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Universitätsstraße 25

33615 Bielefeld, Germany

ckennington@cit-ec.

uni-bielefeld.de

David Schlangen

CITEC, Bielefeld University
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Abstract

An elementary way of using language is

to refer to objects. Often, these objects

are physically present in the shared envi-

ronment and reference is done via men-

tion of perceivable properties of the ob-

jects. This is a type of language use that is

modelled well neither by logical semantics

nor by distributional semantics, the former

focusing on inferential relations between

expressed propositions, the latter on simi-

larity relations between words or phrases.

We present an account of word and phrase

meaning that is perceptually grounded,

trainable, compositional, and ‘dialogue-

plausible’ in that it computes meanings

word-by-word. We show that the approach

performs well (with an accuracy of 65%

on a 1-out-of-32 reference resolution task)

on direct descriptions and target/landmark

descriptions, even when trained with less

than 800 training examples and automati-

cally transcribed utterances.

1 Introduction

The most basic, fundamental site of language use

is co-located dialogue (Fillmore, 1975; Clark,

1996) and referring to objects, as in Example (1),

is a common occurrence in such a co-located set-

ting.

(1) The green book on the left next to the mug.

Logical semantics (Montague, 1973; Gamut,

1991; Partee et al., 1993) has little to say about

this process – its focus is on the construction of

syntactically manipulable objects that model infer-

ential relations; here, e.g. the inference that there

are (at least) two objects. Vector space approaches

to distributional semantics (Turney and Pantel,

2010) similarly focuses on something else, namely

semantic similarity relations between words or

phrases (e.g. finding closeness for “coloured tome

on the right of the cup”). Neither approach by it-

self says anything about processing; typically, the

assumption in applications is that fully presented

phrases are being processed.

Lacking in these approaches is a notion of

grounding of symbols in features of the world

(Harnad, 1990).1 In this paper, we present an ac-

count of word and phrase meaning that is (a) per-

ceptually grounded in that it provides a link be-

tween words and (computer) vision features of real

images, (b) trainable, as that link is learned from

examples of language use, (c) compositional in

that the meaning of phrases is a function of that

of its parts and composition is driven by structural

analysis, and (d) ‘dialogue-plausible’ in that it

computes meanings incrementally, word-by-word

and can work with noisy input from an automatic

speech recogniser (ASR). We show that the ap-

proach performs well (with an accuracy of 65%

on a reference resolution task out of 32 objects) on

direct descriptions as well as target/landmark de-

scriptions, even when trained with little data (less

than 800 training examples).

In the following section we will give a back-

ground on reference resolution, followed by a de-

scription of our model. We will then describe the

data we used and explain our evaluations. We fin-

ish by giving results, providing some additional

analysis, and discussion.

2 Background: Reference Resolution

Reference resolution (RR) is the task of resolving

referring expressions (REs; as in Example (1)) to

a referent, the entity to which they are intended to

refer. Following Kennington et al. (2015a), this

can be formalised as a function frr that, given a

representation U of the RE and a representation W

1But see discussion below of recent extensions of these
approaches taking this into account.
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of the (relevant aspects of the) world, returns I∗,

the identifier of one the objects in the world that is

the referent of the RE. A number of recent papers

have used stochastic models for frr where, given

W and U , a distribution over a specified set of can-

didate entities in W is obtained and the probabil-

ity assigned to each entity represents the strength

of belief that it is the referent. The referent is then

the argmax:

I∗ = argmax
I

P (I|U, W ) (1)

Recently, generative approaches, including our

own, have been presented (Funakoshi et al., 2012;

Kennington et al., 2013; Kennington et al., 2014;

Kennington et al., 2015b; Engonopoulos et al.,

2013) which model U as words or ngrams and

the world W as a set of objects in a virtual game

board, represented as a set properties or concepts

(in some cases, extra-linguistic or discourse as-

pects were also modelled in W , such as deixis).

In Matuszek et al. (2014), W was represented as a

distribution over properties of tangible objects and

U was a Combinatory Categorical Grammar parse.

In all of these approaches, the objects are distinct

and represented via symbolically specified prop-

erties, such as colour and shape. The set of prop-

erties is either read directly from the world if it

is virtual, or computed (i.e., discretised) from the

real world objects.

In this paper, we learn a mapping from W to

U directly, without mediating symbolic properties;

such a mapping is a kind of perceptual ground-

ing of meaning between W and U . Situated RR

is a convenient setting for learning perceptually-

grounded meaning, as objects that are referred to

are physically present, are described by the RE,

and have visual features that can be computation-

ally extracted and represented.

Further comparison to related work will be dis-

cussed in Section 5.

3 Modelling Reference to Visible Objects

Overview As a representative of the kind of

model explained above with formula (1), we want

our model to compute a probability distribution

over candidate objects, given a RE (or rather, pos-

sibly just a prefix of it). We break this task down

into components: The basis of our model is a

model of word meaning as a function from per-

ceptual features of a given object to a judgement

about how well a word and that object “fit to-

gether”. (See Section 5 for discussion of prior uses

of this “words as classifiers”-approach.) This can

(loosely) be seen as corresponding to the inten-

sion of a word, which for example in Montague’s

approach is similarly modelled as a function, but

from possible worlds to extensions (Gamut, 1991).

We model two different types of words / word

meanings: those picking out properties of single

objects (e.g., “green” in “the green book”), follow-

ing Kennington et al. (2015a), and those picking

out relations of two objects (e.g., “next to” in (1)),

going beyond Kennington et al. (2015a). These

word meanings are learned from instances of lan-

guage use.

The second component then is the application

of these word meanings in the context of an actual

reference and within a phrase. This application

gives the desired result of a probability distribu-

tion over candidate objects, where the probability

expresses the strength of belief in the object falling

in the extension of the expression. Here we model

two different types of composition, of what we call

simple references and relational references. These

applications are strictly compositional in the sense

that the meanings of the more complex construc-

tions are a function of those of their parts.

Word Meanings The first type of word (or

rather, word meaning) we model picks out a sin-

gle object via its visual properties. (At least, this

is what we use here; any type of feature could be

used.) To model this, we train for each word w

from our corpus of REs a binary logistic regression

classifier that takes a representation of a candidate

object via visual features (x) and returns a proba-

bility pw for it being a good fit to the word (where

w is the weight vector that is learned and σ is the

logistic function):

pw(x) = σ(w⊺
x + b) (2)

Formalising the correspondence mentioned

above, the intension of a word can in this approach

then be seen as the classifier itself, a function from

a representation of an object to a probability:

[[w]]obj = λx.pw(x) (3)

(Where [[w]] denotes the meaning of w, and x is

of the type of feature given by fobj , the function

computing a feature representation for a given ob-

ject.)
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We train these classifiers using a corpus of REs

(further described in Section 4), coupled with rep-

resentations of the scenes in which they were used

and an annotation of the referent of that scene. The

setting was restricted to reference to single ob-

jects. To get positive training examples, we pair

each word of a RE with the features of the refer-

ent. To get negative training examples, we pair the

word with features of (randomly picked) other ob-

jects present in the same scene, but not referred to

by it. This selection of negative examples makes

the assumption that the words from the RE apply

only to the referent. This is wrong as a strict rule,

as other objects could have similar visual features

as the referent; for this to work, however, this has

to be the case only more often than it is not.

The second type of word that we model ex-

presses a relation between objects. Its meaning is

trained in a similar fashion, except that it is pre-

sented a vector of features of a pair of objects,

such as their euclidean distance, vertical and hor-

izontal differences, and binary features denoting

higher than/lower than and left/right relationships.

Application and Composition The model just

described gives us a prediction for a pair of word

and object (or pair of objects). What we wanted,

however, is a distribution over all candidate ob-

jects in a given utterance situation, and not only for

individual words, but for (incrementally growing)

REs. Again as mentioned above, we model two

types of application and composition. First, what

we call ‘simple references’—which roughly cor-

responds to simple NPs—that refer only by men-

tioning properties of the referent (e.g. “the red

cross on the left”). To get a distribution for a sin-

gle word, we apply the word classifier (the inten-

sion) to all candidate objects and normalise; this

can then be seen as the extension of the word in a

given (here, visual) discourse universe W , which

provides the candidate objects (xi is the feature

vector for object i, normalize() vectorized nor-

malisation, and I a random variable ranging over

the candidates):

[[w]]Wobj =

normalize(([[w]]obj(x1), . . . , [[w]]obj(xk))) =

normalize((pw(x1), . . . , pw(xk))) = P (I|w) (4)

In effect, this combines the individual classifiers

into something like a multi-class logistic regres-

sion / maximum entropy model—but, nota bene,

only for application. The training regime did not

need to make any assumptions about the number

of objects present, as it trained classifiers for a 2-

class problem (how well does this given object fit

to the word?). The multi-class nature is also indi-

cated in Figure 1, which shows multiple applica-

tions of the logistic regression network for a word,

and a normalisation layer on top.

σ(w|
x1 + b) σ(w|

x2 + b) σ(w|
x3 + b)

x1 x2 x3

Figure 1: Representation as network with normalisation
layer.

To compose the evidence from individual words

w1, . . . , wk into a prediction for a ‘simple’ RE

[srw1, . . . , wk] (where the bracketing indicates the

structural assumption that the words belong to

one, possibly incomplete, ‘simple reference’), we

average the contributions of its constituent words.

The averaging function avg() over distributions

then is the contribution of the construction ‘sim-

ple reference (phrase)’, sr, and the meaning of the

whole phrase is the application of the meaning of

the construction to the meaning of the words:

[[[srw1, . . . , wk]]]W = [[sr]]W [[w1, . . . , wk]]W =

avg([[w1]]
W

, . . . , [[wk]]W ) (5)

where avg() is defined as

avg([[w1]]
W

, [[w2]]
W ) = Pavg(I|w1, w2)

with Pavg(I = i|w1, w2) =

1

2
(P (I = i|w1) + P (I = i|w2)) for i ∈ I (6)

The averaging function is inherently incre-

mental, in the sense that avg(a, b, c) =
avg(avg(a, b), c) and hence it can be extended “on

the right”. This represents an incremental model

where new information from the current increment

is added to what is already known, resulting in an

intersective way of composing the meaning of the

phrase. This cannot account for all constructions

(such as negation or generally quantification), of

course; we leave exploring other constructions that

could occur even in our ‘simple references’ to fu-

ture work.
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Relational references such as in Exam-

ple (1) from the introduction have a more

complex structure, being a relation between a

(simple) reference to a landmark and a (sim-

ple) reference to a target. This structure is

indicated abstractly in the following ‘parse’:

[rel[srw1, . . . , wk][rr1, . . . , rn][srw
′

1
, . . . , w′

m]],
where the w are the target words, r the relational

expression words, and w′ the landmark words.

As mentioned above, the relational expression

similarly is treated as a classifier (in fact, techni-

cally we contract expressions such as “to the left

of” into a single token and learn one classifier for

it), but expressing a judgement for pairs of objects.

It can be applied to a specific scene with a set of

candidate objects (and hence, candidate pairs) in a

similar way by applying the classifier to all pairs

and normalising, resulting in a distribution over

pairs:

[[r]]W = P (R1, R2|r) (7)

We expect the meaning of the phrase to be a

function of the meaning of the constituent parts

(the simple references, the relation expression, and

the construction), that is:

[[[rel[srw1, . . . , wk][rr][srw
′

1, . . . , w
′

m]]]] =

[[rel]]([[sr]][[w1 . . . wk]], [[r]], [[sr]][[w′

1 . . . w
′

m]]) (8)

(dropping the indicator for concrete application,
W on [[ ]], for reasons of space and readability).

What is the contribution of the relational con-

struction, [[rel]]? Intuitively, what we want to

express here is that the belief in an object be-

ing the intended referent should combine the ev-

idence from the simple reference to the land-

mark object (e.g., “the mug” in (1)), from the

simple (but presumably deficient) reference to

the target object (“the green book on the left”),

and that for the relation between them (“next

to”). Instead of averaging (that is, combining

additively), as for sr, we combine this evidence

multiplicatively here: If the target constituent

contributes P (It|w1, . . . , wk), the landmark con-

stituent P (Il|w
′

1
, . . . , w′

m), and the relation ex-

pression P (R1, R2|r), with Il, It, R1 and R2 all

having the same domain, the set of all candidate

objects, then the combination is

P (R1|w1, . . . , wk, r, w
′

1, . . . , w
′

m) =
∑

R2

∑

Il

∑

It

P (R1, R2|r) ∗ P (Il|w
′

1, . . . , w
′

m)∗

P (It|w1, . . . , wk) ∗ P (R1|It) ∗ P (R2|Il) (9)

The last two factors force identity on the elements

of the pair and target and landmark, respectively

(they are not learnt, but rather set to be 0 unless

the values of R and I are equal), and so effectively

reduce the summations so that all pairs need to be

evaluated only once. The contribution of the con-

struction then is this multiplication of the contri-

butions of the parts, together with the factors en-

forcing that the pairs being evaluated by the rela-

tion expression consist of the objects evaluated by

target and landmark expression, respectively.

In the following section, we will explain the

data we collected and used to evaluate our model,

the evaluation procedure, and the results.

4 Experiments

Figure 2: Example episode for phase-2 where the target is
outlined in green (solid arrow added here for presentation),
the landmark outlined in blue (dashed arrow).

Data We evaluated our model using data we col-

lected in a Wizard-of-Oz setting (that is, a hu-

man/computer interaction setting where parts of

the functionality of the computer system were pro-

vided by a human experimentor). Participants

were seated in front of a table with 36 Pen-

tomino puzzle pieces that were randomly placed

with some space between them, as shown in

Figure 2. Above the table was a camera that

recorded a video feed of the objects, processed

using OpenCV (Pulli et al., 2012) to segment the

objects (see below for details); of those, one (or

one pair) was chosen randomly by the experiment

software. The video image was presented to the

participant on a display placed behind the table,

but with the randomly selected piece (or pair of

pieces) indicated by an overlay).

The task of the participant was to refer to that

object using only speech, as if identifying it for a

friend sitting next to the participant. The wizard
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(experimentor) had an identical screen depicting

the scene but not the selected object. The wiz-

ard listened to the participant’s RE and clicked on

the object she thought was being referred on her

screen. If it was the target object, a tone sounded

and a new object was randomly chosen. This con-

stituted a single episode. If a wrong object was

clicked, a different tone sounded, the episode was

flagged, and a new episode began. At varied in-

tervals, the participant was instructed to “shuffle”

the board between episodes by moving around the

pieces.

The first half of the allotted time constituted

phase-1. After phase-1 was complete, instructions

for phase-2 were explained: the screen showed the

target and also a landmark object, outlined in blue,

near the target (again, see Figure 2). The partici-

pant was to refer to the target using the landmark.

(In the instructions, the concepts of landmark and

target were explained in general terms.) All other

instructions remained the same as phase-1. The

target’s identifier, which was always known be-

forehand, was always recorded. For phase-2, the

landmark’s identifier was also recorded.

Nine participants (6 female, 3 male; avg. age

of 22) took part in the study; the language of

the study was German. Phase-1 for one partici-

pant and phase-2 for another participant were not

used due to misunderstanding and a technical diffi-

culty. This produced a corpus of 870 non-flagged

episodes in total. Even though each episode had

36 objects in the scene, all objects were not always

recognised by the computer vision processing. On

average, 32 objects were recognized.

To obtain transcriptions, we used Google Web

Speech (with a word error rate of 0.65, as deter-

mined by comparing to a hand transcribed sample)

This resulted in 1587 distinct words, with 15.53

words on average per episode. The objects were

not manipulated in any way during an episode, so

the episode was guaranteed to remain static during

a RE and a single image is sufficient to represent

the layout of one episode’s scene. Each scene was

processed using computer vision techniques to ob-

tain low-level features for each (detected) object in

the scene which were used for the word classifiers.

We annotated each episode’s RE with a simple

tagging scheme that segmented the RE into words

that directly referred to the target, words that di-

rectly referred to the landmark (or multiple land-

marks, in some cases) and the relation words. For

certain word types, additional information about

the word was included in the tag if it described

colour, shape, or spatial placement (denoted con-

tributing REs in the evaluations below). The direc-

tion of certain relation words was normalised (e.g.,

left-of should always denote a landmark-target re-

lation). This represents a minimal amount of “syn-

tactic” information needed for the application of

the classifiers and the composition of the phrase

meanings. We leave applying a syntactic parser to

future work. An example RE in the original Ger-

man (as recognised by the ASR), English gloss,

and tags for each word is given in (2).

(2) a. grauer stein über dem grünen m unten links
b. gray block above the green m bottom left
c. tc ts r l lc ls tf tf

To obtain visual features of each object, we used

the same simple computer-vision pipeline of ob-

ject segmentation and contour reconstruction as

used by Kennington et al. (2015a), providing us

with RGB representations for the colour and fea-

tures such as skewness, number of edges etc. for

the shapes.

Procedure We break down our data as follows:

episodes where the target was referred directly

via a ‘simple reference’ construction (DD; 410

episodes) and episodes where a target was referred

via a landmark relation (RD; 460 episodes). We

also test with either knowledge about structure

(simple or relational reference) provided (ST) or

not (WO, for “words-only”). All results shown are

from 10-fold cross validations averaged over 10

runs; where for evaluations labelled RD the train-

ing data always includes all of DD plus 9 folds of

RD, testing on RD. The sets address the following

questions:

• how well does the sr model work on its own

with just words? – DD.WO

• how well does the sr model work when it

knows about REs? – DD.ST

• how well does the sr model work when it

knows about REs, but not about relations? –

RD.ST (sr)

• how well does the model learn relation words

after it has learned about sr? RD.ST (r)

• how well does the rr model work (together

with the sr)? RD.ST with DD.ST (rr)

Words were stemmed using the NLTK (Loper

and Bird, 2002) Snowball Stemmer, reducing the
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vocabulary size to 1306. Due to sparsity, for rela-

tion words with a token count of less than 4 (found

by ranging over values in a held-out set) relational

features were piped into an UNK relation, which

was used for unseen relations during evaluation

(we assume the UNK relation would learn a gen-

eral notion of ‘nearness’). For the individual word

classifiers, we always paired one negative example

with one positive example.

For this evaluation, word classifiers for sr were

given the following features: RGB values, HSV

values, x and y coordinates of the centroids, eu-

clidean distance of centroid from the center, and

number of edges. The relation classifiers received

information relating two objects, namely the eu-

clidean distance between them, the vertical and

horizontal distances, and two binary features that

denoted if the landmark was higher than/lower

than or left/right of the target.
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Figure 3: Results of our evaluation.

Metrics for Evaluation To give a picture of the

overall performance of the model, we report accu-

racy (how often was the argmax the gold target)

and mean reciprocal rank (MRR) of the gold tar-

get in the distribution over all the objects (like ac-

curacy, higher MRR values are better; values range

between 0 and 1). The use of MRR is motivated by

the assumption that in general, a good rank for the

correct object is desirable, even if it doesn’t reach

the first position, as when integrated in a dialogue

system this information might still be useful to for-

mulate clarification questions.

Results Figure 3 shows the results. (Random

baseline of 1/32 or 3% not shown in plot.) DD.WO

shows how well the sr model performs using the

whole utterances and not just the REs. (Note that

all evaluations are on noisy ASR transcriptions.)

DD.ST adds structure by only considering words

that are part of the actual RE, improving the re-

sults further. The remaining sets evaluate the con-

tributions of the rr model. RD.ST (sr) does this

indirectly, by including the target and landmark

simple references, but not the model for the rela-

tions; the task here is to resolve target and land-

mark SRs as they are. This provides the baseline

for the next two evaluations, which include the re-

lation model. In RD.ST (sr+r), the model learns

SRs from DD data and only relations from RD. The

performance is substantially better than the base-

line without the relation model. Performance is

best finally for RD.ST (rr), where the landmark

and target SRs in the training portion of RD also

contribute to the word models.

The mean reciprocal rank scores follow a sim-

ilar pattern and show that even though the target

object was not the argmax of the distribution, on

average it was high in the distribution. For all eval-

uations, the average standard deviation across the

10 runs was very small (0.01), meaning the model

was fairly stable, despite the possibility of one run

having randomly chosen more discriminating neg-

ative examples. Our conclusion from these exper-

iments is that despite the small amount of training

data and noise from ASR as well as the scene, the

model is robust and yields respectable results.

0 2 4 6 8 10 12 14
5

0

5

10

15

20

25

Figure 5: Incremental results: average rank improves over
time

Incremental Results Figure 5 shows how our

rr model processes incrementally, by giving the

average rank of the (gold) target at each increment

for the REs with the most common length in our

data (13 words, of which there were 64 examples).

A system that works incrementally would have a

monotonically decreasing average rank as the ut-

terance unfolds. The overall trend as shown in that
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Figure 4: Each plot represents how well selected words fit assumptions about their lexical semantics: the leftmost plot ecke
(corner) yields higher probabilities as objects are closer to the corner; the middle plot grün (green) yields higher probabilities
when the colour spectrum values are nearer to green; the rightmost plot über (above) yields higher probabilities when targets
are nearer to a landmark set in the middle.

Figure is as expected. There is a slight increase

between 6-7, though very small (a difference of

0.09). Overall, these results seem to show that our

model indeed works intersectively and “zooms in”

on the intended referent.

4.1 Further Analysis

Analysis of Selected Words We analysed sev-

eral individual word classifiers to determine how

well their predictions match assumptions about

their lexical semantics. For example, for the spa-

tial word Ecke (corner), we would expect its clas-

sifier to return high probabilities if features related

to an object’s position (e.g., x and y coordinates,

distance from the center) are near corners of the

scene. The leftmost plot in Figure 4 shows that

this is indeed the case; by holding all non-position

features constant and ranging over all points on

the screen, we can see that the classifier gives high

probabilities around the edges, particularly in the

four corners, and very low probabilities in the mid-

dle region. Similarly for the colour word grün,

the centre plot in Figure 4 (overlaid with a colour

spectrum) shows high probabilities are given when

presented with the colour green, as expected. Sim-

ilarly, for the relational word über (above), by

treating the center point as the landmark and rang-

ing over all other points on the plot for the target,

the über classifier gives high probabilities when

directly above the center point, with linear nega-

tive growth as the distance from the landmark in-

creases.

Note that we selected the type of feature to vary

here for presentation; all classifiers get the full fea-

ture set and learn automatically to “ignore” the ir-

relevant features (e.g., that for grün does not re-

spond to variations in positional features). They

do this wuite well, but we noticed some ‘blurring’,

due to not all combinations of colours and shape

being represented in the objects in the training set.

Analysis of Incremental Processing Figure 6

finally shows the interpretation of the RE in Ex-

ample (2) in the scene from Figure 2. The top

row depicts the distribution over objects (true tar-

get shown in red) after the relation word unten

(bottom) is uttered; the second row that for land-

mark objects, after the landmark description be-

gins (dem grünen m / the green m). The third row

(target objects), ceases to change after the rela-

tional word is uttered, but continues again as ad-

ditional target words are uttered (unten links / bot-

tom left). While the true target is ranked highly

already on the basis of the target SR alone, it is

only when the relational information is added (top

row) that it becomes argmax.

Discussion We did not explore how well our

model could handle generalised quantifiers, such

as all (e.g., all the red objects) or a specific num-

ber of objects (e.g., the two green Ts). We specu-

late that one could see as the contribution of words

such as all or two a change to how the distribution

is evaluated (“return the n top candidates”). Our

model also doesn’t yet directly handle more de-

scriptive REs like the cross in the top-right corner

on the left, as left is learned as a global term, or

negation (the cross that’s not red). We leave ex-

ploring such constructions to future work.

5 Related Work

Kelleher et al. (2005) approached RR us-

ing perceptually-grounded models, focusing on

saliency and discourse context. In Gorniak and

Roy (2004), descriptions of objects were used to

learn a perceptually-grounded meaning with focus

on spatial terms such as on the left. Steels and

Belpaeme (2005) used neural networks to connect

language with colour terms by interacting with hu-

mans. Larsson (2013) is closest in spirit to what

we are attempting here; he provides a detailed
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grauer stein über dem grünen m unten links

Figure 6: A depiction of the model working incrementally for the RE in Example (2): the distribution over objects for relation
is row 1, landmark is row 2, target is row 3.

formal semantics for similarly descriptive terms,

where parts of the semantics are modelled by a

perceptual classifier. These approaches had lim-

ited lexicons (where we attempt to model all words

in our corpus), and do not process incrementally,

which we do here.

Recent efforts in multimodal distributional se-

mantics have also looked at modelling word mean-

ing based on visual context. Originally, vector

space distributional semantics focused words in

the context of other words (Turney and Pantel,

2010); recent multimodal approaches also con-

sider low-level features from images. Bruni et

al. (2012) and Bruni et al. (2014) for example

model word meaning by word and visual con-

text; each modality is represented by a vector,

fused by concatenation. Socher et al. (2014)

and Kiros et al. (2014) present approaches where

words/phrases and images are mapped into the

same high-dimensional space. While these ap-

proaches similarly provide a link between words

and images, they are typically tailored towards

a different setting (the words being descriptions

of the whole image, and not utterance intended

to perform a function within a visual situation).

We leave more detailed exploration of similarities

and differences to future work and only note for

now that our approach, relying on much simpler

classifiers (log-linear, basically), works with much

smaller data sets and additionally seem to pro-

vide an easier interface to more traditional ways

of composition (see Section 3 above).

The issue of semantic compositionality is also

actively discussed in the distributional semantics

literature (see, e.g., (Mitchell and Lapata, 2010;

Erk, 2013; Lewis and Steedman, 2013; Paperno

et al., 2014)), investigating how to combine vec-

tors. This could be seen as composition on the

level of intensions (if one sees distributional rep-

resentations as intensions, as is variously hinted

at, e.g. Erk (2013)). In our approach, composition

is done on the extensional level (by interpolating

distributions over candidate objects).

We do not see our approach as being in op-

position to these attempts. Rather, we envision

a system of semantics that combines traditional

symbolic expressions (on which inferences can

be modelled via syntactic calculi) with distributed

representations (which model conceptual knowl-

edge / semantic networks, as well as encyclopedic

knowledge) and with our action-based (namely,

identification in the environment via perceptual

information) semantics. This line of approach

is connected to a number of recent works (e.g.,

(Erk, 2013; Lewis and Steedman, 2013; Larsson,

2013)); for now, exploring its ramifications is left

for future work.

6 Conclusion

In this paper, we presented a model of reference

resolution that learns a perceptually-grounded

meaning of words, including relational words. The

model is simple, compositional, and robust despite

low amounts of training data and noisy modalities.

Our model is not without limitations; it so far only

handles definite descriptions, yet there are other

ways to refer to real-world objects, such as via pro-

nouns and deixis. A unified model that can handle

all of these, similar in spirit perhaps to Funakoshi

et al. (2012), but with perceptual groundings, is

left for future work. Our approach could also ben-

efit from improved object segmentation and repre-
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sentation.

Our next steps with this model is to handle com-

positional structures without relying on our closed

tag set (e.g., using a syntactic parser). We also

plan to test our model in a natural, interactive dia-

logue system.
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