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Ultrasensitive and selective determination of biomarkers of the bone

metabolism in serum is crucial for early screening, timely treatment, and

monitoring of the curative effect of osteoporosis, which is a silent disease

with serious health threats. Immunoassay with a simple sensing interface and

ultrahigh sensitivity is highly desirable. Herein, a simple electrochemical

immunosensor is demonstrated based on gold nanoparticles (AuNPs)

electrodeposited on chitosan-reduced graphene oxide (CS-G) composite

modified electrode, which can achieve sensitive determination of the

important biomarker of bone metabolism, bone gamma-carboxyglutamate

protein (BGP). To overcome the agglomeration of graphene and introduce a

biocompatible matrix with functional amino groups, CS-G is prepared and

modified on the supporting glassy carbon electrode (GCE). Then, AuNPs are

electrodeposited on CS-G through their interaction between amine groups of

CS. The immobilized AuNPs provide numerous binding sites to immobilize anti-

BGP antibodies (AbBGP). The specific recognition between BGP and AbBGP

results in a reduction in the mass transfer of the electrochemical probe

(Fe(CN)6
3-/4-) in solution, leading to a reduced electrochemical signal. Based

on this mechanism, fast and ultrasensitive electrochemical detection of BGP is

achievedwhen the concentration of BGP ranges from 100 ag ml−1 to 10 μg mL−1

with a limit of detection (LOD) of 20 ag ml−1 (S/N = 3). The determination of BGP

in human serum is also realized with high reliability.
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Introduction

Osteoporosis is a silent disease that has become a serious

health problem after cardiovascular disease. Osteoporosis is a

systemic bone disease characterized by decreased bone mass and

damage to the microstructure of bone tissue, leading to increased

bone fragility and susceptibility to fractures (Walker-Bone et al.,

2002; Rachner et al., 2011; Cheatham et al., 2017). In addition, the

incidence of osteoporosis increases significantly with age. It is

well known that fractures are the most common manifestation of

osteoporosis. For instance, an osteoporotic fracture occurs every

3 s in the world. About 50% of women and 20% of men will

experience the first osteoporotic fracture after the age of 50 years,

and 50% of these patients might have a second osteoporotic

fracture. Fractures may affect daily activities in mild cases, and

patients will lose their ability to move independently or lead to

cardiovascular and cerebrovascular accidents in severe cases

(Price and Thompson, 1995; Afsarimanesh et al., 2018a; Lima

et al., 2019). Bone mineral density (BMD) is mainly used to

diagnose and monitor the curative effect of osteoporosis. Until

now, methods to measure BMD include dual-energy X-ray

absorptiometry (DXA), quantitative computed tomography

(QCT), peripheral DXA, and quantitative ultrasound (QUS).

However, these methods cannot accurately and quantitatively

assess bone quality and are susceptible to problems such as

osteophytes and calcification. In addition, the optimal

treatment stage is often missed when bone density is

abnormal. Unlike the slowly changing parameters of BMD,

abnormal situations in markers of the bone metabolism might

be detectable only within a few weeks (Farley et al., 1981;

Christenson, 1997; Ivaska et al., 2005; Afsarimanesh et al.,

2016; Afsarimanesh et al., 2018b). Combining imaging data

and level of bone metabolism markers can realize early

screening, timely treatment, and monitoring of curative effects

of osteoporosis. Therefore, rapid and sensitive detection of bone

metabolism markers is of great significance.

Osteocalcin, also known as bone gamma-carboxyglutamate

protein (BGP), is an important biomarker of the bone

metabolism. BGP has a molecular weight of ~5.8 kDa and

consists of 49 amino acids. Its total amount accounts for

15–20% of the non-collagen protein in bone tissue. BGP is

synthesized and secreted by osteoblasts and ~50% of its

content enters the blood circulation. The main physiological

function of BGP is to maintain the normal mineralization rate of

bone, inhibit the formation of abnormal hydroxyapatite crystals,

and inhibit the mineralization rate of cartilage (Calvo et al., 1996;

Ivaska et al., 2005). Thus, serum BGP level can reflect the activity

state of osteoblasts. Generally, the faster the bone turnover rate,

the higher the BGP value. For instance, primary osteoporosis is

the high conversion type, so BGP is significantly elevated. On the

contrary, senile osteoporosis is a low-conversion type, resulting

in no obvious increase in BGP (Ingram et al., 1994; Gundberg

et al., 2002). Therefore, changes in BGP can be used to identify

the types of osteoporosis and provide important references for

studying the pathogenesis of bone diseases. The development of a

convenient analysis of BGP with convenient fabrication, high

sensitivity, good reliability, and low cost is highly desirable.

Electrochemical techniques have shown great potential in

biological and environmental analyses (Yan et al., 2021a; Zheng

et al., 2021; Gong et al., 2022a; Ma et al., 2022a; Wang et al.,

2022). The electrochemical sensing platforms have been proven

to offer the advantages of simple instrumentation, convenient to

use, free of tedious pretreatment, easy integration, and

miniaturization compared to chromatography methods which

need trained operators and costly equipment (Lu et al., 2021a; Lu

et al., 2021b; Zhang Y. et al., 2022). Furthermore, matrix effects

caused by colorful contaminants can be effectively avoided

compared with colorimetric and spectrographic strategies (Lu

et al., 2021c). The construction of modified electrodes with good

biocompatibility, high electron transfer rate, and easy

immobilization of recognitive ligands is crucial to improving

the performance of electrochemical sensors (Lin et al., 2020; Ma

et al., 2020; Yan et al., 2020; Yan et al., 2021b; Wang et al., 2021).

Recently, the introduction of functional nanomaterials to

improve detection sensitivity and stability has become an

important strategy to fabricate electrochemical sensors (Ma

et al., 2022b; Zhang M. et al., 2022). Reduced graphene oxide

(G) is a carbon nanomaterial with sp2-hybridized carbon atoms

tightly packed into a single-layer two-dimensional (2D)

honeycomb lattice structure. Owing to excellent optical,

electrical, and mechanical properties and high charge

transport properties, graphene has shown great potential in

the fields of sensors, energy storage, and drug delivery (Gong

et al., 2022b; Zou et al., 2022). However, G is prone to

agglomerate because of the strong π–π interaction between

graphene sheets. Biofunctionalization of graphene is effective

to improve its hydrophilicity and biocompatibility (Kang et al.,

2009; Jirakunakorn et al., 2020). Chitosan (CS), the product from

natural polysaccharide chitin obtained through the removal of

part of the acetyl group, has the characteristics of easy

degradation and good biocompatibility. Numerous amino

groups in CS can be used to immobilize functional substances

such as proteins or nanoparticles (Qiu et al., 2009; Zhang J. et al.,

2022). However, direct modification of electrodes using CS

suffers from high interfacial resistance as CS is a non-

conductive material. When G and chitosan are combined, the

intercalation of CS between graphene layers can prevent the

agglomeration of G sheets. On the other hand, reduced graphene

oxide with a large conjugated structure can improve the

conductivity of chitosan materials. In addition, chitosan-

reduced graphene oxide nanocomposites (CS-G) can also

provide a biocompatible microenvironment for biomolecules,

which effectively promotes the maintenance of their activity

(Kang et al., 2009). Gold nanoparticles (AuNPs) have also

been widely used in bioanalysis due to their excellent electron

transport ability, easy preparation, good biocompatibility, and
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controllable surface characteristics (Chen et al., 2018; Sarfraz and

Khan, 2021; Tai et al., 2022). Combining CS-G with AuNPs is

expected to easily construct high-performance electrochemical

biosensors for highly sensitive detection of BGP.

In this work, we present a simple electrochemical

immunoassay platform for sensitive detection of the

important biomarker of the bone metabolism, bone gamma-

carboxyglutamate protein (BGP), in human serum. As illustrated

in Figure 1, chitosan–graphene nanocomposite (CS-G) is easily

prepared and modified on the supporting glassy carbon electrode

(GCE). Then, AuNPs are electrodeposited on CS-G through their

interaction between amine groups of CS. The immunosensor

(AbBGP/AuNPs/CS-G/GCE) is finally obtained after anti-BGP

antibodies (AbBGP) are immobilized on AuNPs followed by the

blocking of the non-specific sites with bovine serum albumin

(BSA). The specific binding of BGP on the immunorecognitive

interface results in a reduction in the mass transfer of the

electrochemical probe (Fe(CN)6
3-/4-) in solution, which leads

to a reduced electrochemical signal. Based on this mechanism,

fast and sensitive electrochemical detection of BGP is achieved.

Combined with the advantages of simple fabrication, high

sensitivity, good selectivity, and reproductivity, the

immunosensor has great potential for sensitive and convenient

detection of BGP in biological samples.

Materials and methods

Chemicals and materials

BGP antigen and anti-BGP antibody were purchased from

Nanjing Okay Biotechnology Co., Ltd. (China). Prostate-specific

antigen (PSA), carcinoembryonic antigen (CEA), carcinoma

antigen 125 (CA125), and carcinoma antigen 199 (CA199)

were purchased from Beijing KEY-BIO Biotech Co., Ltd.

(China). S100 calcium-binding protein β was purchased from

Proteintech (China). Potassium ferricyanide (K3[Fe(CN)6],

99.5%), potassium ferricyanide (K4[Fe(CN)6], 99.5%), bovine

serum albumin (BSA), potassium chloride (KCl, analytical

reagent-AR), chloroauric acid (HAuCl4·3H2O, 99.9%), sodium

borohydride (NaBH4, 98%), sodium citrate (98%), and chitosan

were purchased from Aladdin Biochemical Technology Co., Ltd.

(China). Ethanol (99.8%) was purchased from Hangzhou

Gaojing Fine Chemical Co., Ltd. (China). A glassy carbon

electrode (GCE, 3 mm in diameter) was purchased from CHI

instrument Co., Ltd. (China). Phosphate buffer solution (PBS) is

prepared by Na2HPO4 and NaH2PO4. Ultrapure water

(18.2 MΩ cm) used in the experiments is prepared by the

Mill-Q system (Millipore Company).

Measurements and instrumentations

The morphologies of G synthesized without the protection of

CS, CS-G, and AuNPs/CS-G were investigated by scanning

electron microscope (SEM, SU8010, Hitachi, Japan) with an

acceleration voltage of 10 kV. The morphologies of GO and

CS-G were investigated by transmission electron microscope

(TEM, JEM-2100, JEOL, Japan) with an acceleration voltage

of 200 kV. Energy dispersive X-ray spectroscopy (EDS) was

performed on SU8010 SEM. The UV-Vis spectrum was

measured using an ultraviolet spectrophotometer (UV-2450,

Shimadzu, Japan). Fourier transform infrared spectroscopy

(FT-IR) was measured using a Vertex 70 spectrometer

FIGURE 1
Schematic illustration for the simple fabrication of immunoanalysis interface and the following electrochemical detection of BGP.
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(Bruker, United States) through the KBr tablet method. X-ray

photoelectron spectroscopy (XPS) analysis was carried out on a

PHI5300 electron spectrometer using 250 W, 14 kV, Mg Kα
radiation (PE Ltd., United States). Raman spectra were

measured using a 960FT-Raman spectrometer (Thermo

Nicolet, United States). The XRD pattern was measured using

a D8 Advance X-ray diffractometer (Bruker, Germany).

Electrochemical impedance spectroscopy (EIS), cyclic

voltammetry (CV), and differential pulse voltammetry (DPV)

measurements were performed on an Autolab (PGSTAT302N)

electrochemical workstation (Metrohm, Switzerland). All

electrochemical measurements were performed at room

temperature using a conventional three-electrode system. In

brief, Ag/AgCl was used as the reference electrode. A

platinum wire electrode was used as the counter electrode,

and bare or modified GCE was used as the working electrode.

The scanning rate for CV scanning was 50 mV/s. The parameters

for DPV measurements included step potential (0.005 V), pulse

amplitude (0.05 V), pulse time (0.05 s), and interval time (0.2 s).

Synthesis of CS-G

Graphene oxide (GO) was prepared from natural graphite by

a modified Hummers method (Santhiago et al., 2015). To prepare

chitosan-modified composites (CS-G), GO dispersion (4 ml,

1 mg ml−1) was mixed with an aqueous solution of CS (36 ml,

0.25%, wt%, pH = 3) (Liu et al., 2012). A homogeneous dispersion

was obtained by sonicating for 30 min. Then, hydrazine hydrate

(50 wt%, 20 ml) was added to the above dispersion under rapid

stirring and reacted in a water bath at 80°C for 3 h. The solid was

collected by centrifugation at 15,000 rpm followed by washing

three times with 0.1 mM HCl solution to remove the remaining

CS. The CS-G was subsequently obtained and re-dispersed.

Synthesis of AuNPs

Gold nanoparticles (AuNPs) were prepared by the

electrodeposition method (Wu et al., 2015). A typical three-

electrode system was adopted including a modified GCE as the

working electrode, an Ag/AgCl electrode (saturated KCl) as the

reference electrode, and a platinum sheet electrode as the counter

electrode. In brief, the modified GCE was immersed in 0.5%

HAuCl4, and a constant potential of −0.5 V for 2 s was applied.

The electrode was then rinsed with ultrapure water.

Fabrication of the immunosensor

GCE is used as the supporting electrode for the construction

of the immunosensors. Before use, GCE was sequentially

polished with 0.3 and 0.05 μm alumina slurry, and then

ultrasonically cleaned in ethanol and ultrapure water for 60 s,

respectively. The polished GCE has a glossy mirror under natural

light. Then, 10 μL CS-G (0.25 mg ml−1) was drop-coated on the

polished GCE. The obtained electrode was dried at 60 °C and

denoted as CS-G/GCE. To electrodeposit AuNPs, CS-G/GCE

was further immersed in 0.5% HAuCl4 and a constant potential

of −0.5 V (vs. Ag/AgCl) for 2 s was applied. The electrode was

then rinsed with ultrapure water to obtain AuNPs/CS-G/GCE.

To fabricate the immunorecognitive interface, the BGP antibody

(40 μL, 100 μg ml−1) was drop-coated on the surface of AuNPs/

CS-G/GCE. After incubation at 37°C for 60 min, the electrode

surface was rinsed with PBS (0.1 M, pH = 7.4) to remove

unbound antibodies. The obtained electrode was then

incubated with BSA solution (1%, wt%) for 60 min to block

the non-specific sites followed by rinsing with PBS (0.1 M, pH =

7.4). The as-prepared immunosensor was denoted as AbBGP/

AuNPs/CS-G/GCE.

Electrochemical determination of BGP

The AbBGP/AuNPs/CS-G/GCE immunosensor was

incubated with different concentrations of BGP (antigen) at

37°C for 40 min. KCl (0.1 M) containing Fe(CN)6
3-/4-

(2.5 mM) was applied as the electrolyte. The electrochemical

signal of the Fe(CN)6
3-/4- in the electrolyte before and after BGP

binding was measured. For the real sample analysis, BGP in

human serum (healthy male, provided by Shanxi Bethune

Hospital, China) was determined using the standard addition

method. To simulate the different BGP concentrations of

osteoporosis patients, artificial BGP was added to the serum.

Then, serum with added BGP was diluted by a factor of 50 with

electrolyte and determined using the developed immunosensor.

Results and discussion

Easy fabrication of the immunosensor

Figure 1 illustrates the fabrication of the immunosensing

interface. As illustrated, chitosan–graphene nanocomposite (CS-

G) is prepared and modified on a glassy carbon electrode (GCE).

The nanocomposite could overcome the agglomeration of

reduced graphene oxide and introduce a biocompatible matrix

with functional amino groups. Then, AuNPs are electrodeposited

on CS-G, and the interaction between amine groups of CS and

AuNPs/CS-G/GCE is obtained. Electrochemical synthesis of

AuNPs has received much interest due to its controllable and

green procedure. It is a simple, rapid, and convenient technique

that can produce AuNPs with controlled characteristics (e.g.,

particle size, crystallographic orientation, mass, thickness, and

morphology) by simply adjusting the electrodeposition

parameters (Mohanty, 2010). The time-saving and
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environment-friendly electrodeposition process overcomes the

drawbacks of chemical synthesis including the use of extra

reagents, contamination from precursor molecules, and

unwished by-products (Shein et al., 2009; Shedbalkar et al.,

2014). Furthermore, more firm AuNP adherence to substrates

can be realized by the electrodeposition method and facilitates

the construction of the ultimate electrochemical device (Tai et al.,

2022). The electrodeposited AuNPs provide numerous binding

sites to immobilize anti-BGP antibodies (AbBGP). After blocking

the non-specific sites with bovine serum albumin (BSA), the

immunosensor, denoted as AbBGP/AuNPs/CS-G/GCE, is finally

obtained. For the determination of BGP, the commonly used

electrochemical probe, Fe(CN)6
3-/4-, is applied as the solution-

based redox indicator. When BGP specifically interacts with

AbBGP on the surface of the electrode, the formed

antigen–antibody complex hinders the mass transfer of

Fe(CN)6
3-/4- in solution, leading to a significantly reduced

electrochemical signal. Based on this mechanism, fast and

sensitive electrochemical detection of BGP is achieved.

Characterization of CS-G composite and
AuNPs/CS-G-modified electrode

The structure and morphology of CS-G are characterized by

ultraviolet-visible spectroscopy (UV-Vis), Fourier transform

infrared spectroscopy (FT-IR), and scanning electron

microscopy (SEM). As shown in the inset of Figure 2A, the

GO dispersion is a brown solution, while the CS-G dispersion is a

black solution. The doping amount of chitosan on the CS-G

nanocomposite is investigated by changing the mass ratio

between the original GO and CS. Three ratios between CS

and GO (5.62, 11.2, and 22.5) are employed to synthesize the

CS-G nanocomposite. However, the synthesized dispersion can

produce a large amount of precipitation after standing for 2 h at

the low GO/CS ratio (5.62 and 11.2), which is attributed to the

agglomeration of G when the protective agent CS is less. On the

contrary, the high ratio between the used CS and GO (22.5) leads

to stable dispersion of CS-G nanocomposite without

precipitation. Thus, this doping amount of chitosan is chosen

for further investigation. Figure 2A shows the UV-Vis absorption

spectra of GO and CS-G. It can be seen that GO has two

characteristic absorption peaks at 230 and 300 nm,

corresponding to the π–π* transition of conjugated C-C=C

and the n-π* transition of C=O, respectively (Ang et al., 2009;

Guo et al., 2010). After being composited with CS, the absorption

peak at 230 nm is red-shifted to 268 nm, indicating that GO is

reduced and the electronic conjugation within the graphene

sheets is restored upon hydrazine hydrate reduction (Li et al.,

2008). In addition, the absorption peak at 300 nm disappears,

further indicating the reduction of GO by hydrazine and the

restoration of the conjugated carbon structure (Liu et al., 2012).

These results prove the successful preparation of reduced

graphene oxide. The changes in chemical composition during

the preparation of CS-G are further characterized by FT-IR. As

shown in Figure 2B, the characteristic peaks of hydroxyl and

amino (3,400 cm−1), amide carbonyl (1,656 cm−1), N-H

(1,597 cm−1), C-N (1,320 cm−1), and glycosidic bonds

(1,156 cm−1) appear in the FT-IR spectrum of CS. In addition,

the spectrum also reveals the characteristic absorption of

saturated C-H (2,918 cm−1, 2,880 cm−1, 1,422 cm−1, 1,380 cm−1)

(Mauricio-Sánchez et al., 2018). In the case of reduced graphene

oxide (rGO), that was synthesized in absence of CS, the

absorption peak (1,560 cm−1) attributed to the conjugated

C-C=C framework significantly increases, indicating that GO

was successfully reduced (Zhou et al., 2022). However, rGO still

has a weak O=C-OH absorption peak (1730 cm−1) because the

carboxyl group is difficult to be reduced. CS-G shows the

FIGURE 2
(A) UV-Vis absorption spectrum of GO and CS-G. Insets are photographs of GO (left) and CS-G (right) solutions. (B) FT-IR spectra of CS, rGO,
and CS-G. The rGO was synthesized by reduction of GO using the same procesure but without CS.
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absorption peak basically consistent with CS, indicating that CS

does not change during the composite process (Li et al., 2008;

Mianehrow et al., 2016). At the same time, the absorption peak of

C-C=C proves the successful composite between CS and

graphene.

X-ray photoelectron spectroscopy (XPS) is employed to

analyze the structure and composition of GO and CS-G. As

revealed by Supplementary Figures S1A,B (in supporting

information-SI), the high-resolution C1s spectrums of GO and

CS-G show four types of carbon atoms including C-C/C=C

(284.6 eV, sp2 C), C-O (286.6 eV, epoxy and alkoxy), C=O

(287.8 eV), and O-C=O (289.1 eV). However, the peak associated

with C-/C=C becomes more dominant in CS-G, and the peaks

related to the oxygen-containing carbon bonds especially C-O

distinctly decrease, indicating the good reduction of GO (Zhou

et al., 2022). Meanwhile, a new peak corresponding to the C-N

bond appears at 286.0 eV in the spectrum of CS-G (Su et al.,

2009), which is ascribed to the intercalation of chitosan. The N1s

spectrum of CS-G shows two peaks at 399.9 and 401.9 eV,

attributing to the N atom in -NH2 and/or -NH- groups and

protonated species (-NH3
+) of CS, respectively (Supplementary

Figure S1C) (Jurado-López et al., 2017). These results confirm the

successful synthesis of the CS-G nanocomposite.

Raman spectroscopy is one of the most powerful techniques

to characterize the structural and electronic properties of

graphene and its derivates (Zhu et al., 2010). There are

usually two main features in the Raman spectrum of

graphene, including the G band arising from the first order

scattering of the E2g phonon of sp2 C atoms (usually observed at

~1,575 cm−1) and the D band arising from a breathing mode of κ-
point photons of A1g symmetry (~1,350 cm −1) (Guo et al., 2010).

As shown in Supplementary Figure S2, the G band and D band

are observed in spectra of both CS-G and GO. The relative

intensity of the D band and G band is proportional to the average

size of the sp2 domains (Guo et al., 2010), which increase from

0.87 of GO to 1.5 of CS-G, indicating the successful reduction of

GO and the synthesis of CS-G.

The crystal structures of GO and CS-G are investigated by

XRD. Supplementary Figure S3 shows the XRD patterns of CS-G

and GO. As shown, GO has a feature diffraction peak at 2θ =

10.2° (001) with an interlayer d001 spacing of 0.864 nm (Patil

et al., 2009; Zhu et al., 2010). For CS-G, the peak located at 10.2°

becomes significantly weaker, confirming the great reduction of

GO. A new peak located at 22° appears in the case of CS-G,

related to the backbone of CS, suggesting the successful synthesis

of CS-G (Mianehrow et al., 2016). Transmission electron

microscope (TEM) images of GO and CS-G are displayed in

Supplementary Figure S4. As shown, GO exhibits a thin stacked

lamellar structure with some wrinkles (Rathnayake et al., 2017).

After being reduced by hydrazine hydrate and combined with CS,

the characteristic wrinkled sheet structure is retained, and some

shadows corresponding to CS can be observed, which illustrates

the successful synthesis of CS-G.

The morphologies of G synthesized without CS, CS-G, and

the following AuNPs/CS-G modified electrode have been

characterized by SEM and energy dispersive spectroscopy

(EDS). A glassy carbon sheet is used to simulate the surface

of GCE. As revealed in Figures 3A rGO that is reduced from GO

by hydrazine without the protection of CS exhibits crumpled and

aggregated structure owing to the possible aggregation

(Abdolhosseinzadeh et al., 2015; Maddumage et al., 2022).

When G is reduced in the presence of CS, the obtained CS-G

exhibits a characteristic structure with the wrinkled sheet

(Figure 3B). In addition, AuNPs with an approximate

diameter of 40 nm uniformly distributed on the CS-G surface

(Figure 3C). Energy dispersive spectroscopy (EDS) result further

suggests the successful synthesis of CS-G and assembling of

AuNPs (Figures 3D–F). The optimization of the amount of

CS-G modification is studied by dropping 10 μL of CS-G with

a different concentration on GCE. The peak currents obtained on

the as-prepared CS-G/GCE in Fe(CN)6
3-/4- probe solution are

compared. As shown in Supplementary Figure S5, the peak

currents decrease as the amount of modified CS-G on the

electrode increases, resulting from the poor conductivity of CS

which may hinder the electron transfer. Thus, the optimal

concentration of CS-G is set as 0.1 mg ml−1.

Fabrication of immunosensor

The feasibility of the construction of the immunosensor is

verified by electrochemical monitoring of the changes in the

electrode interface during the modification. Figure 4A shows

the CV and the corresponding DPV (inset) curves obtained on

different electrodes in Fe(CN)6
3-/4- solution. As shown,

Fe(CN)6
3-/4- displays a pair of reversible redox peaks on

GCE. When a layer of CS-G is modified on the surface of

GCE, the peak current decreases, and the peak-to-peak

difference increases. This is attributed to the poor electrical

conductivity of CS. Further assembly of AuNPs could be

achieved by forming Au-amine bonds between AuNPs and

abundant -NH2 groups on CS-G. AuNPs/CS-G/GCE has a

larger peak current and smaller peak-to-peak difference than

CS-G/GCE due to the excellent electrical conductivity of

AuNPs. The BGP antibody is then immobilized on AuNPs

followed by blocking the non-specific site with BSA. BGP can

bind on the as-prepared immunosensor through specific

recognition between antigen and antibody. As seen, the peak

current of the electrode decreases, and the peak-to-peak

difference increases upon BGP binding. When BGP forms a

non-conductive layer on the electrode surface, the electron

transfer of the electrochemical probes on the electrode

interface is hindered. These results demonstrate the

successful construction of the immunosensor. According to

CV curves obtained on GCE, CS-G/GCE, and AuNPs/CS-G/

GCE (Figure 4A), the standard heterogeneous rate constant (ks)
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can be calculated by the following Nicholson equation

(Nicholson, 1965):

ψ � (D0/DR)α/2ks
[D0πv(nF/RT)]1/2,

where DO and DR are the diffusion coefficients of Fe(CN)6
3- and

Fe(CN)6
4-, respectively. DO = DR = 1 × 10–5 cm2 s−1 v is the scan

rate of CV. n is the number of electrons transferred (n = 1). F is

the Faraday constant (96,485 C mol−1). R is the gas constant

(8.314 J mol−1 K−1). T is the absolute temperature (T = 298 K).

The value of ψ can be obtained according to the peak-to-peak

difference of CV. Thus, ks of GCE, CS-G/GCE, and AuNPs/CS-

G/GCE are calculated as 9.4 × 10–3 cm s−1, 4.3 × 10–3 cm s−1, and

4.7 × 10–3 cm s−1, respectively. As can be seen, after the

FIGURE 3
SEM image of G synthesizedwithout the protection of CS (A), CS-G (B), and AuNPs/CS-G (C)modified glassy carbon sheet. EDS of GO (D), CS-G
(E), and AuNPs/CS-G (F). Inset in (F) is the magnified EDS of the Au section.

FIGURE 4
CV (A) and EIS (B) curves obtained on different electrodes including GCE, CS-G/GCE, AuNPs/CS-G/GCE, AbBGP/AuNPs/CS-G/GCE, and BGP/
AbBGP/AuNPs/CS-G/GCE. The electrolyte solution is Fe(CN)6

3-/4- (2.5 mM) containing 0.1 M KCl. Inset in (A) includes the corresponding DPV curves.
Insets in (B) are equivalent circuits of detection (left) and the enlarged view of the EIS curves at the high frequency region.
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modification of poor conductive CS-G, ks of CS-G/GCE

decreased obviously compared to GCE, which can be

alleviated by the immobilization of AuNPs with good

electrochemical properties.

Supplementary Figure S6A displays CV curves obtained on

GCE or AuNPs/CS-G/GCE in PBS (0.1 M, pH = 5), where the

non-Faraday current is proportional to the double layer

capacitance (Cdl) and can act as a quantitative indicator of the

electrochemical active surface area (ECSA) of electrodes (Wei

et al., 2019). As seen, a remarkably increased capacitive current

(~7 fold increasing) is observed on AuNPs/CS-G/GCE compared

with that of GCE, suggesting an enlarged ECSA owing to the

decoration of AuNPs. In addition, two apparent redox peaks at

~1.1 and ~0.55 V are observed on AuNPs/CS-G/GCE attributing

to the decorating of AuNPs (Sierra-Rosales et al., 2018). At the

same time, AuNPs/CS-G/GCE demonstrates larger

decomposition currents and reduced decomposition potentials

for both the anodic and cathodic limits, indicating an improved

electroanalytical reactivity. The exact ECSA of GCE is calculated

to be 0.06644 cm2 using reversible probe K3[Fe(CN)6] by the

Randles-Sevcik equation (Supplementary Figure S6B) (Alam and

Deen, 2020). The ECSA of AuNPs/CS-G/GCE is 0.465 cm2,

indicating a highly increased active surface through the

modification.

Electrochemical impedance spectroscopy (EIS) is also used to

investigate the changes in the electrode interface during sensor

construction. As shown in Figure 4B, each EIS curve consists of a

semicircle in the high-frequency region and a linear part in the

low-frequency region, where the former represents electron

transfer-limited processes and the latter represents diffusion-

limited processes. The left inset of Figure 4B illustrates the

illustration of the equivalent circuit, which contains solution

resistance (Rs), double-layer capacitance (Cdl), Warburg

impedance (Zw), and apparent charge transfer resistance (Rct).

The right inset is an enlarged view of the high-frequency region

curves. The equivalent diameter of the semicircle in the high-

frequency region is the apparent charge transfer resistance Rct.

The Rct of different electrodes is summarized in Supplementary

Table S1. As seen, after modifying GCE with CS-G that has CS

with poor conductivity, the Rct of CS-G/GCE demonstrates a

distinct increasement compared with that of GCE. Thanks to the

excellent electrochemical property of AuNPs, the Rct of AuNPs/

CS-G/GCE decreases. After the combination of AbBGP and BGP,

the Rct further increases, indicating the successful construction of

the immunosensor.

Electrochemical determination of BGP

Differential pulse voltammetry (DPV) is used to investigate

the detection performance of the constructed immunosensor.

Figure 5A presents the DPV curves obtained after incubating

different concentrations of BGP on the immunosensors. As seen,

the peak current decreases with increasing BGP concentration.

This is attributed to the formation of the antigen–antibody

complex through bio-specific recognition, which inhibits the

electron transfer of the electrochemical probe on the electrode

interface. This hindering effect becomes more obvious with the

increase of bound antigen. When the concentration of BGP

ranges from 100 ag ml−1 to10 μg mL−1, the peak current (I) of

the electrode has a linear relationship with the logarithmic value

of BGP concentration (logCBGP) (Figure 5B, I = -0.571 logCBGP

+9.94, R2 = 0.990). The limit of detection (LOD) is 20 ag ml−1 (S/

N = 3). A comparison between the determination of BGP using

different methods is demonstrated in Supplementary Table S2

(Khashayar et al., 2017; Inal Kabala et al., 2019; Han et al., 2020;

Bi et al., 2021). The LOD is lower than that obtained from the

iron oxide material modified interdigitated electrode (IOM/IDE)

(Bi et al., 2021), chemiluminescent immunoassay (Han et al.,

2020), ethyl acetate/1,4-butanediol diglycidyl ether/6-

mercaptohexanol modified gold electrode (EA/1,4-BED/6-

MCH/AuE) (Inal Kabala et al., 2019), and AuNP-modified

gold electrode (AuNPs/AuE) (Khashayar et al., 2017). The

detection linear range is wider than that obtained using IOM/

IDE, EA/1,4-BED/6-MCH/AuE, and AuNPs/AuE mentioned

earlier. In comparison with other detection strategies (e.g.,

electrochemiluminescence), the electrochemical sensor has the

advantages of simple instrumentation, easy operation, and the

potential for the detection of colored or opaque samples (Zhang

et al., 2020; Zhu et al., 2022).

Selectivity, reproducibility, and stability of
the constructed immunosensor

To investigate the selectivity of the constructed

immunosensor, the AbBGP/AuNPs/CS-G/GCE is incubated

with other tumor markers including prostate-specific antigen

(PSA), carcinoma antigen 125 (CA125), S100 calcium-binding

protein β (S-100β), cancer antigen 125 (CA125), and cancer

antigen 199 (CA199). As shown in Figure 6A, the peak current of

the electrode did not change significantly in the presence of one

of these abovementioned proteins. Even if BGP is mixed with all

of these tumor markers, the peak current of the electrode is not

significantly different from that obtained with BGP alone. This

result proves the specific recognition ability between antigen and

antibody, indicating the excellent selectivity of the constructed

immunosensor. The signal stability, inter-electrode

reproductivity, and storage stability of the constructed

immunosensor are also investigated. After the immunosensor

is incubated with BGP, the electrochemical signal of the electrode

was measured five consecutive times. A relative standard

deviation (RSD) of the current value is 1.4% (Figure 6B). The

reproducibility of the immunosensor electrodes was evaluated by

preparing five electrodes in the same batch. The RSD for

detecting BGP is 2.4% (Figure 6C). When the immunosensors
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FIGURE 5
(A) DPV curves obtained on the developed immunosensors after incubation with different concentrations of BGP. (B) Corresponding linear
regression curve. Error bars represent the standard deviation of three measurements.

FIGURE 6
(A) Relative ratio of the current (I/I0) obtained on the developed immunosensors before (I0) and after (I) incubation with prostate-specific
antigen (PSA, 1 ng ml−1), S100 calcium-binding protein β (S100β, 1 ng ml−1), carcinoembryonic antigen (CEA, 1 ng ml−1), carcinoma antigen 125
(CA125, 1 μUmL−1), carcinoma antigen 199 (CA199, 1 μUmL−1), BGP (1 ng ml−1), or themixture of the above proteins. Repeatability (B), inter-electrode
reproducibility (C), and storage stability (D) of the fabricated immunosensor. Error bars represent the standard deviation of threemeasurements.
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are stored in a refrigerator at 4°C, the storage stability is studied

using the peak measured on the first day and after storage,

respectively. The immunosensor retains ~90% of its original

performance after 6 days of storage, indicating high stability.

Determination of BGP in human serum

To evaluate the potential of the constructed immunosensor

for practical application, the concentrations of BGP in human

serum were determined by the standard addition method.

Different concentrations of BGP are artificially added to the

serum of a healthy man to simulate the different BGP

concentrations of patients with osteoporosis. As shown in

Supplementary Table S3, the immunosensor exhibits good

recoveries ranging from 96.9 to 106.2% and low relative

standard deviations (RSD <2.5%), suggesting good reliability

and great potential in real sample analysis.

Conclusion

In this article, an immunosensor is easily fabricated through a

simple and convenient method, which can realize highly sensitive

electrochemical detection of the biomarker of the bone metabolism,

bone gamma-carboxyglutamate protein (BGP). The modification of

the electrode with the chitosan–graphene nanocomposite (CS-G)

increases the active area of the electrode and provides abundant

amino sites to further anchor gold nanoparticles (AuNPs). On the

one hand, AuNPs further improve the electron transfer at the

electrode interface, and on the other hand, AuNPs could be used

for the immobilization of recognitive antibodies. The specific

binding of BGP to the recognitive antibody hinders the electron

transfer of the electrochemical probe on the electrode surface,

resulting in the reduction of the electrochemical signal. Based on

this mechanism, a highly sensitive electrochemical detection of BGP

is achieved when the concentration of BGP ranges from 100 ag ml−1

to 10 μg ml−1 with a limit of detection of 20 ag ml−1 (S/N = 3). The

constructed immunosensor exhibits excellent selectivity, good

reproducibility, and high stability. The determination of BGP in

human serum is also achieved with high reliability. The simple

construction and good performance of the developed

immunosensor provide an efficient strategy for convenient and

sensitive determination of bone metabolic markers.
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