than 3
√

6r and
∆6,r,large the contribution from the larger primes. We can show that θ(x; 6, 5) <
0.509x for all x > 0 , a fact which we use as before to establish the inequality for
∆6,r,small .

We estimate ∆6,r,large from above for 1000 < r ≤ 20 000 by means of compu-
tation as in the case n = 3 . Combining the estimates found in this way with the
bounds above, we determine that part d) of the proposition holds for such r .

For larger r , we once more use the ideas described for the case n = 3 , this
time choosing N = 5 . This yields ∆6,r,large < e2.8144r for these r . We apply all
these estimates again to complete the proof of this part of the proposition.

Finally, we need a result showing how good rational approximations to a real
number θ yield an explicit bound for the measure of irrationality of θ . For this
purpose we cite Lemma 2.8 of [4]:

Lemma 7. Let θ ∈ R . Suppose that there are real numbers k0, l0 > 0 and
E,Q > 1 such that for all n ∈ N there exist rational integers pn and qn with
|qn| < k0Q

n and |qnθ− pn| ≤ l0E
−n satisfying pnqn+1 6= pn+1qn . Then for any

rational integers p and q with |q| ≥ 1
2l0

, we have∣∣∣∣θ − p

q

∣∣∣∣ > 1
c|q|κ+1

, where c = 2k0Q(2l0E)κ and κ =
logQ
logE

.
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5. Proofs of Theorem 1 and of Corollary 1

Proof of Theorem 1. Let t ≥ 6 and assume that (x, y) ∈ Z2 with gcd (x, y) = 1
and − y

2 < x ≤ y a solution of (2). For 1 ≤ i ≤ 6 , put δi =
∣∣x
y − βi

∣∣ and let m

be defined by δm = min {δi | 1 ≤ i ≤ 6} . Since x
y ∈ (− 1

2 , 1] , it is obvious from
Lemma 3.a) that m ∈ {2, 3, 4} , and more precisely,

x

y
∈
(
−1

2
, 1
]
∩
(βm + βm+1

2
,
βm + βm−1

2

)
.

a) From
∣∣F (6)

t (x, y)
∣∣ = 6∏

i=1

|x− βiy| , we obtain

δm ≤ k(t)
y6
∏

i6=m δi
,(18)

and using the fact that x
y must be in the interval above along with the bounds for

βi from Lemma 3.a) we arrive at

∏
i6=m

δi > s1,m =


15
4 t− 121

32 for m = 2,
21
64 t+

37
256 for m = 3,

15
32 t+

273
256 for m = 4 .

Thus we have δm < k(t)
y6s1,m

. It is well known that if δm < 1
2y2 , then x

y must be a

convergent to βm , and this holds whenever y ≥ 1.572 4
√

k(t)
t > 4

√
512k(t)
84t+37 ≥ 4

√
2k(t)
s1,m

.

The first two convergents of β4 are −1 and − 1
2 , thus all the convergents of

β4 are less than or equal to − 1
2 , and therefore the case m = 4 cannot occur.

From Lemma 3.b) we find that the first convergents of β2 are 0, 1, 1− 1
a2+1 ≥

1− 3
2t+2 . If x

y is a convergent to β2 with y > 1 we thus have 2t−1
2t+2 ≤ x

y ≤ 1 .
Using the bounds for βi from Lemma 3.a) we obtain

∏
i6=2 δi > s2,2 = 18t− 27 .

Similarly, for t ≥ 8 the convergents of β3 are −1, 0,− 1
2t+3 ,− 1

2t+4 , . . . , and
with − 1

2t+3 ≤ x
y ≤ − 1

2t+4 we obtain
∏

i6=3 δi > 2t + 1 . For t = 6, 7 , a direct
calculation of the first convergents of β3 shows that − 1

2t+4 ≤ x
y ≤ − 1

2t+5 , which
again yields

∏
i6=3 δi > 2t+ 1 . With (18) we thus obtain

δm <
k(t)

y6 s2,m
with s2,m =

{
18t− 27 for m = 2,
2t+ 1 for m = 3,

(19)

and the claimed lower bounds for y are given by the denominators of the conver-
gents of βm .

b) Choosing U = X2 + X + 1 , our polynomials P from (3) satisfy the
differential equation (7), and we may apply Proposition 1. We have λ = − 3

4 , and
(8) specializes to

a =
35
6
√−3 (X − ρ2) ,

b =
35
6
√−3 (X − ρ) = −a ,

c =
35
6
√−3 (ρX − 1) ,

d =
35
6
√−3 (ρ2X − 1) = −c .

Here ρ = −1+
√−3
2 and ρ2 = −1−√−3

2 are the third roots of unity and denotes
complex conjugation.
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To obtain good rational approximations for β2 and β3 , we substitute X = 1
and X = 0 , resp. Our first step is to show the following:

Let r ∈ N and put Mr,0 = 18r 2
√

3
35

∆6,r

N6,r
and Mr,1 =

(2
3

)r 2
35

∆6,r

N6,r
. Then

for ν = 0, 1 ,

pr(ν) = Mr,νBr(ν) and qr(ν) = Mr,νAr(ν)

are rational integers.
Inserting X = 0 , we obtain from (9)

z := t− 3ρ2 = 3
√−3 z(0) , u := t− 3ρ = 3

√−3u(0) and

w :=
t− 3ρ2

t− 3ρ
= w(0) .(20)

Let us remark that u = z are algebraic integers and |u| =
√
t2 + 3t+ 9 . Using

(10) and the above expressions for the quantities which occur there for X = 0 , we
get

Mr,0Ar(0) = 18r 2
√

3
35

∆6,r

N6,r

( 2√−3

)r 35
6
√−3

×
(
−ρ2 X ∗

6,r

(
z(0),u(0)

)
+ ρX ∗

6,r

(
u(0), z(0)

))
=

∆6,r

N6,r

( 36√−3

)r

(−i)
(
ρ2 u(0)rX6,r(w) − ρ z(0)rX6,r(w)

)
=

∆6,r

N6,r
(−i)

(
ρ2 (−4u)rX6,r(w) − ρ2 (−4u)rX6,r(w)

)
= 2=

(
ρ2 (−4u)r ∆6,r

N6,r
X6,r(w)

)
.

Since w = 1−12
√

3−i
4u = 1−6µ6

−i
4u and 4u

−i is an algebraic integer, using the defi-
nition of ∆6,r and N6,r in the preceding section we see that ρ2(−4u)r ∆6,r

N6,r
X6,r(w)

is an algebraic integer in Q(ρ) . Therefore twice its imaginary part must be a ra-
tional integer.

For X = 1 we obtain z(1) = −27 z(0) = 3
√−3 z , u(1) = 3

√−3u and
w(1) = z

u = w with z, u and w as defined in (20). This time we obtain

Mr,1Ar(1) =
(2

3

)r 2
35

∆6,r

N6,r

( 2√−3

)r 35
2

(
ρX ∗

6,r

(
z(1),u(1)

)
+ ρ2 X ∗

6,r

(
u(1), z(1)

))
=

∆6,r

N6,r

(
ρ (4u)rX6,r(w) + ρ (4u)rX6,r(w)

)
=2<

(
ρ (4u)r ∆6,r

N6,r
X6,r(w)

)
,

which is a rational integer by the same reasoning as above. The proofs for the
integrality of Mr,νBr(ν) are completely analogous.
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Now we derive upper bounds for |Mr,νAr(ν)| . Using (13) and Proposition 2.d)
we obtain for ν = 0, 1

|Mr,νAr(ν)| ≤ 2 |4u|r ∆6,r

N6,r
|X6,r(w)|

≤ 2
(
4
√
t2 + 3t+ 9

)r ∆6,r

N6,r
4

Γ(5/6) r!
Γ(r + 5/6)

|1 +
√
w|2r−2

< 2
(√

t2 + 3t+ 9
)r 16r ∆6,r

N6,r

Γ(5/6) r!
Γ(r + 5/6)

< 2.4
(
e2.56

√
t2 + 3t+ 9

)r
.

Our next step is to find an upper bound for |Mr,νCr(ν)| . We have
√
w =

t− 3ρ2

√
t2 + 3t+ 9

and derive the estimations

arg (w) ≤ =(w)
<(w)

≤ 3
√

3
t

and

|u| · |1−√w|2 = 2
√
t2 + 3t+ 9− (2t+ 3) ≤ 27

4
(
t+ 3/2

) .

(21)

First we will show that the factor of X ∗
6,r in (11) vanishes for ν = 0, 1 , i.e.

that β2 equals
c(1)w1/6 − d(1)
a(1)w1/6 − b(1)

=
ρw1/6 + 1
w1/6 + ρ

and β3 equals
c(0)w1/6 − d(0)
a(0)w1/6 − b(0)

=

ρw1/6 − ρ

w1/6 − ρ2
. To show that

ρw1/6 + 1
w1/6 + ρ

is a root of P , one uses ρ2 +ρ+1 = 0 and

calculates that F (6)
t (ρw1/6+1, w1/6+ρ) = (t−3ρ)(−3−6ρ)w+(−t+3ρ2)(−3−6ρ) =

0 . One also verifies that
ρw1/6 + 1
w1/6 + ρ

lies near 1 , thus β2 =
ρw1/6 + 1
w1/6 + ρ

. Using

β3 =
β2 − 1
β2 + 2

, one easily concludes that β3 =
ρw1/6 − ρ

w1/6 − ρ2
.

Using (11) we calculate that for ν = 0, 1 we have

|Mr,νCr(ν)| = |4u|r ∆6,r

N6,r
|R6,r(w)| ·

{√
1 + β3 + β2

3 if ν = 0,√
1 + β2 + β2

2 if ν = 1.

From Lemma 3.a) we derive that
√

1 + β3 + β2
3 < 1 and

√
1 + β2 + β2

2 <
√

3 .
Using (12), (21) and Prop. 2.d) we obtain

|Mr,0Cr(0)| < 3
√

3
t

27r ∆6,r

N6,r

Γ(r + 7/6)
Γ(1/6) r!

( 1
t+ 3/2

)r

<
0.48

√
3

t

( e3.09

t+ 3/2

)r

and

|Mr,1Cr(1)| < 9
t

27r ∆6,r

N6,r

Γ(r + 7/6)
Γ(1/6) r!

( 1
t+ 3/2

)r

<
1.44
t

( e3.09

t+ 3/2

)r

.

Summarizing, we obtained the following result: for ν = 0, 1 and r ∈ N there
are rational integers pr(ν), qr(ν) with

|qr(ν)| < 2.4
(
e2.56

√
t2 + 3t+ 9

)r
,

|β3 qr(0)− pr(0)| < 0.48
√

3
t

(
e3.09

t+ 3/2

)r
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and

|β2 qr(1)− pr(1)| < 1.44
t

(
e3.09

t+ 3/2

)r

.

With Lemma 2.7 of [4] we make sure that pr(ν)qr+1(ν) 6= pr+1(ν)qr(ν) , thus
we may apply Lemma 7 with k0 = 2.4 , Q = e2.56

√
t2 + 3t+ 9 , E = e−3.09(t+ 3

2 )
and l0 = 0.48

√
3

t or 1.44
t , resp. Combining this with (19) we obtain, for any (x, y)

satisfying the conditions of Theorem 1.b) and with κ defined by (4),

1
2k0Q (2l0E)κ yκ+1

<
∣∣∣βm − x

y

∣∣∣ < k(t)
y6 s2,m

and therefore

y5−κ <
2k0Qk(t)

(2l0E)−κ s2,m
.

Inserting the numerical values for m = 2, 3 and making some easy estimations for
t ≥ 89 we obtain (5) and (6), and the proof of Theorem 1.b) is completed.

Remark. From the last part of the proof above one immediately obtains effective
irrationality measures for the roots β2 and β3 of P : for any p, q ∈ Z with
|q| ≥ 0.61 t we have∣∣∣∣βm − p

q

∣∣∣∣ > 1
8.5 t |q|2+ε(t)

with ε(t) =
5.66

log
(
t+ 3

2

)− 3.09
.

Proof of Corollary 1. Assume that for some t ≥ 6 , (x, y) ∈ Z2 is a primitive

solution of |F (6)
t (x, y)| ≤ 120 t+323 with − y

2 < x ≤ y . Since 1.572 4

√
120 + 323

t <

6 , we may apply Theorem 1 for the case that 6 ≤ y . With the help of a computer
we checked that (5) is in contradiction to y ≥ 2t+2

3 for t ≥ 99 and (6) contradicts
y ≥ 2t+ 3 for t ≥ 89 . Above these bounds, any primitive solution must satisfy
− y

2 < x ≤ y ≤ 5 , and checking the values of F (6)
t for these small arguments yields

the asserted solutions of the Thue inequality.
It remains to consider the case when 89 ≤ t ≤ 98 and x

y is a convergent to
β2 . From (5) we obtain upper bounds y < y0(t) , and some values are given in
the following table:

t 89 90 93 98
y0(t) 8.6 · 1028 4.4 · 106 540 73

Of course, an easy way to finish the proof of the corollary is to check all possible
convergents with the help of a computer. Nevertheless, we will exhibit another idea
(compare with Theorem 2 in [17]), which reduces the amount of computational
work, and which we will also use in the next section.

Lemma 8. Let β ∈ R and β = [a0; a1, a2, . . . ] be its continued fraction expansion
with convergents pj

qj
. For 0 ≤ j0 < j1 put A = max {aj | j0 ≤ j ≤ j1} . If for

some j with j0 ≤ j < j1 we have∣∣∣β − pj

qj

∣∣∣ < c

qk
j
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with some c > 0 and k ≥ 2 then

A >
qk−2
j0

c
− 2 .

Proof. By the theory of continued fractions and by the definition of A we have∣∣∣β − pj

qj

∣∣∣ > 1
(aj+1 + 2) q2j

≥ 1
(A+ 2) q2j

.

Since the denominators of the convergents are an increasing sequence, we have on
the other hand ∣∣∣β − pj

qj

∣∣∣ < c

qk
j

≤ c

q2j q
k−2
j0

.

Combining these inequalities we obtain the lower bound for A .
To finish the proof of Corollary 1, we apply Lemma 8 with β = β2 , j0 = 2 ,

q2 ≥ 2t+2
3 , k = 6 and c = 120t+323

18t−27 , using the results of Theorem 1.a). The

existence of a further primitive solution would imply that A > 0.14
(

2t+2
3

)4 ≥
1 814 400 . Computing the continued fraction expansion of β2 for any 89 ≤ t ≤ 98
up to an index j1 with qj1 > y0(t) , the largest partial quotient we found was
713 , the 18-th partial quotient of β2 for t = 89 . Thus (2) has no further
solutions.

6. The simple family of degree 4

Now we consider the Thue inequality

|F (4)
t | ≤ k(t) ,(22)

where k : Z → N . For t ≥ 58 we will derive bounds for the solutions of (22) and
solve it in the special case k(t) = 6 t+ 7 . For t ∈ Z let us put

P := F
(4)
t (X, 1) = X4 − tX3 − 6X2 + tX + 1 =

4∏
i=1

(X − βi) .

From Lemma 1.b) we know that ψT4 : z 7→ z−1
z+1 permutes the roots βi of P .

Lemma 9 below collects information about F
(4)
t and P , which is analogous to

Lemmas 2 and 3. Most of these results can be found in [4] or [10].

Lemma 9.
a) The following relations hold:

F
(4)
t (X − Y,X + Y ) = −4F (4)

t (X,Y ),

F
(4)
t (X,Y ) = F

(4)
t (Y,−X) = F

(4)
t (−X,−Y ) = F

(4)
t (−Y,X) = F

(4)
−t (Y,X) .

b) If (x, y) ∈ Z2 is a solution of (22), then every pair of the orbit{
(x, y), (y,−x), (−x,−y), (−y, x)}

is also a solution of (22). Any orbit of non-trivial solutions of (22) contains a pair
(x, y) with y > 0 and |x| ≤ y .
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c) For t 6= 0,±3, P is irreducible over Q[X ] , and for t ≥ 6 the roots of P
satisfy the following inequalities:

t+
4
t
< β1 = β < t+

5
t
,

1− 2
t

+
2
t2
< β2 =

β − 1
β + 1

< 1− 2
t

+
3
t2
,

−1
t

+
4
t3
< β3 = − 1

β
< −1

t
+

5
t3
,

−1− 2
t
− 2
t2
< β4 = −β + 1

β − 1
< −1− 2

t
.

d) For m ∈ {2, 3} the continued fraction expansions of βm are

β2 =

{
[0; 1, u− 1, 1, 1,

[
u−3

5

]
, . . . ] if t = 2u ≥ 16 is even,

[0; 1, u− 1, a3, . . . ] with a3 ≥ t
3 if t = 2u− 1 ≥ 3 is odd,

β3 = [−1; 1, t− 1,
[

t
5

]
, . . . ] if t ≥ 5.

Theorem 2. Let t ≥ 6 and assume that (x, y) ∈ Z2 is a primitive solution of

(22) with |x| ≤ y and 4
√

k(t)
2t−1 ≤ y .

a) Then x
y is a convergent to β2 or β3 , and we have either y = 1 or∣∣∣x

y
− β2

∣∣∣ < k(t)
y4 (2t− 4)

and y ≥ t

2

or ∣∣∣x
y
− β3

∣∣∣ < k(t)
y4 t

and y ≥ t .

b) Assume t ≥ 58 and put

κ =
log
(√
t2 + 16

)
+ 0.99

log t− 2.37
< 1 +

3.37
log t− 2.37

.

If x
y is a convergent to β2 then

y3−κ <
3.28 k(t)

2.97κ
.

If x
y is a convergent to β3 then

y3−κ <
4.48 k(t)

5.34κ
.

Proof of Theorem 2. a) The proof runs in complete analogy to that of Theorem 1,
so we will just indicate some intermediate steps and leave the rest to the reader.
Let (x, y) ∈ Z2 with |x| ≤ y be a primitive solution of (22) for some t ≥ 6 .
Again we put δi = |xy − βi| and δm = min {δi | 1 ≤ i ≤ 4} , thus

x

y
∈
[
−1, 1

]
∩
(βm + βm+1

2
,
βm + βm−1

2

)
,
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and we obtain

δm <
k(t)

y4 s1,m
with

∏
i6=m

δi > s1,m =


3t−5

4 for m = 2,
2t−1

8 for m = 3,
6t+7

8 for m = 4 .

If y ≥ 4
√

k(t)
2t−1 ≥

√
2k(t)
s1,m

holds, x
y must be a convergent to βm for some

m ∈ {2, 3, 4} . Since −1 is the largest convergent of β4 and also a convergent of
β3 , we may omit the case m = 4 .

If x
y is a convergent to β2 with y > 1 , Lemma 9.d) yields t−2

t ≤ x
y ≤ 1

(for even t ≤ 14 we checked this separately), and using Lemma 9.c) we obtain∏
i6=2 δi > s2,2 = 2t− 4 . If x

y is a convergent to β3 with y > 1 , we similarly
deduce that − 1

t ≤ x
y ≤ − t−4

t2−4t+5 and
∏

i6=3 δi > s2,3 = t in this case. From
these results, the validity of the claimed upper bounds for the δm’s follows, and
an examination of the denominators of the second convergents of the βm’s yields
the lower bounds for y .

b) (For more details of this proof we refer the reader to Section 3 of [4].) With
U = X2 + 1 we may apply Proposition 1 and get λ = −1 ,

a = 5 (iX − 1) , b = 5 (iX + 1) = −a ,

c = 5 (−X − i) , d = 5 (X − i) = −c .

We substitute X = 0 and X = 1 to get good rational approximations for β3

and β2 , respectively. Defining

Mr,0 =
1
10

8r ∆4,r

N4,r
and Mr,1 =

1
10

2r ∆4,r

N4,r
,

we obtain rational integers

pr(ν) = Mr,νBr(ν) and qr(ν) = Mr,νAr(ν) ,

where r ∈ N and ν = 0, 1 .
Let us give here the proof that qr(1) is an integer. The proofs of the integrality

of qr(0) and pr(ν) are completely analogous. Inserting X = 1 , we obtain from
(9)

z := 4− it = −2 z(1) , u := 4 + it = 2u(1) and w := − z
u

= w(1)

with algebraic integers u = z and |u| = √
t2 + 16 . Now (10) yields

Mr,1Ar(1) =
1
10

2r ∆4,r

N4,r
(−i)r

(
5(i− 1)

(u
2

)r

X4,r(w)− 5(i+ 1)
(
−z

2

)r

X4,r(w−1)
)

=
1
2
(−i)r ∆4,r

N4,r

(
(i− 1)ur X4,r(w) + (−1)r(i− 1)ur X4,r(w)

)
Since w = 1−8 1

u = 1−4µ4
1
u , it follows that (i−1)∆4,r

N4,r
ur X4,r(w) is an algebraic

integer in Q[i] . Up to sign, the above expression for Mr,1Ar(1) is the real or
imaginary part of this algebraic integer, thus a rational integer.
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Using (13) and Proposition 2.c) we obtain

|Mr,0Ar(0)| ≤ ∆4,r

N4,r

∣∣urX4,r(w)
∣∣ ≤ 4r ∆4,r

N4,r

Γ(3/4) r!
Γ(r + 3/4)

|u|r

< 0.83
(
e0.99

√
t2 + 16

)r

and

|Mr,1Ar(1)| ≤ ∆4,r

N4,r

∣∣(i− 1)urX4,r(w)
∣∣ < 0.83

√
2
(
e0.99

√
t2 + 16

)r

.

Again the first factor of the right hand side of (11) vanishes — this is proved in
§3.1 of [4]. With |u| · |1−√w|2 = 32

t+
√

t2+16
< 16

t and arg (w) < 8t
t2−16 , we obtain

|Mr,0Cr(0)| = 1
2

∆4,r

N4,r

∣∣(i − β3)urR4,r(w)
∣∣

<
5
t

∆4,r

N4,r

Γ(r + 5/4)
Γ(1/4) r!

(|u| · |1−√w|2)r < 1
t

(
e2.37

t

)r

and similarly

|Mr,1Cr(1)| < 1.8
t

(
e2.37

t

)r

.

Applying now Lemma 7 with k0 = 0.83 ( 0.83
√

2 resp.), Q = e0.99
√
t2 + 16 ,

l0 = 1
t ( 1.8

t resp.) and E = t e−2.37 , we obtain lower bounds for δ3 ( δ2 resp.),
which together with part a) give the desired bounds for y .

Proof of Corollary 2. Suppose that (x, y) with |x| ≤ y is a solution of the

inequality for some t ≥ 58 . We have 4
√

6t+7
2t−1 < 7.03 , thus for y ≥ 8 we may

apply Theorem 2.
Suppose that x

y is a convergent to β2 . We use Lemma 9.d) to calculate the
denominators of the first convergents of β2 and obtain y ∈ { t

2 ,
t+1
2 , t

2 + 1, t+ 1
}

or y ≥ t2

10 − t , where the last inequality arises from the case t = 2u even. From
the first values for y we obtain no solution of our Thue inequality, and the lower
bound for y together with Theorem 2.b) gives( t2

10
− t
)3−κ

<
3.28 (6t+ 7)

2.97κ
,

which is a contradiction for t ≥ 149 . Similarly, if x
y is a convergent to β3 , there

is no solution with y = t , and y ≥ t2

5 − 4t
5 + 1 violates the upper bound for y

for t ≥ 100 . Next we checked that for |x| ≤ y ≤ 7 we obtain only the solutions
stated in Corollary 2, namely

F
(4)
t (0, 1) = 1 , F

(4)
t (±1, 1) = −4 and F

(4)
t (±1, 2) = ±6t− 7 .

We use Lemma 8 and the same idea as in the proof of Corollary 1 to show that
for 58 ≤ t ≤ 148 any further solution of the Thue inequality would imply the
largest partial quotient in the continued fraction expansion of β2 (or β3 , resp.)
to be larger than( t2

10
− t
)2 2t− 4

6t+ 7
− 2 > 7 t2 or

( t2
5
− 4t

5
+ 1
)2 t

6t+ 7
− 2 > 19 t2 .
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Computing the continued fraction expansions until the denominators of the con-
vergents exceed the bounds for y as given by Theorem 2.b), we found as largest
partial quotients 15348 for β2 for t = 78 and 2486 for β3 for t = 64 .
The necessary computer program was written in MAPLE V running on a PC. This
completes our proof.

7. The simple family of degree 3

At last we consider the Thue inequality

|F (3)
t | ≤ k(t) ,(23)

where k : Z → N . For t ≥ 30 we will give upper bounds for the solutions and
discuss it for the special case k(t) = 2 t+ 3 . For t ∈ Z put

P := F
(3)
t (X, 1) = X3 − tX2 − (t+ 3)X − 1 =

3∏
i=1

(X − βi) .(24)

From Lemma 1.b) we know that ψT 2
3

: z 7→ − 1
z+1 permutes the roots βi of P .

The following lemma collects information about F
(3)
t and P , which is analogous

to Lemmas 2 and 3. The proofs are easy and left to the reader.

Lemma 10.
a) The following relations hold:

F
(3)
t (X,Y ) = − F

(3)
t (−Y,X + Y ) = F

(3)
t (−X − Y,X) = −F (3)

t (−X,−Y )

=F
(3)
t (Y,−X − Y ) = −F (3)

t (X + Y,−X),

F
(3)
t (Y,X) = −F (3)

−t−3(X,Y ).

b) If (x, y) ∈ Z2 is a solution of (23), then every pair of the orbit{
(x, y), (−y, x+ y), (−x− y, x), (−x,−y), (y,−x− y), (x + y,−x)}

is also a solution of (23). Any orbit of non-trivial solutions of (23) contains a pair
(x, y) with y > 0 and − y

2 < x ≤ y .
c) For t ∈ Z , P is irreducible over Q[X ] , and for t ≥ 4 the roots of P satisfy
the following inequalities:

t+ 1 +
2
t
− 3
t2
< β1 = β < t+ 1 +

2
t
,

−1
t

+
2
t2
− 3
t3
< β2 = − 1

β + 1
< −1

t
+

2
t2
− 2
t3
,

−1− 1
t

+
1
t2
< β3 = −β + 1

β
< −1− 1

t
+

2
t2
.

d) The continued fraction expansion of the root β2 is

β2 =

{
[−1; 1, t+ 1, t

2 , 1, 3, . . . ] if t ≥ 16 is even,
[−1; 1, t+ 1, t+1

2 , 3, 1, . . . ] if t ≥ 23 is odd .

In both cases, − 2t+3
2t2+7t+10 is a convergent to β2 .

Theorem 3. Let t ≥ 1 and assume that (x, y) ∈ Z2 is a primitive solution of
(23) with − y

2 < x ≤ y and 8k(t)
2t+3 ≤ y .
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a) Then x
y is a convergent to β2 , and we have either y = 1 or∣∣∣x

y
− β2

∣∣∣ < k(t)
y3(t+ 1)

and y ≥ t+ 2 .

b) Put

κ =
log
(√
t2 + 3t+ 9

)
+ 0.83

log
(
t+ 3

2

)− 1.3
.(25)

If t ≥ 30 we have

y2−κ < 17.78 · 2.59κ k(t) .(26)

Remark. From Lemma 10.d) we can calculate the denominators of the first conver-
gents of β2 , and obtain the following values: 1, t+2, t2

2 +t+1, t2

2 + 3t
2 +2, t2

2 +2t+3,
3t2+11t

2 + 8, 2t2 + 7t+ 10 . Since

(2t2 + 7t+ 10)2−κ < 17.78 · 2.59κ (2t+ 3)

does not hold for t ≥ 10 196 , we easily obtain that for these values of t the only
primitive solutions of

|F (3)
t (x, y)| ≤ 2t+ 3

with − y
2 < x ≤ y are (0, 1), (1, 1) and (−1, t + 2) . In a way analogous to

Corollaries 1 and 2, one can prove that for 30 ≤ t ≤ 10 195 there are no further
solutions. This result, especially the little computational work needed when using
the bounds from Theorem 3.b), should be compared with [15].

Proof of Theorem 3. a) We will only outline the main steps and leave the rest to
the reader. Let (x, y) ∈ Z2 with − y

2 < x ≤ y be a primitive solution of (23) for
some t ≥ 4 . Again we put δi = |xy − βi| and δm = min {δi | 1 ≤ i ≤ 3} . Since
− 1

2 <
x
y ≤ 1 , Lemma 10.c) yields m = 2 . Using the bounds of βi , we obtain

δ2 <
4k(t)

y3 (2t+3) , and so x
y must be a convergent to β2 whenever 8k(t)

2t+3 ≤ y . If x
y

is a convergent to β2 with y > 1 we thus have − 1
t+2 ≤ x

y ≤ 0 , from which we
derive the upper bound for δ2 . For 1 ≤ t ≤ 3 , we repeat the same ideas using
the numerical values of βi .

b) Let us remark that in (25), κ < 2 only holds for t ≥ 30 , thus we will
not consider smaller values of t . Taking U = X2 +X + 1 , our polynomials P
from (24) satisfy the differential equation (7), so we again apply Proposition 1. We
obtain quantities which are very similar to those of Section 5, e.g. λ = − 3

4 , the
polynomials a,b, c,d are 8

35 times the corresponding polynomials in Section 5,
u(0), z(0) are (−1) times the corresponding values in (20), and again, w = t−3ρ2

t−3ρ .
Taking

Mr =
(9

2

)r
√

3
4

∆3,r

N3,r
and u = t− 3ρ ,

and using the same arguments as in Section 5, we can show that

pr = MrBr(0) = 2=
(
ur ∆3,r

N3,r
X3,r(w)

)
, qr = MrAr(0) = 2=

(
ρ2 ur ∆3,r

N3,r
X3,r(w)

)
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are rational integers with

|qr| < 3.8
(
e0.83

√
t2 + 3t+ 9

)r and

|qrβ2 − pr| < 2.61
√

3
t

( e1.3

t+ 3/2

)r

.

To obtain these upper bounds, we use Proposition 2.b). Now we again apply Lemma
7, and together with Theorem 3.a), we can obtain the claimed bound (26) in the
same way as in the proofs of the previous theorems.

Proof of Corollary 3. This is an immediate consequence of Theorem 3, using

κ < 1 +
2.14

log
(
t+ 3

2

)− 1.3
and

1
2− κ

< 1 +
2.14

log
(
t+ 3

2

)− 3.44
.

References

[1] A. Baker, Rational approximations to 3√2 and other algebraic numbers, Quart. J. Math.
Oxford 15 (1964), 375–383. MR 30:1977

[2] M. Bennett, Effective measures of irrationality for certain algebraic numbers, J. Austral.
Math. Soc. Ser. A 62 (1997), 329–344. MR 98c:11070

[3] Chen Jian Hua, A new solution of the Diophantine equation X2 + 1 = 2Y 4, J. Number
Theory 48 (1994), 62–74. MR 95i:11019

[4] Chen Jian Hua and P. M. Voutier, Complete solution of the Diophantine equation X2 +1 =
dY 4 and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71–99.
MR 97m:11039

[5] G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. 117 (1983), 325–382. MR
85g:11058

[6] J. H. E. Cohn, Equations with equivalent roots, Acta Arith. 34 (1977), 37–41. MR 56:15554
[7] D. Easton, Effective irrationality measures for certain algebraic numbers, Math. Comp. 46

(1986), 613–622. MR 87f:11047
[8] M. N. Gras, Familles d’unités dans les extensions cycliques réelles de degré 6 de Q, Publ.
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