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SIMPLE HOLONOMIC MODULES OVER RINGS
OF DIFFERENTIAL OPERATORS

WITH REGULAR COEFFICIENTS OF KRULL DIMENSION 2

V. BAVULA AND F. VAN OYSTAEYEN

Abstract. Let K be an algebraically closed field of characteristic zero. Let Λ
be the ring of (K-linear) differential operators with coefficients from a regular
commutative affine domain of Krull dimension 2 which is the tensor prod-
uct of two regular commutative affine domains of Krull dimension 1. Simple
holonomic Λ-modules are described. Let a K-algebra D be a regular affine
commutative domain of Krull dimension 1 and D(D) be the ring of differential
operators with coefficients from D. We classify (up to irreducible elements of a
certain Euclidean domain) simple D(D)-modules (the field K is not necessarily
algebraically closed).

1. Introduction

Let K be an algebraically closed field of characteristic zero and let an algebra R
be a regular commutative affine domain of Krull dimension K(R) = 2. Let D(R)
be the ring of (K-linear) differential operators with coefficients from R. The ring
D(R) is a simple Noetherian affine algebra that coincides with its subalgebra, the
derivation ring, ∆(R), this being the ring generated by R and its derivations. The
Gelfand-Kirillov dimension of a simple D(R)-module is either 2 or 3. In the first
case such a D(R)-module is called holonomic (a definition of holonomic module
over rings of differential operators is given in Section 2).

The aim of the present paper is to describe the simple holonomic D(R)-modules
in case the algebra R = D1 ⊗ D2 is the tensor product of regular commutative
affine domains of Krull dimension 1. Observe that D(D1 ⊗D2) ' D(D1)⊗D(D2)
(Lemma 2.5) and that the second Weyl algebra A2 = A1 ⊗ A1 is an example of
the ring D(D1⊗D2). The simple holonomic modules over the second Weyl algebra
(and other popular simple generalized Weyl algebras of Gelfand-Kirillov dimension
4) were classified in [BVO2]. The present paper can be considered as a further
development and extension of [BVO2], [Bl1, Bl2, Bl3], [Bav1, Bav2, Bav3] and
[BVO1]. Stafford first gives examples of simple non-holonomic modules over the
Weyl algebras [St]. Later Bernstein and Lunts [BeLu], [Lu], and Coutinho [Co]
construct more sophisticated examples of simple non-holonomic modules over the
Weyl algebras.
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2194 V. BAVULA AND F. VAN OYSTAEYEN

Definitions and basic results on differential operators, Gelfand-Kirillov dimension
and localizations are collected in Section 2 (for more details the reader is referred
to [Bj], [Bor], [KL] and [MR]).

In Section 3 we provide a description of simple modules over the ring D(D) of
differential operators with coefficients from a regular commutative affine domain D
of Krull dimension 1. In geometric language simple modules are classified over the
ring of differential operators on a smooth irreducible algebraic curve. We use the
approach of Block, [Bl3], where the simple modules over the differential operator
ring (the Ore extension) T [X ; δ] were classified under a “geometrical” condition
((3.1.1), [Bl3]) on the Dedekind domain T and the derivation δ of T . Recently,
these results were extended in [Bav3] to an arbitrary Ore extension T [X ;σ, δ], where
σ ∈ Aut T and δ is a σ-derivation of a Dedekind domain T . It is interesting to
observe that the “nontrivial ” (see below) holonomic D(R = D1⊗D2)-modules arise
exactly in the case where a noncommutative analog of the condition (3.1.1) of [Bl3]
fails. Note that every simple D(D)-module is holonomic (i.e. has Gelfand-Kirillov
dimension 1).

Let Mi (i = 1, 2) be a simple D(Di)-module. Then the tensor product M1⊗M2

is a simple holonomic D(D1) ⊗ D(D2)-module and two such modules are isomor-
phic, M1 ⊗ M2 ' M ′1 ⊗ M ′2, iff M1 ' M ′1 and M2 ' M ′2. Therefore, the set
D̂(D1 ⊗ D2)(holonomic) of isoclasses of simple holonomic modules contains the
subset D̂(D1) ⊗ D̂(D2), the “trivial ” holonimic modules. The “nontrivial ” ones,
i.e. D̂(D1 ⊗D2)(holonomic)\D̂(D1)⊗ D̂(D2), are described in Sections 4 and 5.

In Section 4, the “nontrivial” holonomic modules are described in a special case
of the ring Λ := D(D1) ⊗ D(D2) where the second tensor term is isomorphic to a
differential operator ring D(D2) = D2[X ; δ]. Let a skew field k be the full quotient
ring of D(D1). Let A be the (two-sided) localization of Λ at D(D1)∗ := D(D1)\{0}
i.e.

A = k ⊗D(D2) = k ⊗D2[X ; δ].

The first main result (Theorem 4.9) states that the map

Λ̂(holonomic)\D̂(D1)⊗ D̂(D2)→ Â(k-fin.dim), [M ]→ [A⊗Λ M ],

is bijective with inverse [N ]→ [SocΛN ], where Â(k-fin.dim) is the set of isoclasses
of simple A-modules which are a finite dimensional left vector space over the skew
field k.

The second main result of Section 4 (Corollary 4.11) provides a holonomicity
criterion.

Let M be a (nonzero) simple Λ-module and let M̃ = A⊗Λ M . Then

1. M̃ = 0 ⇔ [M ] ∈ D̂(D1)⊗ D̂(D2);
2. 1 ≤ dimk M̃ <∞ ⇔ [M ] ∈ Λ̂(holonomic)\D̂(D1)⊗ D̂(D2);
3. dimk M̃ =∞ ⇔ [M ] ∈ Λ̂(non-holonomic).
Hence, M is holonomic (resp. non-holonomic) iff dimk M̃ < ∞ (resp. M con-

tains a free D(D1)⊗K[X ]-module of rank 1).
Corollary 4.12 yields a presentation of every element [M ] ∈ Λ̂(holonomic)\D̂(D1)

⊗ D̂(D2) as a factor module of the Λ-module Λ.
The idea behind the description of D̂(D1 ⊗D2)(holonomic)\D̂(D1) ⊗ D̂(D2) is

to reduce to the case of Section 4.
In Section 5 the global results are obtained.
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SIMPLE HOLONOMIC MODULES 2195

In Section 6, for the ring of differential operators D(R) with coefficients from a
regular commutative affine domain R of Krull dimension 2 a holonomicity criterion
(Theorem 6.1) is established.

In the paper, module means a left module.

2. Preliminary Results

Let K be a field of characteristic zero and R be a commutative K-algebra. A ring
of (K-linear) differential operators D(R) on R is defined as D(R) =

⋃∞
i=0 Di(R)

where D0(R) = {u ∈ EndK(R) : ur − ru = 0, for all r ∈ R} = EndR(R) ' R,

Di(R) = {u ∈ EndK(R) : ur − ru ∈ Di−1(R), for all r ∈ R}.

Note that the {Di(R)} defines a filtration for D(R). We say that an element
u ∈ Di(R)\Di−1(R) has order i. The subalgebra ∆(R) of EndK(R) generated
by R ≡ EndR(R) and by the set DerK(R) of all K-derivations of R is called the
derivation ring of R. The derivation ring ∆(R) is the subring of D(R).

Let the algebra R be a regular commutative affine domain of Krull dimension
n <∞. In geometric terms, R is the coordinate ring O(X) of a smooth irreducible
affine variety X of dimension n. Then
• DerK(R) is a finitely generated projective R-module of rank n;
• D(R) = ∆(R);
• D(R) is a simple (left and right) Noetherian domain;
• gld D(R) = K(D(R)) = GK(D(R))/2 = K(R) = n (where gld , K and GK

stand for the global, Krull and Gelfand-Kirillov dimension respectively);
• GK(M) ≥ n for any nonzero finitely generated D(R)-module M ;
• if S is a multiplicatively closed subset of R, then S is a (left and right) Ore

set of D(R) and D(S−1R) = S−1D(R);
• D(R) = ∆(R) is an almost centralizing extension of R;
• ∆(R) is a somewhat commutative algebra;
• ∆(R) satisfies the Nullstelenzatz over K. So, End∆(R)(M) = K for every

simple ∆(R)-module M since K is an algebraically closed field;
• the associative graded ring grD(R) =

⊕
Di(R)/Di−1(R) is a commutative

domain.
For the proofs the reader is referred to [MR], Chapter 15.

Definition. A finitely generated D(R)-module M is called holonomic if it has
Gelfand-Kirillov dimension

GK(M) = GK(D(R))/2 = n.

Example. Let Pn = K[X1, . . . , Xn] be a polynomial ring in n indeterminates.

D(Pn) = K[X1, . . . , Xn, ∂/∂X1, . . . , ∂/∂Xn]

is the nth Weyl algebra, An = An(K). Clearly, An = A1 ⊗ · · · ⊗A1 (n times).

The following technical lemma will be used frequently in the paper (15.2.13 and
15.3.2, [MR]).

Lemma 2.1. Let R be a regular commutative K-domain of Krull dimension n.
1. Let m be a maximal ideal of R. Then there exists c = c(m) ∈ R\m such that

D(R)c = Rc[X1; ∂/∂Y1] · · · [Xn; ∂/∂Yn],
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2196 V. BAVULA AND F. VAN OYSTAEYEN

an iterated Ore extension for which XiXj = XjXi for 1 ≤ i, j ≤ n, and
{Y1, . . . , Yn} is a transcendence basis for the quotient field of R; the algebra
D(R)c contains the nth Weyl algebra

An = K[Y1, . . . , Yn][X1; ∂/∂Y1] · · · [Xn; ∂/∂Yn]

= K[Y1, . . . , Yn, ∂/∂Y1, . . . , ∂/∂Yn]

and is a (left and right) finitely generated An-module;
2. there is a finite subset {c1, . . . , cs} of {c(m) | m is a maximal ideal of R}

(of elements as above) such that the natural ring monomorphism D(R) →∏s
i=1 D(R)ci is (left and right) faithfully flat.

The K-algebra R is affine, so let {Ri, i ≥ 0} (R0 = K) be a finite dimensional fil-
tration of R such that the associated graded algebra grR =

⊕
Ri/Ri−1 is affine. In

particular, every standard filtration of R satisfies this property. The D(R) = ∆(R)
is an almost centralizing extension of R (15.1.20, [MR], and DerK(R) is a finitely
generated R-module). By (8.6.7, [MR]), the algebra ∆(R) has a finite dimensional
filtration F = {∆i(R), i ≥ 0} (∆0(R) = K) such that grF ∆(R) is a commutative
affine algebra (hence Noetherian), i.e., by definition, ∆(R) is a somewhat com-
mutative algebra. The graded K-algebra grF ∆(R) is generated by homogeneous
elements, say x1, . . . , xt, of positive graded degrees k1, . . . , kt, respectively. Let k
be the least common multiple of {ki}.

A filtration Γ = {Γi, i ≥ 0} of a ∆(R)-module M =
⋃∞
i=0 Γi is called good

if the associated graded grF ∆(R)-module grΓM is finitely generated. A ∆(R)-
module M has a good filtration iff it is finitely generated; and if {Γi} and {Ωi}
are two good filtrations on M , then there exists a natural number j such that
Γi ⊆ Ωi+j and Ωi ⊆ Γi+j for all i. If a ∆(R)-module M is finitely generated and
M0 is a finite dimensional generating subspace of M , then the standard filtration
{Γi = ∆i(R)M0} is good (see [Bj] or [LVO] for details). The following lemma is
well known for specialists (see, for example, [Bav4]).

Lemma 2.2. Let M be a finitely generated ∆(R)-module with good filtration Γ =
{Γi}. Then

1. there exist k polynomials γ0, . . . , γk−1 ∈ Q[t] with coefficients from
[kGK(M) GK(M)!]−1Z such that

dim Γi = γj(i) for all i >> 0 and j ≡ i(mod k);

2. the polynomials γj have the same degree GK(M) and the same leading co-
efficients e(M)/GK(M)! where e(M) is called the multiplicity of M . The
multiplicity e(M) does not depend on the choice of good filtration Γ.

Let 0 → N → M → L → 0 be an exact sequence of finitely generated ∆(R)-
modules and let Γ = {Γi} be a good filtration on M . Then Γ′ = {Γi′ = Γi ∩ N}
and Γ′′ = {Γ′′i = (Γi+N)/N} are filtrations on N and L respectively such that the
sequence of grF ∆(R)-modules

0→ grΓ′(N)→ grΓ(M)→ grΓ′′(L)→ 0

is exact. The ring grF ∆(R) is Noetherian and the grF ∆(R)-module grΓ(M) is
finitely generated, so the grF ∆(R)-modules grΓ′(N) and grΓ′′(L) are finitely gen-
erated, i.e. the filtrations Γ′ and Γ′′ are good and we have

dim Γi = dim Γi′ + dim Γ′′i ,(2.1)
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hence, by Lemma 2.2,

GK(M) = max{GK(N),GK(L)},(2.2)

and if GK(M) = GK(N) = GK(L), then

e(M) = e(N) + e(L).(2.3)

A finitely generated ∆(R)-module M is called holonomic if GKM=GK(∆(R))/2
= K(R).
• Every holonomic ∆(R)-module has finite length.

(For example, it follows from (2.3) and Lemma 2.2.) Let 0 6= c ∈ R and M be an
R-module. We denote by Mc the localization of M at the powers of the element
c, i.e. Mc = S−1M where S = {ci, i ≥ 0}. The module M is called c-torsionfree
(resp. c-torsion) if the map cM : M →M , m→ cm, is injective (resp. S−1M = 0).

Denote by N = {0, 1, . . .} and R the set of natural and real numbers. For a
function f : N→ N its degree is defined as follows:

γ(f) := inf{d ∈ R : f(n) ≤ nd for sufficiently largen >> 0}.

Proposition 2.3. Let c be a nonzero element of R and let M be a finitely generated
c-torsionfree ∆(R)-module. Then GK ∆(R)M = GK ∆(R)cMc.

Proof. The ∆(R)-module M is c-torsionfree, thus the map M →Mc, m→ m/1, is
a monomorphism of ∆(R)-modules. So, GK ∆(R)M ≤ GK ∆(R)cMc.

Conversely, fix a finite dimensional filtration F = {∆i(R), i ≥ 0} of the alge-
bra ∆(R) as above, i.e. the associated graded algebra grF ∆(R) is commutative
affine. Let M0 be a finite dimensional generating subspace of the ∆(R)-module M .
The M is equipped with the good filtration {Mi = ∆i(R)M0} and GK ∆(R)M =
γ(dim Mi). Let A1 3 1 be a finite dimensional subspace of algebra generators
of ∆(R). Then ∆(R)c has the standard filtration {Bi = Bi1, i ≥ 0} where B1 =
A1+Kc−1. The ∆(R)c-module Mc has the standard filtration {(Mc)i = BiM0} and
GK ∆(R)cMc = γ(dim (Mc)i). Using 15.1.17, [MR], we can find natural numbers α
and β such that cαiBi ⊆ ∆βi for all i. Now, cαi(Mc)i = cαiBiM0 ⊆ ∆βiM0 = Mβi

and dim (Mc)i ≤ dim Mβi, hence GK ∆(R)cMc ≤ GK ∆(R)M .

Theorem 2.4. Let M be a finitely generated ∆(R)-module and let ∆(R) →∏s
i=1 ∆(R)ci be a faithfully flat extension from Lemma 2.1. Then
1. GK ∆(R)M = max{GK ∆(R)ci

Mci};
2. M is a holonomic ∆(R)-module iff each nonzero Mci is a holonomic ∆(R)ci-

module;
3. N is a holonomic ∆(R)ci-module iff N is a holonomic module over the nth

Weyl subalgebra A(i)
n from Lemma 2.1(1).

Proof. 1. Denote by m the maximum in the statement of theorem. For a ∆(R)-
submodule N of M denote by N̄i the image of N under the map M →Mci . Then,
by Proposition 2.3, GK ∆(R)M ≥ GK ∆(R)M̄i = GK ∆(R)ci

(M̄i)ci = GK ∆(R)ci
Mci,

hence GK ∆(R)M ≥ m.
To prove the opposite inequality it suffices to prove the existence of a ∆(R)-

submodule N of M such that GK ∆(R)N̄i = GK ∆(R)M for some i. Since then, by
Proposition 2.3, GK ∆(R)N̄i = GK ∆(R)ci

(N̄i)ci ≤ GK ∆(R)ci
Mci, i.e. GK ∆(R)M

≤ m.
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2198 V. BAVULA AND F. VAN OYSTAEYEN

Let n = n(M) be the number of nonzero maps M →Mci . If n = 1, i.e. M ' M̄i

for a unique i, then we can take N = M . Suppose n > 1. Up to numeration we
may suppose that first n maps {M →Mci , i = 1, . . . , n} are nonzero. We have the
exact sequences of ∆(R)-modules: 0 → Ki → M → M̄i → 0, i = 1, . . . , n, where
Ki is the kernel of the map M →Mci. If there exists i such that GK M̄i = GKM ,
then we take N = M . Otherwise, GKKi = GKM for all i. For the module K1

the number n(K1) is less than n (since K̄1 = 0), so the induction completes the
argument.

1⇒ 2. Evident.
3. The A(i)

n is the affine subalgebra of the affine algebra ∆(R)ci such that ∆(R)ci
is a finitely generated A(i)

n -module (Lemma 2.1.(1)). Now, by Lemma 4.11, [BVO2],
GK ∆(R)ci

N = GK
A

(i)
n
N and the result follows.

Lemma 2.5. Let R be a regular commutative affine domain of finite Krull dimen-
sion which is the tensor product

⊗n
i=1 Ri of regular commutative affine domains

Ri. Then D(R) =
⊗n

i=1 D(Ri).

Proof. Observe D(R) = ∆(R). It is sufficient to prove the statement in case n = 2.
Set ∆ = ∆(R), ∆i = ∆(Ri), i = 1, 2. Then ∆ ⊇ ∆1 ⊗∆2. Choose faithfully flat
extensions ∆1 →

∏
i ∆1,ci , ∆2 →

∏
j ∆2,tj as in Lemma 2.1. Then ∆1 ⊗ ∆2 →∏

i,j (∆1)ci ⊗ (∆2)tj =
∏
i,j (∆1 ⊗ ∆2)citj is the faithfully flat extension (if M is

a nonzero ∆1 ⊗∆2-module, then there exists i such that Mci 6= 0 and then there
exists j = j(i) such that Mcitj 6= 0). Evidently,

∆citj = ∆(Rcitj ) = ∆((R1)ci)⊗∆((R2)tj ) = (∆1 ⊗∆2)citj

for i, j. We have ∆ ⊇ ∆1 ⊗∆2 with
∏

∆citj =
∏

(∆1 ⊗∆2)citj , since ∆1 ⊗∆2 →∏
i,j (∆1⊗∆2)citj is a faithfully flat extension, we conclude that ∆ = ∆1⊗∆2.

Let A be a ring and let B = S−1A be the left (Ore) localization of the ring A at
an Ore set S 3 1 of A. We have the natural ring homomorphism A→ B, a→ a/1,
which, in general, is not a monomorphism. For a left ideal m of B we denote by
A∩m the inverse image of m in A. The localization defines the localization functor

S−1 : A-mod→ B-mod, M → S−1M ' B ⊗AM,

from the category of A-modules to the category of B-modules. An A-module M
contains the S-torsion submodule

torS(M) = {m ∈M : sm = 0 for some s = s(m) ∈ S}.

If the A-module M is simple, then its localization S−1M is either zero (⇔ M =
torS(M)) or not (⇔ torS(M) = 0), in the last case S−1M is a simple B-module.
Correspondingly, we say that a simple A-module is either S-torsion or S-torsionfree,
i.e.

Â = Â(S-torsion) ∪ Â(S-torsionfree).(2.4)

The sum of all simple submodules of an A-module M is called the socle SocAM
of M . It is the largest semisimple submodule of M . A B-module N is called A-
socle (or, socle, for short) provided SocAN 6= 0. Denote by B̂(A-socle) the set of
isoclasses of simple A-socle B-modules. A submodule M ′ of M is called essential if
it intersects nontrivially each nonzero submodule of M . The following two lemmas
are evident (see [BVO2] for detail).
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Lemma 2.6. 1. The canonical map

S−1 : Â(S-torsionfree)→ B̂(A-socle), [M ]→ [S−1M ],

is a bijection with inverse Soc : [N ]→ [SocA(N)].
2. Each simple S-torsionfree A-module has the form

Mm := A/A ∩m(2.5)

for some left maximal ideal m of the ring B. Two such modules are isomor-
phic, Mm 'Mn, iff the B-modules B/m and B/n are isomorphic.

Write LMAX(B) for the set of all left maximal ideals of B. A maximal left ideal
m of the ring B is called socle, resp. convenient, provided SocAMm 6= 0 resp. Mm

is a simple A-module and the sets of all such ideals are denoted by LMAX.soc(B)
and LMAX.con(B). Clearly, LMAX.con(B) ⊆ LMAX.soc(B). In general, not
every left maximal (resp. socle) ideal is socle (resp. convenient).

For a socle maximal left ideal m of B let J(m) be the smallest of the left ideals
of A strictly containing A ∩m, then

J(m)/A ∩m = SocAMm.

Since S−1(J(m)/A ∩m) = S−1Soc AMm = B/m, the set

a(m) := J(m) ∩ S(2.6)

is not empty.

Lemma 2.7. Let m ∈ LMAX.soc(B) and α ∈ S. The following are equivalent:
1. α ∈ a(m);
2. J(m) = Aα+A ∩m;
3. Mmα−1 is a simple A-module;
4. mα−1 ∈ LMAX.con(B).

3. Classification of simple modules over rings of differential

operators with regular coefficients of Krull dimension 1

Let a K-algebra D be a regular affine commutative domain of Krull dimension
1 over a field K of characteristic zero (not necessarily algebraically closed). The
ring D is a Dedekind domain. The algebra D can be seen as the coordinate ring
of a smooth irreducible algebraic curve. Let ∆ = ∆(D) = D(D) be the ring of
differential operators with coefficients from D. In geometric terms, ∆ is the ring
of differential operators on a smooth irreducible algebraic curve. Observe that the
algebra ∆ is a simple affine Noetherian domain with Gelfand-Kirillov dimension
2 and Krull dimension 1. Using results of [Bl3], in this section we classify (up to
the irreducible elements of a noncommutative Euclidean domain B, see below) the
simple ∆-modules (Theorems 3.4 and 3.6).

Let δ be a K-derivation of D such that the Ore extension (or the differential
operator ring) A = D[X ; δ] is a simple algebra. The first Weyl algebra A1 '
K[t][X ; d/dt] gives an example of the ring A. Denote by l the field of fractions of
D, i.e. l = D−1

∗ D whereD∗ = D\{0}. Then the (two-sided) localizationB = D−1
∗ A

of A at D∗ is the Ore extension B = l[X ; δ] with coefficients from the field l. By
the ring monomorphism A → B, a → a/1, we identify A with its image in B (the
“new” δ is the unique extension of the δ from D to l). The ring B is a left and right
Euclidean ring, hence, a left and right principal ideal domain. So, a B-module N
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2200 V. BAVULA AND F. VAN OYSTAEYEN

is simple iff N ' B/Bb for some irreducible element b of B; and B/Bb ' B/Bc iff
b and c are similar (see [Jac] for details).

If M is a simple A-module, then the localization D−1
∗ M = B ⊗A M of M at

D∗ is either 0 or a (nonzero) simple B-module. We say that M is D-torsion or
D-torsionfree correspondingly. The set Â is partitioned as

Â = Â(D-torsion) ∪ Â(D-torsionfree).(3.1)

The field K has characteristic zero, so the condition (3.1.1) of [Bl3] holds and there
is no proper δ-invariant ideal of the ring D (since A is simple). Let us recall the
description of Â following [Bl3]. Denote by Specm D the set of prime ideals of D.
Here “prime” means a nonzero prime (i.e. a maximal ideal).

Lemma 3.1 (4.1, [Bl3]). The map

Specm D → Â(D-torsion), p→ [A/Ap ' A⊗D D/p],

is a bijection.

Suppose p is a prime ideal of D. Let νp denote the valuation of l corresponding
to p, that is, if d ∈ pi\pi−1, then νpd = i. The valuation ring {α ∈ l | νpα ≥ 0}
coincides with the localization Dp of D at p which is a local Dedekind domain
with the maximal ideal Dpp. We identify the residue class field Dp/Dpp with
lp = D/p(≡ (D/p)p = Dp/Dpp). We denote by ηp the canonical epimorphism
Dp → Dp/Dpp = lp.

The valuation νp can be extended to a valuation on B, also denoted by νp or by
ν (for short), as follows: if b =

∑
biX

i ∈ B, then (Lemma 3.1, [Bl3])

νpb = min{νpbi − i | i ≥ 0 }.

Suppose p is a prime ideal of D. Pick g ∈ p\p2. For b =
∑

biX
i ∈ B, R. Block

([Bl3], (3.2.1)) defines a polynomial Qb = Qb(t) = Qp,g,b(t) ∈ lp[t] by

Qp,g,b(t) =
∑
i≥0

ηp(g−νpb−ibi(δg)i) t(t− 1) · · · (t− i+ 1).

The polynomial above is called the indicial polynomial of b relative to p, g
(or at p, g). The normalized indicial polynomial Q̄p,b of b relative to p, which is
obtained by dividing Qp,g,b by its leading coefficient, is independent of the choice of
g (Lemma 3.2, [Bl3]). The roots of Qp,g,b are called the indicial roots of b relative
to p (this being independent of g). The element b is preserving relative to p if
there is no negative integer indicial root relative to p. We shall also say that b is
preserving if it is preserving relative to p, for every prime p of D.

If b =
∑

biX
i ∈ B of degree k > 0, a prime p is called the special prime of

b if νpb = νpbi − i for some i < k. The element b has only finitely many special
primes. If p is not a special prime of b, then b is preserving relative to p. Hence
the property of b being preserving depends on only finitely many primes (see 3.4,
[Bl3] for details).

Theorem 3.2 (4.4, [Bl3]). Let b =
∑
biX

i ∈ B be an irreducible preserving ele-
ment. Then A/A ∩ Bb is a simple D-torsionfree A-module. Up to isomorphism
every simple D-torsionfree A-module arises in this way and two such A-modules
are isomorphic, A/A ∩ Bb ' A/A ∩ Bc, iff the B-modules B/Bb and B/Bc are
isomorphic.
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Fix a faithfully flat extension ∆ →
∏s
i=1 ∆ci as in Lemma 2.1, where ∆i =

∆ci = ∆(Dci) is the localization of ∆ at the powers of ci ∈ D. Let B = D−1
∗ ∆ be

the localization of ∆ at D∗ = D\{0}. Then

∆̂ = ∆̂(D-torsion) ∪ ∆̂(D-torsionfree).(3.2)

The ring ∆i is the Ore extension Dci [Xi; δi], it can be considered as the subring
of B. Moreover, B = Bi := (Dci)−1

∗ ∆i = l[Xi; δi] is the localization of ∆i at
(Dci)∗ = Dci\{0}. Then Xi = αijXj + βij for some 0 6= αij , βij ∈ l.

The ring D is a commutative domain of Krull dimension 1, thus, for 0 6= c ∈ D,
the set V (c) of prime ideals in D containing c is finite. Clearly, for p ∈ Specm D,
the ∆-module ∆/∆p is holonomic (since ∆ is a simple domain of Gelfand-Kirillov
dimension 2 and in a view of Lemma 2.2 and (2.3)), hence, of finite length. More-
over,

∆/∆p =
∞⋃
i=1

ann pi,

where ann pi = {u ∈ ∆/∆p : piu = 0}.

Lemma 3.3. Let M be a nonzero ∆-module satisfying the following property: if
N is a nonzero submodule of M , then Nci 6= 0 for every i such that Mci 6= 0 (e.g.,
M is D-torsionfree; M is an epimorphic image of ∆/∆p for some p ∈ Specm D).
Then the ∆-module M is simple iff for each i either Mci = 0 or Mci is a nonzero
simple ∆i-module.

Proof. Evident.

Theorem 3.4. The map

Specm D → ∆̂(D-torsion), p→ [∆/∆p ' ∆⊗D D/p],

is a bijection.

Proof. For a commutative Noetherian domain of Krull dimension 1 the restricted
minimum condition holds (i.e., every proper factor ring is Artinian). Thus a simple
D-torsion ∆-module is an epimorphic image of the ∆-module ∆/∆p for some prime
p of D. If pci 6= Dci, then it is the maximal ideal of Dci . The localization
(∆/∆p)ci ' ∆i/∆ipci is either 0 or a simple ∆i-module (by Lemma 3.1). Hence,
by Lemma 3.3, every ∆-module ∆/∆p is simple. It means that a simple D-torsion
∆-module is isomorphic to some ∆/∆p.

Since ∆/∆p =
⋃∞
i=1 ann pi, where ann pi = {u ∈ ∆/∆p : piu = 0}, the

∆-modules ∆/∆p and ∆/∆p′ are isomorphic iff p = p′ (p and p′ are primes).

Evidently, Specm Dci ⊆ Specm D and Specm D =
⋃s
i=1 Specm Dci . For every

i = 1, . . . , s we have the situation

∆i = Dci [Xi; δi]→ Bi = (Dci)
−1
∗ ∆i = l[Xi; δi] = B

as at the beginning of this section.

Definition. We say that an element b ∈ B is preserving with respect to the faithfully
flat extension ∆ →

∏s
i=1 ∆i (or ext-preserving for short) if for every i = 1, . . . , s

the element b ∈ Bi = B is preserving in the case ∆i → Bi = B.
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Lemma 3.5. Suppose 0 6= d1, . . . , dj ∈ B. Then there exists 0 6= ξ ∈ D such
that all elements d1ξ

−1, . . . , djξ
−1 are preserving with respect to the faithfully flat

extension ∆→
∏s
i=1 ∆i. More precisely, let {p1, . . . ,pk} be those maximal ideals

which are a special prime of at least one of d1, . . . , dj in at least one of the situations
∆i → Bi = B, i = 1, . . . , j. Let gl ∈ pl\p2

l (l = 1, . . . , k). Also take a natural
number v with v ≥ vl,i for every vl,i ∈ N (if any) such that −vl,i is a root of some
Q

(i)
pl,dm

in the case ∆i → Bi = B. Then all elements dm(g1 · · · gk)−v (m = 1, . . . , j)
are preserving with respect to the faithfully flat extension ∆→

∏s
i=1 ∆i.

Proof. It follows immediately from Lemma 3.4, [Bl3].

Theorem 3.6. Let b be an irreducible preserving with respect to the faithfully flat
extension ∆ →

∏s
i=1 ∆i element of B. Then Mb := ∆/∆ ∩ Bb is a simple D-

torsionfree ∆-module. Up to isomorphism every simple D-torsionfree ∆-module
arises in this way and two such ∆-modules are isomorphic, Mb 'Mc, iff the simple
B-modules B/Bb and B/Bc are isomorphic.

Proof. Let M be a simple D-torsionfree ∆-module. Then the localization D−1
∗ M

of M at D∗ is a simple B-module, thus the module D−1
∗ M is isomorphic to the

B-module B/Bb for some irreducible element b of B. The B-modules B/Bb and
B/Bbs−1 are isomorphic for every s ∈ D∗. By Lemma 3.5 we can suppose b
to be preserving (with respect to ∆ →

∏s
i=1 ∆i). The M is the ∆-submodule

of its localization D−1
∗ M ' B/Bb (via M → D−1

∗ M , m → m/1). Moreover,
M = Soc∆ B/Bb. Every nonzero ∆-submodule of D−1

∗ M is essential, so M ⊆ Mb

and 0 6= Mci ⊆ (Mb)ci for every i. The ∆i-modules Mci and (Mb)ci are simple
(Theorem 3.2), hence Mci = (Mb)ci for i = 1, . . . , s. The extension ∆ →

∏s
i=1 ∆i

is faithfully flat, so M = Mb.
Let b be as in the theorem. Then each (Mb)ci ' ∆i/∆i ∩Bb is a nonzero simple

Dci-torsionfree ∆i-module (by Theorem 3.2). By Lemma 3.3, the ∆-module Mb is
simple. The other claims are evident.

4. Simple holonomic modules

Let K be an algebraically closed field of characteristic zero and let the algebra

Λ = C ⊗A
be the tensor product of rings of differential operators with coefficients from a
regular commutative affine domain of Krull dimension 1: C = ∆(D1) and A =
∆(D2). Moreover, let

A = D[X ; δ], D = D2,

be an Ore extension. Observe, that Λ is isomorphic to the ring of differential
operators ∆(D1 ⊗D2) (Lemma 2.5).

Example. The second Weyl algebra A2 = A1 ⊗ A1 is an example of the ring Λ
( A1 = K[t][X ; d/dt]).

Denote by k the full quotient ring of C:

k = C−1
∗ C, C∗ = C\{0},

Then k is a skew field (division ring) with center Z(k) = K. The ring

A := C−1
∗ Λ = k ⊗A = k ⊗D[X ; δ] = D[X ; δ], D = k ⊗D,
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is a ring of differential operators with Ker δ ⊇ k. The ring A =
⋃
i≥0 Ai is filtered

by the powers of X : Ai =
⊕

j≤i DXj =
⊕

j≤i X
jD. The associated graded ring

grA =
⊕
Ai/Ai−1 is the polynomial ring D[x] with coefficients from D where

x = X + D ∈ A1/A0.
Let k be a skew field. We say that a ring T is an affine algebra over k if it is

a factor ring of a polynomial ring k[X1, . . . , Xn] with coefficients from k. In that
case T is generated over k by the images xi of Xi, T = k〈x1, . . . , xn〉. The ring T is
Noetherian and equipped with a standard filtration T = {Ti, i ≥ 0} by the degree
of the generators T0 = k, T1 = k +

∑n
i=1 kxi, Tm = (T1)m =

∑
s≤m kxi1 · · ·xis ,

m ≥ 2. Note that the dimension dimk Tm of Tm as the left k-vector space is finite
for every m. The associated graded ring grT T =

⊕
Ti/Ti−1 is an affine k-algebra

with generators of graded degree 1 (i.e. from R1/R0). Thus grT is a Noetherian
ring.

A filtration Γ = {Γi} on a T -module M (M =
⋃

Γi, TiΓj ⊆ Γi+j) is called good
if the associated graded grT T -module grΓM =

⊕
Γi/Γi−1 is finitely generated. A

T -module M has a good filtration iff it is finitely generated (Noetherian). If {Γi}
and {Ωi} are two good filtrations on M , then there exists a natural number s such
that Γi ⊆ Ωi+s and Ωi ⊆ Γi+s for all i. Let M be a finitely generated T -module
and let M0 be a finitely generated k-module of generators of M . The filtration
Γi = {TiM0, i ≥ 0} is called standard, if dimk Γi <∞ for all i ≥ 0. Every standard
filtration is good.

A function f : N→ N has polynomial growth if, for some d ∈ R, f(n) ≤ nd for
n >> 0; and then

γ(f) := inf{d ∈ R : f(n) ≤ nd for sufficiently largen >> 0}

is called the degree of f .
Let T =

⋃∞
i=0 Ti be as above and M be a finitely generated T -module with a

standard filtration Γ = {Γi}. The Gelfand-Kirillov dimension (with respect to the
base division ring k): GKk(T ) = γ(dimk Ti) and GKk(M) = γ(dimk Mi). The
number GKk(T ) and GKk(M) does not depend on the choice of standard filtration
T and Γ. In case the division ring is the ground field K we write GK for GKK .

Let M be a T -module with a good filtration Γ = {Γi}. The integer valued
function χM,Γ(i) = dimk Γi is called the Hilbert function of the module M with
respect to Γ. Standard arguments show that there exists a polynomial H(t) =
HM,Γ(t) = adt

d + · · ·+ a0 ∈ Q[t] with rational coefficients (see, for example, [Bav4]
and Remark 2.5 there):

χM,Γ(i) = HM,Γ(i) for all i >> 0.

The polynomial HM,Γ is called the Hilbert polynomial of M with respect to the
filtration Γ. The degree d = d(M) of HM,Γ coincides with GKk(M). The positive
integer e(M) = d!ad is called the multiplicity of M . The degree d(M) and the
multiplicity e(M) of M do not depend on the choice of good filtration Γ.

Let 0→ N →M → L→ 0 be an exact sequence of finitely generated T -modules.
Then

GKk(M) = max{GKk(N),GKk(L)}(4.1)

and if GKk(N) = GKk(M) = GKk(L), then

e(M) = e(N) + e(L).(4.2)
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In fact, let Γ be a good filtration on M . Then Γ′i = {Γi∩N} and {Γ′′i = (Γi+N)/N}
are filtrations on N and L respectively, such that the sequence of graded grT T -
modules

0→ grΓ′ N → grΓM → grΓ′′ L→ 0(4.3)

is exact. The ring grT T is Noetherian and the grT T -module grΓM is finitely
generated, hence, Noetherian, thus the grT T -modules grΓ′ N and grΓ′′ L are finitely
generated. Consequently, the filtrations Γ′ and Γ′′ are good and

χM,Γ(i) = χN,Γ′(i) + χL,Γ′′(i),(4.4)

hence,

HM,Γ(i) = HN,Γ′(i) +HL,Γ′′(i),(4.5)

and (4.1), (4.2) follow.

A non-left (resp. non-right, resp. non- ) Artinian ring satisfies the left (resp.
right) restricted minimum condition (l.r.m.c., resp. r.r.m.c., resp. r.m.c.) provided
every proper left (resp. right, resp. left and right) factor module of it is Artinian.
The ring D is the tensor product of the central simple algebra k and the Noetherian
algebra D, hence, the ring D is a Noetherian k-affine algebra. Moreover, D is a
Noetherian domain as the localization of the Noetherian domain C ⊗D.

Lemma 4.1. 1. For the ring D the restricted minimum condition holds;
2. GKk D = 1;
3. any proper (left or right) factor module of D is finitely generated over k. In

particular, every simple D-module is finitely generated over k.

Proof. 2. The K-algebra D is a finitely generated module over a polynomial ring
K[H ], so D is a finitely generated module over k ⊗K[H ] = k[H ]. Hence,

1 = GKk(k[H ]) ≤ GKk(D) ≤ GKk(k[H ]) = 1.

3. Let us prove the statement for left modules. Let x be a nonzero element of
D. The left ideal Dx is isomorphic to D as a left module. For the exact sequence
of D-modules: 0 → Dx → D → D/Dx → 0, let Γ, Γ′, and Γ′′ be good filtrations
from (4.4). The Hilbert polynomials of D and Dx ' D are equal to ai + b and
ai + c, respectively for some integers a, b, c. It follows from (4.5) that the Hilbert
polynomial of D/Dx is constant, i.e. dimk D/Dx <∞.

3 ⇒ 1. Evident.

Lemma 4.2. 1. Any proper factor module of ΛΛ has Gelfand-Kirillov dimen-
sion ≤ 3;

2. any nonzero submodule of ΛΛ has Gelfand-Kirillov dimension 4;
3. for the algebra C = ∆(D1) the restricted minimum condition holds and every

simple C-module has Gelfand-Kirillov dimension 1.

Proof. Let I be a nonzero left ideal of Λ (resp. C) and let 0 6= x ∈ I. The Λ (resp.
C) is the domain, so Λx ' Λ and 4 = GK Λx ≤ GK I ≤ GK Λ = 4, i.e. GK I = 4.
By [MR], 8.3.5, GK(Λ/Λx) < GK Λ = 4 (resp. GK(C/Cx) < GKC = 2), hence
GK(Λ/I) ≤ GK(Λ/Λx) ≤ 3 (resp. GK(C/I) ≤ GK(C/Cx) ≤ 1, i.e. any proper
factor module of CC is holonomic).
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Let M be a nonzero simple Λ-module, the localization

C−1
∗ M = A⊗Λ M

of the module M at C∗ is either zero or not. The latter is a simple A-module. With
respect to these two possibilities we say that the module M is either C-torsion or
C-torsionfree, so

Λ̂ = Λ̂(C-torsion) ∪ Λ̂(C-torsionfree).(4.6)

Let R be a K-algebra and let M be a simple R-module such that the endomor-
phism ring EndR(M) = K. Let S be a K-algebra and N be an S-module. Then
the tensor product M⊗N is an R⊗S-module. By [Bav5], any submodule of M⊗N
is equal to M⊗N ′ for some S-submodule N ′ of N . In particular, M⊗N is a simple
R⊗ S-module if SN is simple, i.e.

R̂⊗ Ŝ ⊆ (R⊗ S )̂.(4.7)

∆̂(D1)⊗ ∆̂(D2) ⊆ ∆̂(D1 ⊗D2).(4.7.1)

Proposition 4.3.

Λ̂(C-torsion) = Ĉ ⊗ Â ⊆ Λ̂(holonomic).

Proof. The inclusion Ĉ⊗ Â ⊆ Λ̂(holonomic) follows from (4.7) and Lemma 4.2.(3).
The inclusion Λ̂(C-torsion) ⊇ Ĉ ⊗ Â is evident (Lemma 4.2.(3)).

Let M be a nonzero simple C-torsion Λ-module. The algebra C satisfies the
restricted minimum condition, so M contains a simple C-submodule, say N . Then
the Λ-module M is an epimorphic image of the Λ-module N ⊗ A. Hence, M '
N ⊗A/J for some maximal left ideal J of A, i.e. Λ̂(C-torsion) ⊆ Ĉ ⊗ Â.

Denote by h the skew field D−1
∗ D where D∗ = D\{0} and by

B := D−1
∗ A = h[X ; δ](4.8)

the localization of the algebra A at D∗. Observe that h is the full quotient ring of
the Noetherian domain C ⊗D.

We identify A with its image in B via the algebra monomorphism A → B,
x→ x/1. So, we have

Â = Â(D-torsion) ∪ Â(D-torsionfree).(4.9)

Lemma 4.4. If [N ] ∈ Â(D-torsionfree,Λ-socle), then GK SocΛ N = 3.

Proof. Since SocΛ N 6= 0 and N is D-torsionfree, the socle SocΛ N is a simple
Λ-module that contains a free C ⊗ D-module. Hence 4 = GK Λ > GK(SocΛ N)
and

3 ≥ GK(SocΛ N) ≥ GK(C ⊗D) = GK C + GKD = 2 + 1 = 3.

Let V = D/I be a simple D-module for some maximal left ideal I of D. The
endomorphism ring

ε ≡ ε(V ) ≡ EndD(V )
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is a skew field and V = DVε is a (D, ε)-bimodule (in this situation we write endo-
morphisms from ε on the right). The induced (A, ε)-bimodule

A(V ) := A⊗D V =
⊕
i≥0

X i ⊗ V(4.10)

is a filtered A-module

A(V ) =
⋃
i≥0

A(V )i, A(V )i =
⊕
j≤i

Xj ⊗ V.

Note that every A(V )i is a (D, ε)-bimodule. A nonzero element u ∈ A(V ) can be
uniquely written as a sum

u = 1⊗ u0 +X ⊗ u1 + · · ·+Xn ⊗ un, ui ∈ V, un 6= 0.

The number n := deg u is called the degree of u. Clearly, u∈A(V )deg u\A(V )deg u−1

and deg u is defined by this property. The elements Xn⊗un and un are called the
leading term and the leading coefficient of u respectively. An element from A(V ) is
called monic if its leading coefficient is 1̄ := 1 + I.

The right D-module A is free, so applying the exact functor A⊗D− to the exact
sequence of D-modules: 0→ I → D → V → 0 we obtain the canonical isomorphism
of A-modules:

A/AI → A(V ),
∑

X idi +AI →
∑

X i ⊗ (di + I), di ∈ D.
(4.11)

We identify the A-modules A/AI and A(V ) via (4.11).

Lemma 4.5. Let [M ] ∈ Â(D-torsion). Then M is an epimorphic image of the
A-module A(V ) for some [V ] ∈ D̂.

Proof. Follows immediately from Lemma 4.1.(1).

Lemma 4.6. Suppose A(V ) is a simple Λ-socle A-module for some [V ] ∈ D̂. Then
GK SocΛ A(V ) = 3, i.e. it is a simple non-holonomic Λ-module.

Proof. Observe that SocΛ A(V ) is a simple Λ-module and, for any nonzero u ∈
A(V ), the C ⊗ K[X ]-submodule C ⊗ K[X ]u of A(V ) is free. Choose u from
SocΛ A(V ). Then 3 ≥ GK SocΛ A(V ) ≥ GK(C⊗K[X]C⊗K[X ]u) = GKC⊗K[X ] =
GKC + GKK[X ] = 2 + 1 = 3, i.e. GK SocΛ A(V ) = 3.

Let R be a ring and let J be a left ideal ofR. The ring I(J) = {r ∈ R | Jr ⊆ J} is
called the idealizer of J , and is easily seen to be the largest subring of R containing
J as an ideal. The ring Ī(J) = I(J)/J is called the eigenring of J . This acts,
by right multiplication, on the module R/J and it can be checked that Ī(J) is
canonically isomorphic to the endomorphism ring EndR(R/J) of the R-module
R/J : (v ↔ (fv : 1 + J → v)). In this case we write endomorphisms from
EndR(R/J) on the right, i.e. (u)fv = uv. We identify Ī(J) and EndR(R/J) via
the isomorphism above. We have

EndD(D/I) ≡ Ī(I) = ann D/I(I) ⊆ D/I,(4.12)

EndA(A/AI) ≡ Ī(AI) = ann A/AI(I) ⊆ A/AI ≡ A(V ),(4.13)

where ann D/I(I) = {u ∈ D/I : Iu = 0}, etc. Set E = E(A/AI) for the endo-
morphism ring EndA(A/AI). The ring E is a filtered ring, E =

⋃
i≥0 Ei, where

Ei = E ∩ A(V )i (EiEj ⊆ Ei+j for all i, j ≥ 0). Clearly, E0 = ε.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIMPLE HOLONOMIC MODULES 2207

Define H0 = {i : Ei−1 6= Ei}. Then 0 ∈ H0 (I · 1 ⊗ 1̄ = 0). Let ui =∑i
j=0 X

j ⊗ λij ∈ Ei\Ei−1 (λij ∈ V, λii 6= 0); then

0 = Iui =
i∑

k=0

Xk ⊗
i∑

k≤j
(−1)j−k

(
j

k

)
δj−k(I)λij ,

or, equivalently,
i∑

k≤j
(−1)j−k

(
j

k

)
δj−k(I)λij = 0, k = 0, . . . , i.(4.14)

If k = i, then Iλii = 0, so 0 6= λii ∈ ε. Therefore, for every i ∈ H0 there exists

ui =
i∑

j=0

Xj ⊗ λij ∈ Ei\Ei−1 with λii = 1̄ = 1 + I.(4.15)

The set {ui, i ∈ H0} from (4.15) is a left and right ε-basis of E :

E =
⊕
i∈H0

εui =
⊕
i∈H0

uiε, Ei =
⊕
j≤i

εuj =
⊕
j≤i

ujε.

By (4.15), E =
⊕

j≤i Ei is an H0-filtered domain and H0 is an additive submonoid
of N0.

Let i ∈ H0 and let j be the maximal positive element of H0 with j < i. For
λ ∈ ε, λui − uiλ ∈ Ej . Suppose H0 6= 0. Let m be the minimal positive element of
H0 and let g > 0 be the greatest common divisor of the elements of H0. Evidently,
Z ≥ ZH0 = gZ. Choose 0 < i, j ∈ H0 such that g = j − i. All elements

i2 + (k + li)g = lgi+ (i− k)i+ kj, k = 0, . . . , i− 1, l ≥ 0,

belong to H0, thus the following definition is correct. The starting point sp(H0)
of H0 is the minimal nonzero h ∈ H0 such that ig ∈ H0 for all i ≥ hg−1. Thus
for any k ∈ H0 the set H0\{k + H0} is finite. The existence of the starting point
guarantees that for each j = 0, . . . , g−1m− 1 there exists a minimal element mj of
H0 with mj ≡ jg (mod m). We have a partition

H0 =
g−1m−1⋃
j=0

(mj +mN0).(4.16)

The subring R of E generated by ε and um is the differential operator ring

R = ε[um; ∂], ∂λ = umλ− λum, λ ∈ ε.(4.17)

By (4.15),

∂µ̄ = λm0µ− µλm0 −
m∑
j=1

(−1)jδj(µ)λmj + I, µ̄ = µ+ I ∈ ε.(4.18)

For u, v ∈ E , deg(u + v) ≤ max{deg u, deg v} and deg(uv) = deg u+ deg v.

Lemma 4.7. Suppose that H0 6= 0. Then
1. Each proper left (right) factor module of E is a finite dimensional left (right)
ε-vector space, so the ring E satisfies the restricted minimum condition and
is a Noetherian domain;
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2208 V. BAVULA AND F. VAN OYSTAEYEN

2. the ring E is a finitely generated free left and right R-module

E =
g−1m−1⊕
j=0

Rumj =
g−1m−1⊕
j=0

umjR.

Proof. Evident.

Denote by Mon E (respectively Irr.mon E) the set of all (respectively monic and
irreducible) elements of E ; and by SubmodA(V ) (resp. Max.submodA(V )) the set
of all (resp. maximal A-submodules) of A(V ). Denote by Sim.facA(V ) the set of
isoclasses of simple epimorphic images of the A-module A(V ).

Proposition 4.8. Let [V = D/I] ∈ D̂.
1. Any proper factor module (resp. submodule) of A(V ) has finite (resp. infinite)

length as a left D-module;
2. any nonzero homomorphism of the A-module A(V ) is a monomorphism;
3. the map

MonE → SubmodA(V )\{0}, v → Av,(4.19)

is a bijection with inverse 0 6= N → {0 6= v = X i ⊗ 1̄ + · · · ∈ N has minimal
degree i}, where 1̄ = 1 + I ∈ V ; and A(V ) = A(V )i−1⊕Av, where i = deg v;

4. let v, u ∈Mon E. Then Av ⊆ Au iff v = wu for some w ∈Mon E. Hence, the
map

Irr.monE → Max.submodA(V ), v → Av,(4.19.1)

is a bijection;
5. any nonzero submodule of A(V ) is isomorphic to A(V );
6. the A-module A(V ) is simple iff (ann A(V ) I ≡ Ī(AI) ≡) E = ε.
7. The map

Irr.monE → Sim.facA(V ), v → [A(V )/Av],(4.20)

is surjective; and the D-length lD(A(V )/Av) = deg v <∞.
8. every nonzero Λ-submodule (A-submodule) of A(V ) is essential, hence the
A-module A(V ) is indecomposable;

9. if the A-module A(V ) is not simple, then SocΛ A(V ) = 0 and any nonzero
finitely generated Λ-submodule of A(V ) has Gelfand-Kirillov dimension 3;

10. for any v ∈ E\ε:
⋂∞
i=1 Avi = 0.

Proof. 1. Let 0 6= u ∈ A(V )i\A(V )i−1 (i ≥ 0). Then A(V )i−1 +Au = A(V ) and
the result follows lD(A(V )/A(V )i−1) = lDA(V )i = i + 1 <∞ and lDA(V ) =∞,
where lDM is the length of a D-module M .

1 ⇒ 2. Evident.
3. Let N be a nonzero A-submodule of A(V ) and let v = X i ⊗ 1̄ + · · · , (1̄ =

1 + I ∈ V ) be a nonzero element of N of minimal degree i. The element v is
uniquely defined. Then v ∈ ann A(V ) I ≡ E and N ∩ A(V )i−1 = 0. It follows from
A(V )i−1 +Av = A(V ) and Av ⊆ N , that A(V ) = A(V )i−1 ⊕N = A(V )i−1 ⊕Av,
hence N = Av, i.e. the map (4.19) is surjective. A monic element v′ has minimal
degree in the module Av′. By the uniqueness of v′, the map (4.19) is injective.

4. Let Av ⊆ Au for some nonzero u, v ∈ Mon E . Then v and u are nonzero
elements of the submodules Av and Au of minimal degree. By 2, the A-module
Au is isomorphic to A(V ) and Av is a submodule of Au. By the surjectivity of
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the map (4.19), v = wu for some w ∈ E . If v = wu, for some w, u ∈ Mon E , then
Av ⊆ Au. If, in addition, deg w ≥ 1, then Av ⊂ Au. It follows that the map
(4.19.1) is correctly defined and bijective, in view of (4.19).

2⇒ 5; 3 ⇒ 6; and 4 ⇒ 7.
8. Suppose M and N are nonzero Λ-submodules of A(V ) with M ∩N = 0. Then

C−1
∗ M and C−1

∗ N are nonzero A-submodules of A(V ) with C−1
∗ M ∩ C−1

∗ N = 0.
The module C−1

∗ M can be considered as an A-submodule of the factor module
A(V )/C−1

∗ N . By 1, the former has infinite D-length but the latter has finite, a
contradiction.

9. If SocΛ A(V ) is nonzero, then it is a simple Λ-module (since, by 8, any nonzero
Λ-submodule is essential) and the localization C−1

∗ (SocΛ A(V )) is the simple A-
submodule of A(V ). By 5, the A-module A(V ) is simple, a contradiction. Thus
SocΛ A(V ) = 0.

By the canonical Λ-monomorphism

L := Λ/Λ ∩ AI → A(V ) ≡ A/AI, u+ Λ ∩ AI → u+AI, u ∈ Λ,

we identify L with its image in A(V ). The left ideal Λ ∩ AI is nonzero, since
C−1
∗ (Λ∩AI) = AI 6= 0. The Λ-module L is a proper factor module of Λ. It follows

from Lemma 4.2.(1) that GKL ≤ 3. Let M be a nonzero cyclic Λ-submodule
of A(V ). By 8, N = M ∩ L 6= 0 and GKN ≤ 3, hence the Λ-module M is
not isomorphic to ΛΛ (Lemma 4.2(2)). Thus any nonzero finitely generated Λ-
submodule P of A(V ) has Gelfand-Kirillov dimension ≤ 3. If GKP = 2 for some
P , then P contains a simple Λ-submodule, hence SocΛ A(V ) 6= 0, a contradiction,
i.e. GKP = 3 for any nonzero finitely generated Λ-module P of A(V ).

10. Evident (degree argument).

Observe that every k-finite dimensional A-module is D-torsion. So,

Â(D-torsion) = Â(k-fin.dim) ∪ Â(D-torsion, k-inf.dim),(4.21)

where a simple D-torsion A-module belongs to the first, respectively the second
set, if it is k-finite respectively k-infinite dimensional. By Proposition 4.8, Lemma
4.1.(3) and Lemma 4.6,

Â(D-torsion, k-inf.dim) = {[A(V )], where AA(V ) is simple},(4.22)

Â(k-fin.dim) = ∪{Sim.facA(V ), where AA(V ) is not simple},(4.23)

where Sim.facA(V ) is the set of isoclasses of simple epimorphic images of the A-
module A(V ). A module M is called GK-critical provided any proper factor module
of M has Gelfand-Kirillov dimension less than GKM .

Theorem 4.9. The map

Λ̂(holonomic)\Ĉ ⊗ Â→ Â(k-fin.dim), [M ]→ [A⊗Λ M ],(4.24)

is bijective with inverse [N ]→ [SocΛN ].

Proof. For [M ] ∈ Λ̂(holonomic)\Ĉ ⊗ Â, M̃ := A⊗Λ M is the (nonzero) simple A-
module with SocΛ M̃ = M . By Lemma 4.4, the A-module M̃ is D-torsion, hence,
by Lemma 4.5, M̃ is an epimorphic image of A(V ) for some [V ] ∈ D̂. By Lemma
4.6, M̃ is a proper epimorphic image of the non-simple A-module A(V ) and, by
(4.23), [M̃ ] ∈ Â(k-fin.dim). So, the map (4.24) is well-defined and injective, since
SocΛ M̃ = M .
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It remains to be proved that for every non-simple A-module A(V ) the Λ-socle
of every simple epimorphic image N of A(V ) has Gelfand-Kirillov dimension 2, i.e.
is holonomic (then, evidently, [N ] ∈ Λ̂(holonomic)\Ĉ ⊗ Â and N = A⊗Λ SocΛ N ,
i.e. the map [N ] → [SocΛN ] is inverse to (4.24)). Let [V = D/I] ∈ D̂ for some
maximal left ideal I of D. Let N be a simple epimorphic image of the A-module
A(V ) ≡ A/AI. By Proposition 4.8.(7), N = A(V )/Av for some irreducible monic
element v = v′ + AI (v′ ∈ A) of E ≡ Ī(AI) ≡ ann A(V ) I ⊆ A(V ) ≡ A/AI. By
Proposition 4.8.(5), we have the A-module isomorphism

(·)v : A(V )→ Av, u→ uv.(4.25)

The algebra Λ is somewhat commutative. Fix a finite dimensional filtration of the
algebra Λ =

⊕
i≥0 Λi such that the associated graded algebra gr Λ =

⊕
i≥0 Λi/Λi−1

is affine commutative. The A-module A(V ) is not simple, so any nonzero finitely
generated Λ-submodule of A(V ) has Gelfand-Kirillov dimension 3 (Proposition
4.8.(9)). Choose a nonzero finitely generated Λ-submodule, say M , of A(V ) which
has minimal possible multiplicity e(M) (such a module exists because of Lemma
2.2 and additivity of multiplicity (2.3)). Then M is GK-critical (if not, then there
is a nonzero submodule L of M with GK(M/L) = 3. We have the exact sequence
of Λ-modules: 0 → L → M → M/L → 0 with GKL = GKM = GK(M/L) = 3,
hence, by (2.3), e(L) = e(M) − e(M/L) < e(M) which contradicts the choice of
M). By Proposition 4.8.(10) we have the descending chain of A-submodules

A(V ) ⊃ Av ⊃ · · · ⊃ Avi ⊃ · · · , with
∞⋂
i=1

Avi = 0

and each factor Avi/Avi+1 is isomorphic to N (since the map vi : A(V ) → Av,
u → uvi, is the A-module isomorphism, Proposition 4.8). There exists i ≥ 0:
M ⊆ Avi and M 6⊆ Avi+1. On the one hand, the nonzero finitely generated Λ-
submodule Q = M/M ∩ Avi+1 is a submodule of Avi/Avi+1 ' N . On the other
hand, Q is a proper factor module of the critical Λ-module M , so GKQ = 2. The
Λ-module Q is holonomic, hence, it contains a simple holonomic submodule, say U .
Evidently, U = SocΛ N .

Remark. In the proof of the last step of the theorem above we have not used the
irreducibility of v. So, in fact, we have proved the following corollary.

Corollary 4.10. Suppose the A-module A(V ) is not simple for some [V ] ∈ D̂.
Then any proper factor module of A(V ) contains a simple holonomic Λ-submodule
from Λ̂(holonomic)\Ĉ ⊗ Â.

Corollary 4.11. Let M be a nonzero simple Λ-module and let M̃ = A⊗ΛM . Then

1. M̃ = 0 ⇔ [M ] ∈ Ĉ ⊗ Â;
2. 1 ≤ dimk M̃ <∞ ⇔ [M ] ∈ Λ̂(holonomic)\Ĉ ⊗ Â;
3. dimk M̃ =∞ ⇔ [M ] ∈ Λ̂(non-holonomic).

Hence, M is holonomic (resp. non-holonomic) iff dimk M̃ < ∞ (resp. M con-
tains a free C ⊗K[X ]-module of rank 1).

Proof. 1. It follows from Proposition 4.3.
2 and 3 follow from Theorem 4.9.
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Corollary 4.12. Let [V = D/I] ∈ D̂ for a maximal left ideal I of D such that the
A-module A(V ) ≡ A/AI is not simple (i.e. the left ideal AI of A is not maximal)
and let v = ṽ + AI (ṽ ∈ A) be an irreducible element of the ring E = E(A/AI).
Then

1. the Λ-module

M(I, ṽ) := Λ/Λ ∩ A(I, ṽ)

is a Λ-submodule of A(V ), hence,

[SocΛ M(I, ṽ) = SocΛ A(V )/Av] ∈ Λ̂(holonomic)\Ĉ ⊗ Â;

2. let J be a left ideal of Λ which contains Λ ∩ A(I, ṽ) and J/Λ ∩ A(I, ṽ) =
SocΛ M(I, ṽ). Then the left ideal a := J ∩ C of C is nonzero and for any
nonzero element a ∈ a,

[SocΛ M(I, ṽ) ' Λ/Λ ∩ A(I, ṽ)a−1] ∈ Λ̂(holonomic)\Ĉ ⊗ Â.

So, any element of Λ̂(holonomic)\Ĉ ⊗ Â is an isoclass of some Λ-module
Λ/Λ∩A(I, ṽ)a−1 (for some I, ṽ and a as above). Two such simple Λ-modules
are isomorphic, Λ/Λ ∩ A(I, ṽ)a−1 ' Λ/Λ ∩ A(I∗, ṽ∗)a−1

∗ , iff the simple A-
modules A/A(I, ṽ) and A/A(I∗, ṽ∗) are isomorphic.

Proof. 1. Evident.
2. It follows from Theorem 4.8 and Lemma 2.7.

5. The simple holonomic D(D1 ⊗D2)-modules

Let K be an algebraically closed field of characteristic zero and let the algebra

Λ = C ⊗A

be the tensor product of rings of differential operators with coefficients from a
regular commutative affine domain of Krull dimension 1: C = ∆(D1) and A =
∆(D2), D = D2. The algebra Λ is isomorphic to the ring of differential operators
∆(D1 ⊗ D2) (Lemma 2.5). We keep the notation from Section 4. In this section
the simple holonomic Λ-modules will be described.

Repeating the same argument (as in Section 4) for the ring Λ we have the
partition (4.6) and Proposition 4.3 is true, hence there is the partition

Λ̂(holonomic) = Ĉ ⊗ Â ∪ Λ̂(holonomic)\Ĉ ⊗ Â.

The sets Ĉ and Â were described in Section 3. So, in order to finish the classification
of Λ̂(holonomic) it remains to describe Λ̂(holonomic)\Ĉ ⊗ Â. We keep notation of
Section 3 for the algebra A ≡ ∆(D) (substituting the letter A for ∆). Fix an
element c ∈ D as in Lemma 2.1.(1) applied to the ring A = ∆(D), i.e.

Ac = Dc[X ; δ]

is an Ore extension for some X and some derivation δ. The algebras A and Ac are
subalgebras of the algebra B = l[X ; δ] which is the localization of A at D∗ = D\{0}
or the localization of Ac at Dc\{0}. We have the inclusion

Λ = C ⊗A ⊆ Λc = C ⊗Ac
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of algebras. Observe that the algebra Λc is of the type considered in Section 4, so
the simple holonomic Λc-modules are described. Recall that k is the full quotient
ring of C. The algebra

A := C−1
∗ Λc = k ⊗Ac = k ⊗Dc[X ; δ] = Dc[X ; δ],

is the Ore extension where D = k ⊗D, Dc = k ⊗Dc.

Theorem 5.1. The map

Λ̂(holonomic)\Ĉ ⊗ Â→ Λ̂c(holonomic)\Ĉ ⊗ Âc, [M ]→ [Mc],(5.1)

is bijective with inverse [N ]→ [SocΛ N ].

Proof. Observe that if [M ] ∈ Λ̂(holonomic)\Ĉ ⊗ Â, then Mc 6= 0 (otherwise, [M ] ∈
Ĉ ⊗ Â, since c ∈ A) and, by Proposition 2.3, Mc is a simple holonomic Λc-module.
Since SocC M = 0 (otherwise, [M ] ∈ Ĉ⊗Â) and SocC L 6= 0 for every [L] ∈ Ĉ⊗Âc,
we conclude that [Mc] ∈ Λ̂c(holonomic)\Ĉ ⊗ Âc, i.e. the map (5.1) is well-defined.

To finish the proof it suffices to show that each [N ] ∈ Λ̂c(holonomic)\Ĉ ⊗ Âc
has nonzero SocΛ N . If we take any nonzero cyclic Λ-submodule, say L, of N ,
then N = Lc. By Proposition 2.3, L is a holonomic Λ-module, hence, L contains a
simple Λ-submodule. i.e. SocΛ N 6= 0.

Corollary 5.2. Let M be a nonzero simple Λ-module and let M̃ = A⊗ΛM . Then
1. M̃ = 0 ⇔ [M ] ∈ Ĉ ⊗ Â;
2. 1 ≤ dimk M̃ <∞ ⇔ [M ] ∈ Λ̂(holonomic)\Ĉ ⊗ Â;
3. dimk M̃ =∞ ⇔ [M ] ∈ Λ̂(non-holonomic).

Hence, M is holonomic (resp. non-holonomic) iff dimk M̃ < ∞ (resp. Mc

contains a free C ⊗K[X ]-module of rank 1).

Proof. It follows from Theorem 5.1 and Corollary 4.11.

There are natural algebra monomorphisms:

Λ = C ⊗A→ Λc = C ⊗Ac → A = k ⊗Ac = Dc[X ; δ].

Observe that the algebra A is the localization A = S−1Λ of Λ at the Ore subset
S =

⋃∞
j=0 C∗c

j of Λ. The next corollary follows immediately from Theorem 5.1,
Corollary 4.12 and Lemma 2.7.

Corollary 5.3. Let [V = Dc/I] ∈ D̂c for a maximal left ideal I of Dc such that the
A-module A(V ) ≡ A/AI is not simple and let v = ṽ+AI (ṽ ∈ A) be an irreducible
element of the ring E = E(A/AI). Then

1. the Λ-module

M(I, ṽ) := Λ/Λ ∩ A(I, ṽ)

is a Λ-submodule of A(V ), hence,

[SocΛ M(I, ṽ) = SocΛ A(V )/Av] ∈ Λ̂(holonomic)\Ĉ ⊗ Â;

2. let J be a left ideal of Λ which contains Λ ∩ A(I, ṽ) and J/Λ ∩ A(I, ṽ) =
SocΛ M(I, ṽ). Then the set a := J ∩ S of S =

⋃∞
j=0 C∗c

j is non-empty and
for any element a ∈ a,

[SocΛ M(I, ṽ) ' Λ/Λ ∩ A(I, ṽ)a−1] ∈ Λ̂(holonomic)\Ĉ ⊗ Â.
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So, any element of Λ̂(holonomic)\Ĉ ⊗ Â is an isoclass of some Λ-module
Λ/Λ ∩A(I, ṽ)a−1 for some I, ṽ and a as above. Two such simple Λ-modules
are isomorphic, Λ/Λ ∩ A(I, ṽ)a−1 ' Λ/Λ ∩ A(I∗, ṽ∗)a−1

∗ , iff the simple A-
modules A/A(I, ṽ) and A/A(I∗, ṽ∗) are isomorphic.

6. A holonomicity criterion of D(R)-modules (R is regular

of Krull dimension 2)

Let R be a regular commutative affine domain over the algebraically closed field
K of characteristic zero. Let ∆(R) = D(R) be the ring of differential operators
with coefficients from R. For the first Weyl algebra A1 = A1(K) we denote by k
its full quotient ring (the first Weyl skew field). In this section we give a criterion
(Theorem 6.1) when a finitely generated ∆(R)-module is holonomic in terms of
finite dimensionality of some left vector spaces over the first Weyl skew field.

Fix

∆(R)→
s∏
i=1

∆(R)ci , ci ∈ R, i = 1, . . . , s,

a faithfully flat extension as in Lemma 2.1. Every ring

∆(R)ci = ∆(Rci) = Rci [Xi,1, ∂/∂Yi,1][Xi,2, ∂/∂Yi,2]

is an iterated Ore extension (as in Lemma 2.1) and contains the second Weyl algebra
A

(i)
2 :

∆(R)ci ⊇ A
(i)
2 := C(i) ⊗A(i), C(i) = K[Yi,1][Xi,1, ∂/∂Yi,1],

A(i) = K[Yi][Xi, ∂/∂Yi], Xi = Xi,2, Yi = Yi,2.

The algebras {A(i), C(i)} are isomorphic to the first Weyl algebra. Denote by
ki = (C(i)

∗ )−1C(i) the Weyl skew field associated with C(i). Note the second Weyl
algebra A(i)

2 = C(i) ⊗A(i) is the example of the algebra Λ = C ⊗A from Section 4.
The localization A(i) of A(i)

2 at C(i)
∗ is the Ore extension

A(i) = ki ⊗A(i) = ki ⊗K[Yi][Xi, δi = ∂/∂Yi].

Theorem 6.1. Let M be a finitely generated ∆(R)-module. Then
1. the ∆(R)-module M is holonomic ⇔ dimki A(i) ⊗

A
(i)
2

Mci < ∞ for i =
1, . . . , s;

2. the ∆(R)-module M is non-holonomic ⇔ i exists such that dimki A(i) ⊗
A

(i)
2

Mci = ∞ ⇔ there exists a free C(i) ⊗K[Yi]-submodule of Mci of rank 1 for
some i.

Proof. It follows immediately from Theorem 2.4(2), (3) and Corollary 4.11.
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