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Simple Formulas for Transmission  Through  Periodic Metal Grids or Plates 

SHUNG-WU LEE, FELLOW, IEEE, GIN0 ZARRILLO, AND C W - L A M  LAW7, STUDENT  MEMBER, IEEE 

Abstract-A simple  closed-form  approximate  solution  is  given for 
the transmission coefficient of a normally  incident  electromagnetic 
plane  wave  through a screen  made of periodic metal grids  (inductive 
screen),  or  made  of  metal  plates  (the  complementary  capacitive 
screen).  Explicit  formulas  are  also  presented for cascading  screens 
and  dielectric  slabs. When compared with the  exact  solution, our ap- 
proximate  simple  formulas  show  good  numerical  accuracy. 

I. INTRODUCTION 

T HIS PAPER studies  the transmission of electromagnetic 
waves through a thin screen made of periodic grids or 

plates shown in Fig.  1. Such  a  screen  finds  application in 
diverse areas; it may  be used as an  antenna  radome [ 11 -[ 51, 
as a microwave frequency selective surface  [61-[ 91, as  a laser 
mirror [ lo]-[  161, as a  solar  filter [ 171-[ 201,  and as an 
artificial  dielectric [ 2 1 1 ,  [ 221.  Under the assumptions that  the 
incident field is a plane wave and  that  the screen is of infinite 
size, the  present transmission  problem  can be solved rigorously 
by  the  standard mode-matching technique [ 11-[ 31, [ 191. 
Unfortunately,  the  solution is contained in an infinitely large 
matrix  equation, which must be truncated and  inverted 
numerically  with the aid of a computer. Hence, it is desirable 
to develop a simple closed-form solution to  the transmission 
problem. Not  only does the simple solution eliminate the need 
for a  complex computer program, it also gives the explicit 
functional dependence of various design parameters,  and 
allows one to isolate the “cause” and “effect.” 

Simple  formulas for  the transmission/reflection  coefficient 
through  the screen  in Fig. 1 have been reported in the litera- 
ture.  The earliest one was  given by MacFarlane in 1946 [ 231. 
Two of the most popular  and useful  formulas are given by 
Chen [3]  and Ulrich [ 151.  Comparatively  speaking, Chen’s 
formula is more  accurate while Ulrich’s formula is simpler. In 
the  present paper, we present  a  refined version which com- 
bines the merits of both Chen’s and Ulrich’s formulas. Further- 
more, by using a  scattering matrix  approach, we extend  the 
formula to cover the case of cascading several screens, which 
can  be the screens shown in Fig. 1,  or dielectric slabs. 

As expected,  our simple formula has the following limita- 
tions. 1) The accuracy of the power  transmission  coefficient 
is within about 5 percent  for  most cases of practical interest. 
2) The formula is valid only  when the  incident direction of 
the plane wave is normal to  the screen and  the periodicity of 
the ceUs in the screen is less than  one wavelength. 3) When 
cascading, the separation between screens/dielectric slabs can- 
not be very small. 

11. SINGLE SCREEN WITH ZERO THICKNESS 

Let us consider the scattering  problem sketched in Fig. 1. 

zi(ir, = i e - j k =  , for z < 0 (1) 

The  incident field from  the lower half-space is given by 
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Fig. 1. A metal  screen  illuminated  by a normally  incident  plane  wave. 
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Fig. 2. Two types of metal  screens (top view). (a)  Inductive. (b) 

Capacitive. 

where the  time  factor  exp (+jut) has  been  suppressed, and 
k = 27r/?, = u/c  is the wavenumber. The  unitary  vector u 
satisfies the  relation u - u* = 1  and u * z = 0. It specifies the 
polarization of the  incident field, e.g., u = x for a  linearly 
polarized field, and u = (x f j y ) / f i  for a circularly  polarized 
field. The screen is made of metal  periodic  grids/plates, and it 
can be either of the following two types. 

1) Inductive  screen (Fig. 2(a)),  which  reflects at  low fre- 
quencies and transmits at high frequencies (high-pass 
screen). 

2) Capacitive screen (Fig. 2(b)),which transmits at  low 
frequencies and reflects at high frequencies (low-pass 
screen). 

Because of the periodic nature of the problem, we may repres- 
ent  the  scattered field by  a double  Fourier series (Floquet 
space harmonics),  namely, 

GTe-ikZ + 6 T p q Q p s k  y)e- jYpqz ,  

P 4  

for z > 0 
2(?) = ’ ( 2 )  

t R e + j k z  + fi x RpqQp,(x,  y)e+jYpqz,  

P 4  

forz<O.  

The  double  summations  in  (2) are over the range p ,  q = 0, 
21, 22, -., except p = q = 0. They represent the so-called 
‘‘grating lobes.” The transverse variation of the ( p ,  q)th  gat-  
ing lobe is 
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and  its propagation constant is 

y p q  = [ k .  - (;)’.. + 4 l? 

Throughout this  paper, we assume that  the spacing a is small 
so that 

(./x) < 1. (3) 
Hence, { y p q }  are all negative imaginary, and  the fields of the 
grating  lobes decay exponentially  away from  the screen. Thus, 
under  condition (3), the  quantities of practical interest are the 
transmission  coefficient T and  the (voltage)  reflection  coef- 
ficient R of the main beam. Their determinations are discussed 
below. 

Circuit Model: As long as the screen has zero  thickness 
(7 = 0 in Fig. I ) ,  the scattering  problem  in Fig. 1  can be ex- 
actly replaced by an equivalent transmission line  problem 
sketched in Fig. 3.  The screen is described by  a  normalized 
shunt  admittance 2Y. From  the transmission line  theory,  it 
is a simple matter  to show that 

1 T=- 
l + Y  

F =  
-1 

= T -  1 (4b) 
1 + (1/Y) 

which applies  equally to  the inductive (Fig. 2(a)) and capaci- 
tive (Fig. 2(b)) screens. From  the Babinet  principle [ 241, 
the coefficients of these two  complementary scre?ens are re- 
lated as  follows: 

Tcap =-Rind. Reap =-Tind.  (5 ) 

From here on, we concentrate on the inductive screen. Let us 
write the coefficients  in  polar form 

T i n d = I T i n d I e i e l ,   R j n d = I R j n d I e i e 2 .  (6a) 

Because of the conservation of energy 

I TI2 IRI2 = 1 (7) 

and  the  fact Yind = -j I Yind 1, it may be shown  that 

cosel = I T i n d l ,  o a ,  ~(7712)  (6b) 

e, = e + (./2), (./2) G e 2  G 71. (6c) 

As a  check, for c = 0 in Fig. 2(a) (a  perfect  conducting plane), 
we have from (8) that 0 = n/2 and O 2  = n, as expected. 

Approximate  Formulas  for  Admittance The scattering 
problem  in Fig. 1 can be formulated  exactly in terms of an 
infinite set of linear equations [ 1 ] -[ 3 1 .  After  truncating  the 
infinite set of equations  at a large finite  number (say 50), it 
may be numerically solved with the aid of a computer. We call 
such  a solution  the “exact  solution.” By matching the  exten- 
sive data  that we have generated from  the  exact  solution,  the 
following approximate  formula  for  the  admittance, referred t o ,  
as LZ, is obtained 

I T F*z 
Fig .  3. Transmission  line  model for the  scattering  problem in Fig. 1 

when 7 = 0. 

where 

Note  that Yind depends only  on  two parameters: a/X and c/a, 
and it is independent of the polarization parameter u. The 
particular functional  form in (8) is inspired by the work of 
Ulrich [ 151. It is interesting  to  note  that a total transmission 
(Yind + 0 and Tind = 1) occurs at 

a - -  - 1 - 0.41 (:). x 
For  most practical screens, (S/a)  < 0.3. Hence, total transmis- 
sion  occurs  when a is slightly less than  one wavelength. 

Other  Fomzulas in the  Literature: Based on Marcuvitz’s 
solution  [26]  for a one-dimensional periodic grid, Ulrich 
[ I 51 presents an approximate formula for Yind, namely, 

1 
Yind % (-i)@I -81-l)  9 (Ulrich) (loa) 

In csc (5  :) 
where 

( “) pl= 1 - 0.27 - /@/X). 

When compared with our  formula in (8), we note  the  factor  in 
the square bracket in (8a) is absent in  (loa),  and in (8b) is 
slightly different from 01 in (lob).  Another  approximate 
formula is given by  Chen [ 3 I , namely, 

(Chen). (1 1) 

1 A factor 2 in the denominator is missed in [ 15, eq. (13)]. 
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Fig. 4.  Power  transmission coefficient I TI2 of an inductive screen il- 
luminated by a normally incident plane  wave. The screen  aperature 
dimension is c = 0.7~ and its thickness 7 is zero. 

In [7] ,  [ 81,  Amaud, Pelow, and Anderson give a formula 
similar to ~ l r i c ~ s ,  namely,2 

P w 
t 

Fig. 5 .  
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Power  transmission coefficient I TI2 of an inductive screen as a 
function of screen thickness T and u = 0.7,~.  
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The argument of the cosecant function  in  (12) differs from 
that  in (1 Oa) by a factor of two. 

Numerical Results: Results for  the transmission  coefficient - 
T  as  a function of a/A for an inductive screen  with zero thick- 
ness are presented  in Fig. 4. The  “exact”  solution is the nu- 2 
merical solution based on  the analysis of [ 11 -[ 31. Four 
approximate  solutions are  calculated from  (4a) with Y given in 
(8a),  (loa),  (1  l),  or (12). For (c/a) 2 0.7, both LZ’s and & 0.4 

Chen’s solutions have good accuracy. For (c/a) < 0.7 (small 
aperture size), all simple formulas  are  no longer reliable. a a 

N- 
I- 

o.6 

111. SINGLE INDUCTIVE SCREEN WITH 
FINITE THICKNESS 

All  of the  formulas  in  Section I1 apply to an inductive  or 
capacitive  screen with  zero thickness ( r  = 0 in Fig. 1). When 
the thickness is not  zero,  the  aperture section of an inductive 
screen  may  be  considered as a square waveguide. The domi- 
nant  mode in the waveguide is the transverse electric (TEI 0 )  Fig. 6 .  Power  transmission coefficient I TI2 of an inductive screen as a 
mode whose propagation constant is function ofa /h .  

F 

0 0.2 0.4 0.6 0.8 1.0 
a/X 

+4k2 - ( r / ~ ) ~ ,  if c > 0.5A 
where 

-jd(?r/c)2 - k2, if c < 0.5A. ( 1 3 )  z = jg )( $(F,k). ( 14b) 

For numerical  calculations, Yind given in  (8) and (1  1)  are used 
in (14). The results are  presented  in Figs. 5 and 6. We note 
that  (14) is fairly  accurate. Two remarks about  the thickness 

r={ 

Based on  one-mode  approximation  for  the  aperture field,  Chen 
[ 31 found  an  approximate  formula  for  the transmission coeffi- 
cient of a thick inductive  screen3  namely, 

effect can be made. 1) When the  TElo  mode  in  the  square 
waveguide section of the screen is below cutoff (c < 0.5 X), 
(14a) is approximately equivalent to 

2 Equations (1) and (2) of [7] contain misprints. Our (12) above is 

3 The exponential factor in (14) is missed in [3, eq. (7)]. 
obtained from (2) and(l2) of [8] .  I Tthick/Tthin 1’ %-54.6 - x J(:)2- 1 dB. (16) 
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I 
h 
I 
I 

0.3 0.21 0.06 -7.5 dB -7.5 dB -7.1 dB 
0.3 0.24 0.06 -6.0 -6.0 
0.7 0.49 0.14 -1.28 -1.25 -1.6 

-6.0 

The numerical data  in Table  I demonstrate  the accuracy of 
(16). I t  is observed from  (1 5) and  (16)  that, when c < 0.5 h, 
the thickness effect  introduces  the  TEl 0 mode  attenuation  in 
the transmission  coefficient. 2) When c > 0.5 h, the  total 
transmission ( T  = 1) of a thick screen  occurs at a lower fre- 
quency  than  that of a thin screen. As an example, for clu = 
0.7, the  total transmission of a thin screen occurs at a/h = 
0.94, which may be calculated from  (9)  or observed from  the 
numerical curve in Fig. 6 .  For  the same  screen  with  a finite 
thickness 7 = O . k ,  the  total transmission  occurs at a /A  = 0.85. 

As a  final  remark, the  formulas  in  (1  4)-(  16) are applicable 
to an  inductive screen, but  not  to a  capacitive  screen. In  fact, 
when  the screen is thick,  relations in (4b), ( 9 ,  and  (6) are no 
longer valid. 

IV.  CASCADING SCREENS AND DIELECTRIC SLABS 

In practical  applications, we often cascade metal screens 
and dielectric slabs in  order to obtain  the desired transmission 
characteristics and/or mechanical strength.  In  this  section, we 
provide  a formula  for calculating the transmission through 
such a  cascade structure. 

As sketched in Fig. 7, let us assume that  there are N (possi- 
bly different) sheets in cascading. For a  typical nth  sheet,  its 
reference  plane is located at  z = d l  4- d2 -I -.. + d,- 1. With 
respect to this  reference  plane, the  sheet  is symmetrical and  its 
(transmission,  reflection)  coefficients  are denoted by (T , ,  Rn). 
If the  sheet is a metal screen (inductive or capacitive), we may 
calculate its coefficient by  the simple formulas  in Sections I1 
and 111. If the  sheet is a  dielectric slab (Fig. 8), its coefficients 
are given by  the well-known expressions, 

(1 - r 2 )  e j ( k - k ' ) r  
T ,  = 

1 - r2 exp (-j2k'7) 

where k' = k&, E is the relative dielectric constant of the 
slab, and 

When the slab is lossy, E has a negative imaginary part.  The 
square  root 6 should also have a negative imaginary part. 

The  interaction  among  the N sheets can be accounted  for 
by using the scattering  matrices [ 261. To be exact,  the matrices 
are of infinite order. In  the  present paper, we use the so-called 
"one-mode interaction." It  means that only the main beam, 
not  the grating lobes  (the fields  represented  by the double 
summation  in (2)), is used in calculating the  interaction. This 
approximation is valid when the  intersheet distances (dl ,  
d2,  e-, dN- 1) are large in terms of wavelength. As shown  later 
by  numerical  example,  good  accuracy of the one-mode inter- 
action is maintained for a surprisingly small d, .  

Using the one-mode interaction,  our final  results of ( R ,  T )  

Fig. 7. Cascading ofN sheets of metal  screens/dielectric  slabs. 

Fig. 8. Transmission  through a dielectric  slab. 

for  the cascading structure in Fig. 7 are 

T = A - (BC/D) (1 9a) 

R = -(C/O). (19b) 

The  coefficients ( A ,  B,  C, D) are  calculated  in the following 
steps. @-st, for each  sheet, we determine a  2 X 2 scattering 
matrix S,: where 

1- ?,- Tn J 

Then 

For  the special case N = 2, (1 9) is simplified to become 

T =  Tl T2 
1 - R,R2 exp (-j2kdl) 

We emphasize that  in applying the formulas  in (1 9)-(22), 
R ,  is  the reflection coefficient of the screen n in reference to 
the plane z = d, (Fig. 7), namely, the  ratio of the reflected 
and  incident electric fields at z = d,. One  should not use re- 
flection  coefficients which refer to  other planes. Another re- 
mark concerning the  present cascading formula is in order. 
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o/X 
a/X 

Fig. 10. Power  transmission  coefficient 1 TI2 of a  double  inductive 
Fig. 9. Power  transmission  coefficient I Ti2 of a  double  inductive  screen  with spacing d l  = 0 . 2 ~  and  a  thick signel  screen with 7 = 

screen  with  spacing d l  = 0.5~. 0 .b .  

Within the  approximation of the one-mode interaction,  the 
final  result in  (1 9)  is independent of .the relative horizontal 
position of the screens. In  other words, as long as the spacings 
d 1 ,  d2,  --, are maintained in Fig. 7 ,  (1 9 )  remains valid when 
screens  are slid or  rotated  in  their respective horizontal planes. 
In practical  applications, sliding or  rotating may be used for 
the suppression of higher order space  harmonics and/or  the 
cross polarization. 

Double Screen: Figs. 9 and  10  show  the transmission  co- 
efficients of a double inductive  screen  with  interscreen spacing 
d l  = 0.5a, and 0 . h .  We note  that  the present “one-mode’’ 
formula in ( 2 2 )  is accurate only when d l  > 0.5a. 

Thin Double  Screen  Approximated  by  Thick Single Screen: 
When the spacing d l  of a  double  screen is small, the present 
“one-mode” formula in (22) is no longer accurate, as seen 
from Fig. 10. However, such  a double screen can be well- 
approximated by  a single screen  with its thickness T equal to 
d l .  This approximation  holds well for a < h (Fig. IO). In 
conclusion, in cascading two  identical screens, (22) applies 
when spacing d l  is large, and  the  thick screen approximation 
applies when d l  is small. 

Single Screen on Dielectric Slab: The “one-mode’’ formula 
in (22) remains  reasonably accurate  for spacing d l  = 0. la 
(Fig. 11). However, it fails to  predict  the rapid  oscillation  near 
a = h when d l  is reduced to  zero. 

Cascading Complementary Screens: The  two screens (both 
of zero  thickness) in Fig. 2 are complementary, i.e., when one 
properly lies on  top of the  other,  they  form  an  infinite screen 
with no perforation.  Their  transmission and reflection coeffi- 
cients are  related  in the  manner described in  (4). Now, let us 
consider the  two cascading complementary screens. The trans- 
mission coefficient of the composite  screen is obtainable  from 
(22a)  and (5): namely, 

For given dimensions Q and c, there exists a  “resonance” 

-16 
0 0.2 0.4 0.6 0.8 1.0 

a/X 

Fig.  11.  Power  transmission  coefficient I TI2 of an inductive  screen 
and  a  dielectric slab with  spacing d l  = 0. la.  

wavelength ho 
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0.2 0.4 0.6 1.0 
a/X 

Fig.  12.  Power  transmission  coefficient I TI2 of  a double screen made 
of an inductive  screen  and  its  complementary  capacitive  screen. 

(23) with the results 

T = 1, when h = Xo. (26) 

Thus, the  composite screen has a  sharp  transmission  peak a t  
h = ho. Based on  the  exact numerical solution, we have de- 
termined  the resonance wavelength ho as a function of a and 
c,  and  the result  may  be  presented in a simple formula, i.e., 

a C 

a 
- 
A0 

% 1.502- 1.266 -. 

For example,  when c/a = 0.7, (27) predicts that  the resonance 
defined in (24)  occurs  at a = 0.616 ho, which agrees extremely 
well with the  exact  solution in Fig. 12. Making use of (27) in 
(25), we obtain  the interscreen spacing necessary for resonance: 

d ,  n _ -  - n = 1, 2, 3, .-. (28) 
a 3.004 - 2.532(c/a) 

In  summary, when (27) is satisfied,  a single inductive  or a sin- 
gle capacitive screen  has  a transmission coefficient I TI = 
0.707 (3 dB transmission loss). When  we cascade two comple- 
mentary screens whose geometries  satisfy (27)  and  (28),  the 
transmission  coefficient is T = 1 (total transmission). In Fig. 
12, we plot T of a composite screen  with c/a = 0.7, and d l  
given by (28) with n = 1, 2, and  3. As predicted by (27), 
total transmission  occurs at a/h = 0.616. For n = 1 (smallest 
spacing d l ) ,  the resonance  curve is relatively broad. For n = 3, 
the curve is sharper, and has three  other peaks  with I TI2 
equal to -8.5, -1.8, and -3.8 dB. 
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