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Abstract

Background: Bioinformatics data analysis toolbox needs general-purpose, fast and easily
interpretable preprocessing tools that perform data integration during exploratory data analysis.
Our focus is on vector-valued data sources, each consisting of measurements of the same entity
but on different variables, and on tasks where source-specific variation is considered noisy or not
interesting. Principal components analysis of all sources combined together is an obvious choice if
it is not important to distinguish between data source-specific and shared variation. Canonical
Correlation Analysis (CCA) focuses on mutual dependencies and discards source-specific "noise"
but it produces a separate set of components for each source.

Results: It turns out that components given by CCA can be combined easily to produce a linear
and hence fast and easily interpretable feature extraction method. The method fuses together
several sources, such that the properties they share are preserved. Source-specific variation is
discarded as uninteresting. We give the details and implement them in a software tool. The method
is demonstrated on gene expression measurements in three case studies: classification of cell cycle
regulated genes in yeast, identification of differentially expressed genes in leukemia, and defining
stress response in yeast. The software package is available at http://www.cis.hut.fi/projects/mi/
software/drCCA/.

Conclusion: We introduced a method for the task of data fusion for exploratory data analysis,
when statistical dependencies between the sources and not within a source are interesting. The
method uses canonical correlation analysis in a new way for dimensionality reduction, and inherits
its good properties of being simple, fast, and easily interpretable as a linear projection.

Combining evidence from several heterogeneous data  ciently detailed modeling assumptions, data

sources is a central operation in computational systems

biology. We

such that each source consists of measurements from the
same object or entity, but on different variables.

assume several vector-valued data sources,  how transcriptional regulation works, for

In modeling in general, when it is possible to make suffi-

integration is

in principle straightforward. Given a statistical model of

instance, the

Bayesian framework tells how to integrate gene expression
data, prior knowledge, and transcription factor finding
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data. Lots of practical problems of course remain to be
solved. Alternatively, in a classification task of proteins to
ribosomal or membrane proteins, for instance, integra-
tion is likewise straightforward: do the integration such
that the classification accuracy is maximized. This has
been done effectively in semidefinite programming for
kernel methods [1] and using Gaussian Process prior
within the Bayesian framework [2].

In exploratory analysis, that is, when "looking at the data"
to start data analysis while the hypotheses are still vague,
it is not as straightforward to decide how data sources
should be integrated. The task of exploring data is partic-
ularly important for the current high-throughput data
sources, to be able to spot measurement errors and obvi-
ous deviations from what was expected of the data, and to
construct hypotheses about the nature of the data. Nowa-
days in bioinformatics applications this stage is typically
done using dimensionality reduction and information
visualization methods, and clusterings. A good explora-
tory analysis method is (i) fast to apply interactively, (ii)
easily interpretable by the analyst, and (iii) widely appli-
cable. Linear projection methods, as such or as preproc-
essing for clusterings and other methods, fulfill all these
criteria.

Fusing the sources is not trivial since we need to choose
from three very different options. If all sources are equally
important and there is not special reason to do otherwise,
it makes sense to simply concatenate the variables from all
sources together, and then continue with the resulting sin-
gle source. The classical linear preprocessing method for
this case is Principal Component Analysis (PCA). The sec-
ond option is suitable when one of the sources, such as
the class indicator in functional classification tasks, is
known to be of the most interest. Then it is best to include
only those variables or features within each source that are
informative of the class variable. A classical linear method
applicable in this case is linear discriminant analysis. This
second option is supervised, and only applicable when
the class information is available.

The third option is to include only those aspects of each
source that are mutually informative of each other. Those
are the shared aspects, and this task can be motivated
through two interrelated lines of thought. The first is noise
reduction. If the sources are measurements of the same
entity corrupted by independent noise, then discarding
the source-specific aspects will discard the noise. The sec-
ond line of motivation is more abstract, to analyze what is
interesting in the data. Here the different measurement
sources can convey very different kinds of information of
the entities being studied. One example is copy number
aberrations and expression measurements of the same
genes in cancer studies [3], and another is the activation
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profiles of the same yeast gene in several stressful treat-
ments in the task of defining yeast stress response [4]. In
these examples it is what is in common in the sources that
we are really interested in. Note that the "noise" may be
very structured; its effective definition is that it is source-
specific.

Commonalities in data sources have been studied by
methods that search for statistical dependencies between
them. The earliest method was classical linear Canonical
Correlation Analysis (CCA) [5], which has later been
extended to nonlinear variants and more general methods
that maximize mutual information instead of correlation.
Yet, being fast, simple and easily understandable, the lin-
ear CCA still has a special place in the data analysis tool-
box, analogously to the linear Principal Component
Analysis which is still being used heavily instead of all
modern dimensionality reduction and factor analysis
techniques.

CCA addresses the right problem, searching for common-
alities in the data sources. Moreover, being based on
eigenvalue analysis it is fast and its results are interpreta-
ble as linear correlated components. It is not directly usa-
ble as a data fusion tool, however, since it produces
separate components and hence separate preprocessing
for each source. If the separate outputs could be combined
in a way that is both intuitively interpretable and rigorous,
the resulting method could become a widely applicable
dimensionality reduction tool, analogously to PCA for a
single source. Performing dimensionality reduction helps
in avoiding overfitting, focusing on the most important
effects, and reduces computational cost of subsequent
analysis tasks.

In this paper we turn CCA into a data fusion tool by show-
ing that the justified way of combining the sources is sim-
ply to sum together the corresponding CCA components
from each source. An alternative view to this procedure is
that it is equivalent to whitening each data source sepa-
rately, and then running standard PCA on their combina-
tion. This is one of the standard ways of computing CCA,
but for CCA the eigenvectors are finally split into parts
corresponding to the sources. So the connection to CCA is
almost trivial and it is amazing that, as far as we know, it
has not been utilized earlier in this way.

Our contribution in this paper is to point out that CCA
can be used to build a general-purpose preprocessing or
feature extraction method, which is fast, and easily inter-
pretable. There are two alternative interpretations. The
first is the connection to CCA discussed above. The second
is that it extends the standard practice of standardizing the
mean and variance of each variable separately before
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dimensionality reduction. Now each data source is stand-
ardized instead of each variable.

We have developed a practical software tool for R that
incorporates the subtle but crucial choices that need to be
made to choose the dimensionality of the solution. The
method is demonstrated on three collections of gene
expression measurements.

A kernelized version of CCA (KCCA) has been used in spe-
cific data fusion tasks (see e.g. [6,7]) and it could be easily
extended to be used in the same way as the linear CCA
here. We will focus on the linear mappings for two practi-
cal reasons: Computation of the linear version is fast and
the components are more easily interpretable. In particu-
lar, the kernelized version does not reveal which of the
original features cause the dependencies between sources.

Results and Discussion

Algorithm

In this section we first explain a simple two-step proce-
dure, based on whitening and PCA, for finding the aspects
shared by the sources, and then show how the same
fusion solution can equivalently be derived from the
result of applying a generalized CCA to the collection. The
two-step procedure provides the intuition for the
approach: First remove the within-data variation, and then
capture all the variation that is still remaining. The connec-
tion to CCA then demonstrates how the procedure pro-
vides a solution to the issue of combining the separate
components CCA gives.

Denote a collection of p data sets by {X;,...X,}, where
each X;is a m x n; matrix such that m > N, and N = Xn,.
The rows of the matrices correspond to the same object in
each set, while the columns correspond to features that
need not be the same in the data sets. For example, in tra-
ditional expression analyses the rows would be genes and
the columns would be conditions, treatments, time
points, etc. For notational simplicity, we assume zero
mean data.

In the first step, each data set is whitened to remove all
within-data correlations, and the data are scaled so that all
dimensions have equal variance. The whitened version

X; of a data matrix X; is given by X, = X;Wy where
W, is the whitening matrix. The whitening matrix is sim-
ply Wy = C;/ 2, where Cy  is the covariance matrix of

X,

After each data set has been whitened, the next step is to
find the shared variation in them. This is done by princi-
pal component analysis (PCA) on the columnwise con-
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catenated whitened data sets. Since all the within-data
structure PCA could extract has been removed, it can only
find variation shared by at least two of the data sets, and
the maximum variance directions it searches for corre-
spond to the highest between-data correlations.

Formally, applying PCA to the columnwise concatenation
of the whitened data sets 7 = [)_(1, X p] yields the factor-

ization
C,=VAVT, (1)

where the orthonormal matrix V contains the eigenvec-
tors, A is a diagonal matrix of projection variances, and C,
is the covariance matrix of Z.

Projecting Z onto the first d eigenvectors V,; corresponding
to the d largest eigenvalues gives the d principal compo-
nents, which are the optimal d-dimensional representa-
tion in terms of the shared variance. The whole data
collection becomes integrated into

Py=2ZV, (2)

where P, is of size m x d and contains a d-dimensional fea-
ture vector for each of the analyzed objects. The idea is
then simply to use this new representation for any further
analysis, which can be made using any method that oper-
ates on vectorial data. The whole procedure can be seen as
fusing the collection of data sets into a single set, while at
the same time reducing the total dimensionality of the
data to find the most reliable shared effects.

As mentioned in the Background section, the above two-
step procedure is equivalent to running CCA on the col-
lection and summing the separate components from each
source. The connection is derived here for two data sets.
The proof extends easily for several data sets, for one of the
many alternative generalizations of CCA.

CCA is a method for finding linear projections of two sets
of variables so that the correlation between the projec-
tions is maximal. CCA is often formulated as a generalized
eigenvalue problem

Ch Cp)w -2 Ch O u,; (3)
Cy Cy | u, 0 Cy Ju,

where C;; denotes the (cross-)covariance of X; and X;. The
eigenvalues A of the solution appear as pairs 1 + p;, 1 -
Pl + pp 1 - p, 1,1, where p = min(n;, n,), and

(P1/--.pp) are the canonical correlations. The canonical
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weights corresponding to the canonical correlations are

i T TT ,i=
u' =g uy]’, 0= e

In conventional use of CCA we are usually interested in
the correlations, the canonical weights uf, and the canon-
ical scores, defined as projections of X; and X, on the cor-
responding canonical weights. Next we show how the
combined data set (2) can be obtained from the canonical
scores, thus providing a way of using CCA to find a single
representation that captures the dependencies.

For a single component, (1) can be equivalently written as

(::“ (::12 v=av
Cy Cyy

where « is the variance, v is the corresponding principal

component, and (_jij denotes the (cross-)covariance of X,
and )_(]- . Due to the whitening, the C,, and C,, areiden-
tity matrices. We can alternatively write (_;1 , = WITC12W2

and ¢,, =w!c,,w, leadingto

0 w/C,,W,

. v=(a-1)v,
W, CW, 0

where Iv has been subtracted from both sides. Equiva-
lently,

-1

0 Cp )W, 0 w0

12 ! v=(a-1) ! v.
Cy O 0 W, 0 WzT

4)

W 0
Let us denote { 01 W ] by diag [W,, W,], and multiply

2
the right hand side of (4) by the identity matrix I =
diag|W;, W,]-'diag [W;, W,]. On the right side of the
equation we then have the term diag[W,T, W, |- diag|W,,
W,]1=diag [C,;, C,,] based on the definition of the whit-
ening matrix, and thus (4) can be written as

0 Cp. _ C, 0 ).
(C21 0 ]v—(a—l)( 0 Cn]v, (5)

where ¢ = diag[W,, W, ]v - Adding 1y to both sides gives

equation structurally identical to (3). Both methods thus
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lead to the same eigenvalues, i.e. 1 = ¢, and the eigenvec-
tors are related by a linear transformation,

diag[W,;, W, ]v = [ulT,ug T

The combined representation (2) of d dimensions can be
written in terms of canonical scores as P; = ZV,; = [X,

X,|diag[W;, W,]V, = [X;, X,] [U{d,Ug/d]T = XUy +

X,U, ; where U, ;and U, ; are the first d canonical direc-
tions of the two data sets.

CCA can be generalized to more than two data sets in sev-
eral ways [8], and the two-step procedure described here
is equivalent to the one formulated as solving a general-

ized eigenvector problem Cu = ADu, where C is the covar-
iance matrix of the column-wise concatenation of the X;
and D is a block-diagonal matrix having the dataset-spe-
cific covariance matrices C; on its diagonal. Here u is a

row-wise concatenation of the canonical weights corre-
sponding to the different data sets. The proof follows
along the same lines as for two data sets, and again the

combined data set for any 4 < Zfﬂ n; dimensions can be

written in terms of the generalized CCA results as

p
P, = ZXiUi,d'
i=1

where each U; ; contains the d eigenvectors corresponding
to the d largest eigenvalues.

In summary, the simple linear preprocessing method of
whitening followed by PCA equals computing the gener-
alized CCA on a collection of data sets and summing the
canonical scores of the data sets. In practice it does not
matter in which way the result is obtained, but the two-
step procedure illustrates more clearly why this kind of
approach is useful for data integration. Furthermore, it is
not limited to linear projections, and the same motivation
could be extended to different kind of models. In practice
implementing the first step might, however, be difficult in
more complex models.

Choice of dimensionality

The dimensionality of the projection can be chosen to be
fixed, such as two or three for visualization, or alterna-
tively an "optimal" dimensionality can be sought. In this
section we introduce our suggestion for optimizing the
dimensionality. Intuitively, the dimensionality should be
high enough to preserve most of the shared variation and
yet low enough to avoid overfitting. The first few compo-
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nents contain most of the reliable shared variation among
the data sets, while the last components may actually rep-
resent just noise, and thus dropping some of the dimen-
sions makes the method more robust.

The maximum dimensionality is the sum of the dimen-
sionalities of the data sets, but in practice already a consid-
erably smaller dimensionality is often sufficient, and in
fact leads to a better representation due to suppression of
noise. Note also that in the case of two data sets the
number of unique projections is only the minimum of the
data dimensionalities.

In a nutshell, we increase the dimensionality one at a
time, testing with a randomization test that the new
dimension captures shared variation. To protect from
overfitting, all estimates of captured variation will be
computed using a validation set, i.e., for data that has not
been used when computing the components (dimen-
sions). The randomization test essentially compares the
shared variance along the new dimension to the shared
variance we would get under the null-hypothesis of
mutual independency. When the shared variance does not
differ significantly from the null-hypothesis, the final
dimensionality has been reached.

To compute the shared variance of the original data, we
divide the data into training, x! and validation data, x?.

The two step procedure described in the Algorithm subsec-
tion is applied to the training data to compute the eigen-
vectors V! and the whitening matrix W!, where Wt is a
block diagonal matrix containing the whitening matrices
for each matrix in training data. The fused representation

for the validation data is computed as Pj = X"W'V},

where X is the columnwise concatenation of the valida-
tion data matrices. Variance in the fused representation is
now our estimate of shared variance. We average the esti-
mate over 3 different splits into training and validation
sets.

To compute the shared variance under the null hypothe-
sis, random data sets are created from the multivariate
normal distribution with a diagonal covariance matrix
where the values in diagonal equal the columnwise vari-

ances of Xf . The shared variance for the random data is

computed in the same way as described above. We repeat
the process for 50 randomly created data sets.

The shared variance in the original data is then compared
to the distribution of shared variances under the null
hypothesis, starting from the first dimension. When the
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dimensions no longer differ significantly (we used 2%
confidence level), we have arrived at the "optimal"
dimensionality and the rest of the dimensions are dis-
carded.

Note that assuming normally distributed data in the null
hypothesis is consistent with the assumptions implicitly
made by CCA. The underlying task is to capture all statis-
tical dependencies in the new representation, and finding
correlations (as done by CCA) is equivalent to that only
for data from the normal distribution. For considerably
non-normal data the choice of dimensionality may not be
optimal, but neither is the method itself. Therefore trans-
forming the data so that it would roughly follow normal
distribution (such as taking logarithm of gene expression
values) would be advisable.

Implementation

We have implemented the method, including the choice
of dimensionality and the validation measures presented
in the section Validation measures, as an open-source pack-
age for R [See Additional file 1].

Experiments

Validation on gene expression data

We first validate the method on three gene expression data
sets (described in Section Methods), by checking how well
it preserves the shared variation in data sets and discards
the data-specific variation.

In case of two data sets an estimate of mutual information
can be computed directly from the canonical correlations
as

d
(U, X,Us ) = = D log(1 =)

i=1
based on the assumption of normally distributed data.
Consequently we started by confining to pairs of data
sources. Figure 1 shows the results for one of the pairs in
each collection; the rest are analogous. It is evident that
the method retains the shared variation between data sets
and the shared variation increases with increasing number
of dimensions in the combined data.

For more than two variables, the measures explained in
the Methods Section are used. We compare the results with
PCA of the concatenated data matrices. PCA is equally
fast, linear, and unsupervised. Note that the proposed
CCA-based method is also unsupervised as no class infor-
mation is used. Furthermore, since both methods have a
global optimum, differences in performance cannot be
due to optimization issues. The only difference then is
related to the main topic of this paper: whether to model
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Mutual Information. Mutual information for two data sets as a function of the reduced dimensionality. Each subgraph repre-
sents mutual information curve for two data sets corresponding to each data collection. The curves for other pairs in each data

collection show a similar pattern.

all information in the whole data collection, as PCA does,
or only the mutual dependencies.

Shared variance (6) and data-specific (7) variance cap-
tured by the fused data were computed for each of the
three data collections. The presented results are averages
over five-fold cross-validation, and the variances have
always been computed for the left-out data. In addition to
the PCA comparison, we provide baseline results obtained
with random orthonormal projections that have uniform
distribution on the unit sphere.

The results are presented for each of the data sets in Fig-
ures 2, 3, and 4. In all cases it is easily seen that the pro-
posed method retains clearly less data-specific variation
than PCA (bottom subfigures), regardless of the dimen-
sion. The CCA-based method still keeps more variation
than random projections, indicating that it is not purpose-
fully looking for projection directions that would lose
more variation than necessary.

At the same time the proposed method retains more
between-data variation (top subfigures) for wide range of

dimensionalities in all cases. The difference is particularly
clear for the leukemia data (Fig. 2) where the CCA-based
approach is considerably better than the PCA. In stress
data (Fig. 4) the difference is also clear, but PCA is also
very good in comparison to the random baseline. For cell-
cycle data (Fig. 3) the differences are smaller, but for
dimensionalities between 3 and 9 the CCA-based method
is still clearly better.

It is striking that in all three cases the PCA, which simply
aims to keep maximal variation, is the best also in terms
of the shared variation for dimensionality of one. A one-
dimensional projection, however, loses a lot of the varia-
tion and is not too interesting as a summary of several
data sets. Hence, this finding does not have a lot of prac-
tical significance.

One notable observation is that especially for the leuke-
mia data (Fig. 2) the between-data variance of the CCA-
method is, for a wide range of dimensionalities, higher
than the corresponding value for the original collection.
This does not, however, seem to have clear operational
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Figure 2

Shared and Data-specific variation for leukemia data. Shared (top) and data-specific (bottom) variation retained with
CCA (solid line) and PCA (dashed line) as a function of the reduced dimensionality for the leukemia data. The values obtained
by random projections (dash-dotted line and dotted confidence intervals) have been included for reference. The suggested

dimensionality for the CCA-projection is marked with a tick.

meaning but is merely a side-effect of the heuristic meas-
ure.

The curves of extracted variance can be contrasted to the
suggested dimensionalities (see Section Choice of dimen-
sionality), marked with ticks in the plots. For two of the
three data sets the suggested dimensionality is very close
to the maximum point of the between-data variance
curve, and when increasing the dimensionality the result
remains relatively constant, or even decreases for the
leukemia data. While the amount of data-specific varia-
tion still keeps increasing, there is no longer a significant
amount of shared variation available, and the chosen
dimensionality is thus good in terms of these two meas-
ures. For the third data collection, the cell-cycle, the sug-
gested dimensionality is somewhat lower than what is
needed for maximally capturing the between-data varia-
tion. However, as seen in the next section, the chosen
dimensionality is still very good for a practical applica-
tion, providing the best result in the actual case study.

Prototypical Applications

In this section we will discuss a few prototypical ways in
which the method could be applied. The method is a gen-
eral-purpose tool for integrating a collection of data sets in
such a way that the effects common to several sets are
enhanced. After the integration step any analysis method
operating on vectorial data can be used. Here some simple
methods are used for demonstrational purposes. The
applications are demonstrated on the same data sets that
were used in the technical validation.

Shared effects in leukemia subtypes

Pediatric acute lymphoblastic leukemia (ALL) is a hetero-
geneous disease with subtypes that differ markedly in
their cellular and molecular characteristics as well as their
response to therapy and subsequent risk of relapse [9].
Combining the expression measurements of the five dif-
ferent ALL subtypes gives a representation where the genes
that have similar (or more exactly, statistically dependent)
expression profile in several subtypes are similar. Here we
are interested in the genes that are highly (over or under)

Page 7 of 13

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:111

http://www.biomedcentral.com/1471-2105/9/111

Q|
L
T w©
> o]
— ccA
s --- PCA
o | a -=-- Random
o T T T T T T T T T T
1 5 9 13 17 21 25 29 33 37
S
@
0 v |
G ©
>
— CCA
--- PCA
o | FE s ---- Random
o T T T T T T T T T T
1 5 9 13 17 21 25 29 33 37
Dimensionality of the projection
Figure 3

Shared and Data-specific variation for cell-cycle data. Shared (top) and data-specific (bottom) variation retained with
CCA (solid line) and PCA (dashed line) as a function of reduced dimensionality for the cell-cycle data. The values obtained by
random projections (dash-dotted line and dotted confidence intervals) have been included for reference. The suggested dimen-

sionality for the CCA-projection is marked with a tick.

expressed, and thus study the equivalent of differential
expression in the combined data set.

The fusion method was applied to combine the five ALL
data sets, resulting in a 11-dimensional representation.
After this we can proceed as if we only had one data
source. It has a 11-dimensional feature vector for each
gene, and we separate the 1% of genes that have the high-
est distance from the origo, implying highest total contri-
bution to the shared variation. This set of genes is
compared to the corresponding set obtained from a 11-
dimensional PCA projection of the whole collection. In
addition, a baseline result computed from the full con-
catenation of the original data sets is included.

A functional annotation tool, DAVID (Database for Anno-
tation, Visualization and Integrated Discovery) [10] was
used to annotate the gene lists to find the gene ontology
(GO) enrichments in the biological processes category.
The most enriched GO-terms were the same for both CCA
and PCA, which is understandable as we are using two lin-

ear projection methods on the same collection. We picked
the GO-terms which have p-values (Bonferroni corrected)
lower than 0.01, and present the counts of the genes from
these categories in Table 1. The notable observation is that
the CCA-based method has higher count in all but one
category, in which the counts are tied. Both methods thus
reveal the same kinds of processes, all related to immune
response, but CCA is more accurate and is able to include
more genes related to these biological processes in the top
1% genes.

Classification of cell cycle regulated genes in yeast

The second prototype application is about cell-cycle regu-
lation using the gene expression of Saccharomyces cerevisiae
[11]. Expression measurements from 5 different experi-
ments are combined with the proposed method. The com-
bined data is used for the classification of cell-cycle
regulated genes.

As the new representation is simply a real-valued vector

for each gene, several alternative classifiers are applicable;
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Figure 4

Shared and Data-specific variation for stress data. Shared (top) and data-specific (bottom) variation retained with CCA
(solid line) and PCA (dashed line) as a function of the reduced dimensionality for the stress data. The values obtained by ran-
dom projections (dash-dotted line and dotted confidence intervals) have been included for reference. The suggested dimen-

sionality for the CCA-projection is marked with a tick.

here K-nearest neighbor (KNN) classifier is selected for
demonstrational purposes. We use the cell-cycle regulated
genes reported by [11] as the class labels, giving a two-
class classification problem: either a gene is or is not cell-
cycle regulated.

The leave-one-out classification accuracy of CCA and PCA
projections is shown in Figure 5, together with a baseline
obtained by using the full concatenation of the original
data sets. It is evident that the CCA-based method pro-
vides a considerably better representation for separating
the cell-cycle regulated genes from the rest. Already the
one-dimensional CCA-projection gives a higher accuracy
than what is obtained with an eight-dimensional PCA-
projection, and the maximal accuracy is clearly higher for
CCA and obtained already with a three-dimensional rep-
resentation. This is exactly the dimensionality suggested
by the procedure explained in Section Choice of dimension-
ality.

Defining the environmental stress in yeast

We also study yeast gene expression data from [12,13],
consisting of time series of gene expression measurements
of Saccharomyces cerevisiae in various stressful treatments.
The data is combined to study the genes related to general
environmental stress response (ESR).

In [12] the environmental stress response of yeast was
studied based on a broad collection of different treat-
ments, out of which 9 are used in our experiment. The
original analysis relied primarily on a hierarchical cluster-
ing of the whole collection, and was thus based on the
overall similarity of the expression patterns. While it is
able to cluster the genes into sensible categories, it is ide-
ologically comparable to the PCA approach for preproc-
essing: It does not take into account that not all variation
is equally important.

We suggest that it might be a better idea to focus on the
variation shared by the different data sources, instead of
trying to characterize the similarity based on all variation.
Treatment-specific effects would be specific stress
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Table I: GO enrichment by CCA and PCA

http://www.biomedcentral.com/1471-2105/9/111

GO term PCA CCA Baseline
Response to biotic stimulus 53, 2.2E-15 61,2.7E-19 55, 6.2E-17
Defense response 51, I.1E-14 58, 7.3E-18 53, 3.4E-16
Immune response 47, 3.8E-13 54, 9.5E-17 48, 3.9E-14
Response to pest, pathogen, parasite 29, 7.0E-09 30, 1.4E-08 26, |1.4E-06
Response to other organism 29, 3.0E-08 30, 6.1E-08 26, 4.8E-06
Response to stimulus 61, 6.4E-07 75,4.1E-12 62, 2.0E-07
Response to stress 35, 9.5E-06 36, 3.6E-05 31, 1.5E-03
Organismal physiological process 54, 5.7E-05 68, 4.8E-10 55, 2.0E-05
Response to external stimulus 22, 1.8E-04 22, 9.4E-04 19, 1.5E-02
Response to wounding 19, 3.3E-04 20, 2.9E-04 16, 3.8E-02

The enriched gene ontology terms from the biological processes category with p-values (Bonferroni corrected) lower than 0.01. Both CCA and

PCA result in the same 10 terms, and here they are sorted according to the p-value of the gene list obtained with PCA preprocessing. Each cell lists
the count of genes in that term, together with the p-value (Bonferroni corrected). In 9 out of 10 the count is higher for CCA, showing that it is able
to capture relevant genes with better accuracy, avoiding outliers. The baseline method shares 8 common GO terms with CCA/PCA, and the two
different GO enrichments are Antigen presentation, endogeneous antigen (8, 1.5E-4) and Antigen processing, endogeneous antigen via MHC class |

(7, 6.3E-3).

responses and if the task is to find a general response, its
fingerprint is in the shared variation. Thus the analysis of
environmental stress response should start with a pre-
processing step like the one suggested here. We demon-
strate how the results of such approach differ from those
obtained by [12].

We applied a KNN classifier to the combined data space
to classify the genes to belong to the three categories
labeled in [12] (a gene is either up- or down-regulated ESR
gene, or is not coordinately regulated in stress). The accu-
racies of CCA and PCA approaches in this task are pre-
sented in Figure 6. Again a baseline obtained by using the
full concatenation of the original data sets in included.
Though the accuracies are similar for some initial dimen-
sionalities, we notice that the accuracy after preprocessing
by PCA is higher, by a margin of roughly 0.5% to 1%, for
a wide range of dimensionalities including the suggested
dimensionality of combined representation, 22, obtained
with the method of Section Choice of dimensionality. Also,
for the higher dimensionalities the baseline method
which simply uses the original data is better. As argued
above, this does not tell that CCA was the worse preproc-
essing method, but instead suggests that the original
classes have indeed been constructed based on all varia-
tion in the data, including treatment-specific responses.
This is not desirable since the definition of an ESR gene is
that it would be responsive to stress in general. As the data
set has slightly less than 6000 genes this corresponds to a
difference of roughly 30 to 60 misclassifications. This
characterizes the scale of the disagreement between the
two fundamentally different approaches to the preproc-
essing phase.

This result hints that the definitions created after CCA-
based preprocessing would be mostly the same as the ones

given in [12], but for some roughly 5 - 10% of genes the
classification should be changed.

Conclusion

We studied the problem of data fusion for exploratory
data analysis in a setting where the sensible fusion crite-
rion is to look for statistical dependencies between data
sets of co-occurring measurements. We showed how a
simple summation of the results of a classical method of
canonical correlation analysis gives a representation that
captures the dependencies, leading to an efficient and
robust linear method for the fusion task. It does not solve
the data integration task in general, but it shows that the
criterion in the data fusion task should not necessarily be
to keep all the possible information present in the data
collection. Instead, we may want to focus on the aspects
shared by different views. We showed how that can be
achieved with simple and easily applicable methods.

We demonstrated the validity of the method on three dif-
ferent real gene expression data sets using technical crite-
ria. We further presented three examples on how the
method could be used as the preprocessing step in differ-
ent kinds of analysis tasks.

Methods

Data

Leukemia data

We used the data from [9]. A subset of the data for each
leukemia subtype, BCR-ABL, E2A-PBX1, MLL, TEL-AML1
and T-ALL, was chosen such that the patients in each sub-
type are homogeneous. A set of hyperdiploid samples was
used as a control.

We used RMA (Robust Multi-array Analysis) to preprocess

the data, and subtracted the mean of the hyperdiploid
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KNN classification for cell-cycle data. The classification
accuracy obtained using the combined representation as a
function of dimensionality. The CCA-based combination
(solid line) is clearly superior to PCA-based approach
(dashed line) for a wide range of dimensionalities and obtains
higher maximal accuracy. As a baseline, the classification
accuracy obtained by the concatenation of all original data
sets (dotted line) is also included.

samples. In total we analyzed 22,283 genes for 31
patients, divided into 5 data sets.

Cell-cycle data

We used the cell-cycle data from [11]. It includes 3 differ-
ent time courses and 2 different induction experiments. In
the original work the data was used to label a set of 800
genes as potentially cell-cycle regulated genes, based on
similarity with 104 experimentally verified cell-cycle regu-
lated genes.

We preprocessed the data by imputing missing values
with the K-nearest neighbor method, using K = 10. After
that the data was Fourier-transformed, and the power
spectrum was used for the analysis. In the end we had
5,670 genes, including 724 out of 800 cell-cycle regulated
genes defined in [11]. The total number of features in the
5 data sets was 38.

Yeast stress data

We used the yeast gene expression data under various
stress conditions from [12,13]. We picked 15 different
conditions, 9 from [12] and 6 from [13], resulting in 97
dimensions in total. We then combined them in order to
study genes related to general environmental stress
response (ESR).

We normalized all time series with their respective zero-
points, and imputed missing values by gene-wise averages

http://www.biomedcentral.com/1471-2105/9/111

within each data set. After combining the genes from both
sources we got 5,998 genes, out of which 868 were identi-
fied as ESR-genes by [12].

Validation measures

The method aims to keep all the variance that is shared
among the data sets, while ignoring the variation that is
specific to only one of them. In this section we introduce
measures on how well this is achieved in real applications.
Since there is not straightforward way of quantifying the
degree of dependency for several high-dimensional data
sources (correlation is only defined for two variables, and
estimation of multivariate generalizations of mutual
information is difficult), we used two partly heuristic var-
iance-based criteria as comparison measures.

Both measures are based on examining reconstructions of
the original data sets. If an integrated representation P, of
full dimensionality is used then it is naturally possible to
create a perfect reconstruction, but lower dimensionality
introduces errors. We want to measure to what degree the
preserved information was shared and to what degree spe-
cific to individual data sets.

The reconstruction Xl. of the ith data set is obtained by

extracting the columns corresponding to the ith data set

from 7 — p vt and multiplying that by the inverse of the
whitening matrix W;. Here V‘;f is the generalized inverse

of V;, defined as V} - (VdTVd)flVdT'

The first criterion measuring the data-specific variation
after the dimensionality reduction to d dimensions is
defined as

p
Varg = Z Trace(C, ). (6)

i=1

Each term in the sum is simply the variance of a single
reconstruction, and the sum matches the total variation in
the collection of data sets. The measure is further normal-
ized so that the value for d = N, the full dimensionality, is
one.

For the shared variation we measure the pairwise variation
between all pairs of data sets. The measure uses the same
reconstructed data sets, and is defined as

p-1

p
Varp g = Z Z Trace(XiTXj), (7)

i=1 j=i+l
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Figure 6

KNN classification for stress data. The classification accuracy obtained using the combined representation as a function of
dimensionality. The CCA-based combination (solid line) is consistently worse than the PCA-based approach (dashed line),
implying that the class labels might not correlate that well with the true shared response. As a baseline, the classification accu-

racy obtained by the concatenation of all original data sets (dotted line) is also included.

again normalized so that the full dimensionality gives the
value one. It is worth noticing that the sum of pairwise
variations is not a perfect measure for the shared variation
for collections with more than two data sets, but it is com-
putationally simple and intuitive.
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