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1. Introduction

Computer simulations of simple model liquids show that differ-

ent systems often have very similar structure and dynamics. The 

standard explanation of this ‘quasiuniversality’ refers to the pre-

dominant liquid-state picture according to which the hard-sphere 

model gives a basically correct description of simple liquids’

physics [1]. The hard-sphere (HS) paradigm has its origin in van 

der Waals’ seminal thesis from 1873 [2]. In the van der Waals

picture of liquids [1–8] the harsh repulsive forces between a liq-

uid’s atoms or molecules determine the structure and reduce the

liquid’s entropy compared to that of an ideal gas at the same den-

sity and temperature, and for simple liquids the effect of these 

forces is well modeled by the HS system. The weaker, longer-

ranged attractive forces, on the other hand, have little in�uence 

on structure and dynamics; they primairly give rise to an overall 

reduction of the energy compared to that of an ideal gas [5].

A simple liquid is traditionally de�ned as a system of point 

particles interacting via pairwise additive, usually strongly 

repulsive forces [1, 9–12]. Why do most such systems behave

like the HS system? Is it because the harsh repulsions dominate 

the physics? Or is it rather the other way around, that quasi-

universality explains why many simple liquids are HS-like? 

These may sound like esoteric questions—who cares, as long

as the HS model represents simple liquids well as is indisput-

ably the case? But this pragmatic viewpoint leaves open the 

questions what causes quasiuniversality and why not all sim-

ple liquids are quasiuniversal.

After reviewing the van der Waals picture and the evidence 

for quasiuniversality, we present below an alternative expla-

nation that refers to the exponentially repulsive ‘EXP’ pair

potential. The idea is that quasiuniversality applies for systems 

having approximately the same dynamics as the EXP system, 

which is the case for any system with a pair potential that can 

be written as a sum of exponentials with large prefactors. In 

this picture the HS system is a limit of certain quasiuniversal 

systems, and this explains why the HS system is itself quasiuni-

versal. In other words, this becomes an effect of quasiuniversal-

ity, not its cause.
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The focus below is on simple liquids’ structure and dynam-

ics, described by classical mechanics. The paper is addressed 

to any physicist curious about generic liquid models, and no 

prior knowledge of liquid-state theory is assumed. The paper 

deals with the simplest liquid systems, those of dense, uniform, 

single-component �uids. This excludes a vast array of inter-

esting phenomena of current interest like molecular liquids, 

solvation and �uid mixtures, interfacial phenomena, etc, for 

which the reader is referred to the extensive literature.

2. Background

This sections provides necessary basic background informa-

tion and establishes the notation used.

2.1. States of matter

Depending on the temperature T and pressure p, ordinary 

matter is found in one of three phases: solid, liquid, or gas  

[15–17]. A generic temperature-pressure phase diagram is 

shown in �gure 1(a). The gas phase is found at high temper-

atures and low-to-moderate pressures, the solid (crystalline) 

phase at low temperatures and/or high pressures. The liquid 

phase is located in between. It is possible to move continu-

ously from the liquid to the gas phase by circumventing the 

critical point (red) [2]. Consistent with this the liquid and gas 

phases have the same symmetries, namely translational invari-

ance and isotropy, i.e. all positions and directions in space 

are equivalent. The solid phase is crystalline and breaks both 

these symmetries.

It is often convenient to use instead a ρ T  phase diagram 

where /ρ≡N V  is the density of particles, i.e. their number N 

per volume V (�gure 1(b)). In this diagram the liquid/solid and 

gas/liquid phase transitions give rise to regions of coexistence, 

which in the Tp phase diagram collapse to the melting and 

vaporization lines respectively.

There are two special state points in a thermodynamic 

phase diagram: the triple point where all three phases coex-

ist and the critical point (blue and red in �gure  1). Below 

the triple-point temperature the liquid phase does not exist; 

above the critical-point temperature the gas and liquid phases 

merge. Close to the triple point the repulsive forces dominate 

the interactions, close to the critical point the attractive forces 

dominate [5]. Sometimes all states with temperature above the 

critical temperature are referred to as ‘�uid’ states. We do not 

make this distinction, however [18], because it is incompatible 

with the observation of invariant structure and dynamics along 

the freezing line [19]. Only the term ‘liquid’ is used below, by 

which is implied the condensed phase far from the gas phase 

in the traditional sense of this term (the colored regions in 

�gure 1).

2.2. The elusive liquid phase

From daily life we are used to water and many other liquids, 

but throughout the universe the liquid state is actually quite 

rare. This re�ects the fact that a liquid’s existence depends 

on a delicate balance between attractive intermolecular inter-

actions causing condensation and entropic forces preventing 

crystallization [20].

While van der Waals and followers emphasized the liquid–

gas analogy, in his seminal book written during World War 

II the Russian physicist Frenkel [21] emphasized the solid–

liquid resemblance. In honor of this it has been suggested to 

term the (blurred) line delimiting the genuine liquid phase 

from the more gas-like phase the ‘Frenkel line’ [13, 14, 22]  

(see, however, also [23]). This Topical Review focuses on the 

Figure 1. Generic thermodynamic phase diagrams in their most common representations. (a) Temperature-pressure phase diagram. The 
colored region is where quasiuniversality applies for many simple liquids, i.e. not too far from the melting line. At these state points 
(delimited by the so-called Frenkel line [13, 14]) many properties like density, speci�c heat, enthalpy, etc, are closer to those of the 
solid phase than to those of the gas phase. (b) Density-temperature phase diagram with the same states colored. Note that the regions of 
liquid–solid and gas–liquid coexistence in this version of the phase diagram are merely lines in the temperature-pressure phase diagram 
(a). Although the focus of this paper is exclusively on liquids’ quasiuniversality, it should be noted that the crystalline phase is also 
quasiuniversal.
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genuine liquid phase between the Frenkel line and the freez-

ing line (colored in �gure  1), de�ning the ‘ordinary’ liquid 

phase for which properties like density, energy, speci�c heat, 

compressibility, heat conductivity, etc, are closer to their solid 

than to their gas values [14, 22, 24].

2.3. Universalities in the physics of matter

In order to put simple liquid’s quasiuniversality into perspec-

tive it is useful to recall a few well-known universalities.

The �rst example is the ideal-gas equation, =pV Nk TB ,  

which applies for all dilute gases (p is the pressure, kB 

Boltzmann’s constant, and T the temperature). This equation 

is cherished by physicists for its mathematical simplicity and 

general validity. In contrast, chemists typically regard it as 

useful, but not very informative—precisely because it is uni-

versal and does not relate to molecular details. Universality is 

also found close to the critical point, at which many properties 

conform to critical power-law scaling [25, 26]. For instance, at 

the critical density and close to the critical temperature Tc the 

compressibility diverges as | − | γ−T Tc  with the universal expo-

nent γ = 1.24 [27]. A third example is that low-temperature 

crystals are well described by the harmonic approximation, 

leading to the well-known Debye universality of the speci�c 

heat’s temperature dependence (∝ T
3) [28–30].

Universalities arise when things simplify in some limit, a 

limit that is usually quanti�ed by a small dimensionless num-

ber λ. For a gas λ is the ratio between molecule size and aver-

age interparticle distance, and the ideal-gas equation becomes 

exact as →λ 0. At the critical point /λ = | − |T T Tc c, and the 

scaling laws become exact as →λ 0. For a crystal λ is the ratio 

between nearest-neighbor distance and phonon mean-free 

path, and the harmonic description is exact in the →λ 0 limit.

The ‘ordinary’ liquid phase excludes the critical point and 

exhibits no obvious asymptotically exact universalities. This 

re�ects the fact that liquids, like atomic nuclei [31], are so-

called strongly-coupled systems, i.e. with no obvious small 

dimensionless parameter λ to expand in. There are never-

theless intriguing, but approximate universalities in the liq-

uid phase of many systems. Thus liquids with quite different 

interparticle interactions have often virtually the same struc-

ture and dynamics. In the literature the term ‘quasiuniversal-

ity’ has no clear de�nition, and until section 4.5 we follow 

the tradition of implying by a ‘quasiuniversal liquid’ a mem-

ber of the large class of simple model systems with virtually 

the same structure and dynamics, which includes the HS 

and Lennard-Jones systems. It is important to keep in mind, 

though, that simple liquids’ quasiuniversality is not generally 

valid, it is not exact in some obvious limit, and it applies only 

in part of the thermodynamic phase diagram.

2.4. Computer simulations of model liquids

Insights into the physics of liquids have often come from 

comp uter simulations [1]. Actually, some of the very �rst 

scienti�c computer simulations back in the 1950s studied the 

hard-sphere (HS) liquid (section 3). An early surprise was that 

the HS system has a �rst-order freezing transition [32].

The simplest liquid models are de�ned by pair potentials, 

v (r). If = | − |r r rij i j  is the distance between particles i and j, 

the potential energy U as a function of all particle coordinates 

is given by

( ) ( )∑=
<

U v rr r, ..., .N

i j

ij1 (1)

Such systems are traditionally referred to as ‘simple liquids’ 

[1, 9–12] because they describe point particles with isotropic 

interactions, i.e. with a mathematically simple Hamiltonian.

Recent developments have put simple liquids’ structure 

and dynamics into focus again, and supplementing computer 

simulations different pair potentials can now also be studied 

experimentally, e.g. in carefully designed colloids [33, 34]. 

While most simple liquids conform to quasiuniversality (sec-

tion 4), some pair-potential systems have unusual behavior. 

For instance, some such systems have a diffusion constant 

that increases upon isothermal compression and some of them 

melt instead of freeze upon compression [35–37]. Both fea-

tures are anomalous and found, e.g. for water that is perhaps 

the most complex of all liquids. These �ndings call into ques-

tion the name ‘simple’ for all pair-potential systems [38], but 

in order to avoid confusion we shall here nevertheless stick to 

the traditional de�nition of a simple liquid.

In many simulations one uses ad hoc pair potentials. The 

most famous one is the Lennard-Jones (LJ) [39] pair potential  

from 1924 de�ned by

( ) ⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥ε

σ σ

= −

− −

v r
r r

4 .LJ

12 6

 (2)

The minimum value of ( )v rLJ  is ε− , which is found at /
σ=r 2

1 6  

(compare �gure 2). Commonly simulated simple liquid mod-

els are: the LJ pair potential (sometimes cut off at the mini-

mum [40], sometimes with other exponents than 12 and 6), 

Figure 2. The Lennard-Jones (LJ) pair potential de�ning the 
most widely studied liquid model system (equation (2)). This 
pair potential is a sum of two inverse-power-law terms, a harshly 
repulsive term with exponent 12 and a softer, attractive (negative) 
term with exponent 6. The LJ potential has been studied extensively 
in its pure form, but it also serves as a building block of many 
intermolecular model potentials, including those describing 
interactions between biomolecules.
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the purely repulsive inverse-power law (IPL) pair potentials 

( ) ( / )σ∝
−

v r r
n [41, 42], the Yukawa ‘screened Coulomb’ pair 

potential ( ) ( / )/σ∝ −v r r rexp  [43–45], the Morse pair poten-

tial that is a difference of two exponentials [46, 47], and the 

HS pair potential (section 3).

The standard computer simulation method termed ‘molec-

ular dynamics’ solves Newton’s equations of motion numer-

ically. If = −∇UFi i  is the force on particle i with mass mi, 

molecular dynamics traces out particle trajectories by solving 

a time-discretized version of Newton’s second law, =m r F¨i i i 

[1, 48–50]. Typical time steps are of order one femtosecond 

(10−15 s) in real units, so a sizable amount of computing power 

is required for getting accurate results (in particular for highly 

viscous liquids). For instance, simulating 1000 LJ particles 

for the equivalent of one millisecond requires about 1012 time 

steps, which takes more than a year on a state-of-the art GPU-

based computer [51].

Newtonian dynamics conserves the energy E. When con-

sidered at constant volume V and particle number N, this is 

referred to as NVE dynamics. Nowadays it is more common to 

use NVT dynamics, which maintains a prede�ned temperature 

by modifying Newton’s second law in a clever way [48, 49, 52].  

For most quantities, including spatial and time autocorrela-

tion functions, this method gives the same results as for NVE 

simulations. It is also possible to use NVU dynamics, which 

traces out a geodesic curve on the constant-potential-energy 

hypersurface [53], leading to the same results as NVE or 

NVT dynamics [54]. Constant-pressure (NPT) dynamics is 

an option that is popular, in particular, among chemists and 

material scientists because experiments usually take place at 

ambient pressure.

The above dynamics are all deterministic, i.e. once set into 

motion the system’s path is in principle uniquely determined. 

An alternative is the so-called Brownian or Langevin stochas-

tic dynamics. For details about such dynamics the reader is 

referred to the literature [48]; we here just note that deter-

ministic and stochastic dynamics give the same static—and 

in most cases also very similar dynamic—properties [54–56].

3. The hard-sphere paradigm

This section summarizes the liquid-state paradigm according 

to which any simple liquid may be modeled by the HS system. 

This picture is built on the idea that liquid behavior dominated 

by excluded-volume effects is modeled in the most economic 

way by the HS system [1].

3.1. The van der Waals picture of liquids

Two isolated, uncharged atoms or molecules do not interact 

when they are far from each other. Approaching one another, 

a regime of weak attractions is entered caused by the so-

called van der Waals forces [57]. These basically re�ect the 

fact that electronic wave functions can lower their energy by 

spreading over a larger volume. When the distance becomes 

comparable to the atomic/molecular size, strong repulsions 

appear deriving ultimately from the Fermi statistics of the 

electrons. This is why it is almost impossible to compress a 

liquid or a solid.

The idea of classifying forces into repulsive and attractive 

goes back in time at least to 1755 in which the famous philoso-

pher Kant proposed that, fundamentally, there are only these 

two kinds of forces with which one point of matter can impress 

motion on another [58]. In 1873 van der Waals transformed this 

picture into a quantitative theory by basing his equation of state 

upon it [2, 16]. The modern van der Waals picture may be sum-

marized as follows [1–8, 59]. The strongly repulsive forces imply 

that a liquid’s atoms or molecules cannot approach one another 

below a certain distance, a distance that depends slightly on the 

temperature because at high temper ature more kinetic energy 

is available for overcoming the repulsive forces. These forces 

thus give rise to severe constraints on the particles’ motion. 

The attractive forces, on the other hand, do not really have any 

effect on structure and dynamics because they merely contrib-

ute a negative, density-dependent but spatially virtually constant 

potential. As stated eloquently by Hansen and McDonald [1]: 

‘...the structure of most simple liquids, at least at high density, 

is largely determined by the way in which the molecular hard 

cores pack together. By contrast, the attractive interactions may, 

in a �rst approximation, be regarded as giving rise to a uniform 

background potential that provides the cohesive energy of the 

liquid but has little effect on its structure. A further plausible 

approximation consists in modeling the short-range forces by 

the in�nitely steep repulsion of the hard-sphere potential’. The 

van der Waals picture works best for liquids of atoms or roughly 

spherical molecules that are not bonded to each other by cova-

lent or hydrogen bonds [1], the so-called nonassociated liquids. 

In the words of Chandler [60], the intermolecular structure of 

a nonassociated liquid ‘can be understood in terms of packing. 

There are no highly speci�c interactions in these systems’. In 

contrast, water is an example of an associated liquid, and its 

‘linear hydrogen bonding tends to produce a local tetrahedral 

ordering that is distinct from what would be predicted by only 

considering the size and shape of the molecule’.

What is henceforth referred to as the hard-sphere paradigm 

is the assumption that, to a good approximation, any simple 

liquid with strongly repulsive forces may be modeled as a 

system of hard spheres. This idea has dominated liquid-state 

research for many years, in part icular after the 1960s when 

it �rst got convincing support from computer simulations. 

Extensive research since then has demonstrated that, based on 

the HS system as the zeroth-order approximation, it is pos-

sible to construct highly successful perturbation theories for, 

e.g. a liquid’s thermodynamics and pair distribution function 

(the probability to �nd two particles a certain distance apart 

relative to that for a system of random particles at the same 

density) [1, 7, 40, 61–65].

3.2. The hard-sphere system

Figure 3 shows coexisting liquid and solid phases of the LJ 

system (equation (2)). Each LJ particle is represented by a 

sphere, i.e. as a HS particle de�ned by having in�nite pair 

potential when the pair distance r obeys σ<r 2 HS (σHS is the 

J. Phys.: Condens. Matter 28 (2016) 323001
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particle radius) and zero potential otherwise. This representa-

tion makes good sense, because the quasiuniversality of struc-

ture discussed below implies that the structures of the LJ and 

HS systems are virtually identical.

HS particles have no rotational degrees of freedom and 

move in straight lines with constant velocity until they collide 

elastically, i.e. by conserving momentum and (kinetic) energy. 

At low density the HS system is gas like, at higher density 

it is liquid like, and at the highest densities it is crystalline 

[67, 68]. Using instead Brownian (stochastic) dynamics [48], 

which neither conserves momentum nor energy, leads to iden-

tical results for the static distribution functions and to very 

similar time-autocorrelation functions [56].

For a system of N HS particles in volume V one de�nes 

the packing fraction φ as the occupied fraction of the total 

volume, i.e.

φ
πσ

≡ N
V

4

3
.

HS

3

 (3)

The largest possible packing fraction is that of the face-cen-

tered cubic crystal in which /φ π= =2 6 0.740, a result 

known as ‘Kepler’s theorem’ [69]. For many years this was 

‘known by all physicists and greengrocers, and conjectured 

to be true by most mathematicians...’, but eventually Kepler’s 

theorem was proven rigorously [70].

Above the packing fraction 0.492 the equilibrium HS sys-

tem is partly crystalline, and for φ> 0.545 it is fully crystal-

lized [33, 71, 72]. By applying a �nite rate of compression it is 

possible to overcompress the liquid HS system to higher pack-

ing fractions than 0.545, just as real-life liquids may be super-

cooled below their freezing point [73–78]. In the metastable, 

overcompressed state the HS system’s viscosity increases dra-

matically as a function of density, and the system eventually 

jams into a glass phase in which only localized vibrational-

type motion survives [69], [79–81].

Like the ideal-gas model or the Ising model for magnetism,  

the HS model is widely regarded as the idealized model  

liquid [1, 68]. In mathematics, the HS system has been studied 

for centuries. More recently, the problem of packing spheres 

densely in d dimensions became of interest to computer sci-

entists because of its importance for coding theory in commu-

nication [82]. In physics, the HS model is receiving renewed 

interest these years [69, 83, 84]; for instance it was recently 

solved exactly in in�nite dimensions in a tour-de-force replica 

calculation [81]. The HS model is also the generic model for 

studies of jamming [69, 79, 83, 85], a �eld in which the last 

decade has brought signi�cant advances based, in particular, on 

the notions of isostaticity and marginal stability [80], [86–90].

Figure 3. Snapshot of coexisting phases of the LJ system in 
which each particle is represented by a sphere (reproduced with 
permission from [66]; copyright 2013 AIP Publishing). Due to 
quasiuniversality, the hard-sphere (HS) system of freely moving 
spheres represents the LJ system well; for instance, the relative 
particle positions of the HS system are close to those of the LJ 
system and most other simple liquids (section 4). Above the packing 
fraction 0.545 the equilibrium structure of the HS system is a face-
centered cubic crystal. The HS crystal is thermodynamically stable 
at high packing fraction because it has higher entropy (but same 
energy) compared to that of the same-density, same-temperature 
liquid. This results in a lower free energy.

Figure 4. Structural quasiuniversality. (a) Static structure factor 
of the HS (dots) and LJ (full curve) liquids close to the triple point 
(based on simulation data of Verlet [92], reproduced with permission 
from [1]; copyright 2006 Elsevier). It is far from obvious that state 
points can be found where the structure factors of two such different 
systems are virtually identical. (b) Results close to freezing for IPL 
systems with exponents ranging from 10 to 36, as well as those of 
the HS system (black curve) (reproduced with permission from [93]; 
copyright 2009 American Institute of Physics).

J. Phys.: Condens. Matter 28 (2016) 323001
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3.3. Reduced units

According to the HS paradigm any simple liquid with strongly 

repulsive forces corresponds to a HS system. This implies that 

any two such liquids must have very similar properties at two 

thermodynamic state points that map onto HS systems with the 

same packing fraction. We refer to this as the HS explanation 

of quasiuniversality. But what is meant by ‘very similar proper-

ties’? In the present context this means very similar structure 

and dynamics when these are made dimensionless using proper 

units; in contrast, the thermodynamic equations of state con-

necting temperature, density, and pressure generally differ sig-

ni�cantly among quasiuniversal systems.

Which unit system should be used for characterizing quasi-

universality? Generalizing equation (2) any potential energy 

function ( ) ( )≡U Ur r R, ..., N1  can be expressed in terms of an 

energy ε, a distance σ, and a dimensionless function Ψ̃, as 

follows

( ) ˜ ( / )ε σ= ΨU R R . (4)

A ‘microscopic’ unit system may be de�ned based on the 

energy unit ε, length unit σ, and time unit /σ εm  (m is the 

particle mass). Is this the right unit system to use in tests for 

quasiuniversality? Perhaps surprisingly, even though results 

of computer simulations are usually reported in these micro-

scopic units, the answer is no.

Consider a simple liquid for which the two thermodynamic 

state points ( )ρ T,1 1  and ( )ρ T,2 2  are well modeled by HS sys-

tems with the same packing fraction. According to the HS 

paradigm and the van der Waals picture these two state points 

have the same reduced pair distribution functions ( ˜)g r . In part-

icular, these function’s maxima must be at the same value of 

r̃. At a state point with density ρ the maximum nearest-neigh-

bor distance scales with density as /
ρ∝
−1 3. Thus the proper 

length unit to use is that de�ned by the density: /
ρ=
−

l0
1 3. 

Figure 5. Dynamic quasiuniversality. (a) Inverse diffusion constant as a function of the HS packing fraction determined for each system 
by �tting its static structure factor to that of the HS system (black circles); the full curve is a theoretical prediction. Data are given for LJ-
type systems with different exponents for both Newtonian and Brownian dynamics; the inset shows the same quantity in a different unit 
system (reproduced with permission from [56]; copyright 2013 American Physical Society, which gives details of the systems studied). The 
�gure shows that systems with similar structure have similar dynamics. (b) A �gure like that in (a) in which ‘microgels’ and ‘dendrimers’ 
refer to experimental data. This �gure emphasizes that not all liquids are quasiuniversal (reproduced with permission from [96]; copyright 
2011 American Physical Society, which gives details of the systems studied). (c) Product of the diffusion constant and the viscosity for 
different IPL systems of different particle numbers at state points with the same structure (reproduced with permission from [42]; copyright 
2007 Royal Society of Chemistry). The product is plotted as a function of the inverse IPL exponent; the lower part of the �gure gives the 
product in reduced units for which it is approximately independent of the exponent, consistent with quasiuniversality of the dynamics.

J. Phys.: Condens. Matter 28 (2016) 323001
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Likewise, if the reduced velocity time-autocorrelation func-

tion ⟨ ˜( ) ˜(˜)⟩v v t0  is to be invariant, this must apply in part icular 

to its zero-time value, ⟨ ˜ ⟩v
2 . Since the kinetic energy scales 

in proportion to v2 and since ⟨ ⟩∝v k T
2

B  by the equipartition 

theorem, the proper energy unit must be the thermal energy 

k TB . In turn, via the particle mass and thermal average veloc-

ity this leads to the time unit /
/

ρ
−

m k T
1 3

B . In summary, the 

HS paradigm implies that the correct units to use in relation 

to quasiuniversality are the following ‘macroscopic’ energy, 

length, and time units:

/
/ /

ρ ρ= = =
− −

e k T l t m k T, , .0 B 0
1 3

0
1 3

B (5)

Note that these units are experimentally assessable, but state-

point dependent. In contrast, the microscopic units ε and σ are 

state-point independent, but not experimentally assessable—in 

fact, by rede�ning the function Ψ̃ in equation (4) they can be 

based on any �xed energy and length.

Henceforth, whenever a quantity is referred to as 

‘reduced’, it has been made dimensionless using the macro-

scopic units of equation (5). Reduced quantities are denoted 

by a tilde. For instance, if D is the diffusion constant, 

˜ /( / ) //
ρ≡ =D D l t D m k T0

2
0

1 3
B .

4. Quasiuniversality

This section  presents examples of simple liquids’ quasiuni-

versal structure and dynamics. As mentioned, there is no 

exact universality; systems with different potentials are dif-

ferent [91]. In liquid state theory ‘structural’ quantities refer 

to averages of density equal-time spatial correlation functions, 

Figure 6. Excess-entropy scaling. (a) Simulations of the diffusion constant with the four lower �gures giving this quantity in reduced 
units for different models (reproduced with permission from [105]; copyright 2011 Royal Society of Chemistry, which gives details of 
the systems studied). The left pair of �gures gives data for IPL systems of different exponents (n  =  8–36), clearly conforming to excess-
entropy scaling. The remaining �gures give data for three systems violating excess entropy scaling, demonstrating that quasiuniversality 
has exceptions. (b) Reduced diffusion constant (upper �gure) and reduced viscosity (lower �gure) as functions of the two-particle entropy 
for IPL systems of different exponents (n  =  4–36) (reproduced with permission from [106]; copyright 2015 Royal Society of Chemistry). 
Since the two-particle excess entropy gives the most important contribution to the excess entropy, this �gure con�rms IPL quasiuniversality. 
(c) Experimental data for the reduced viscosity of liquid nitrogen plotted as a function of minus the excess (‘reduced residual’) entropy at 
pressures up to 10 GPa (reproduced with permission from [107]; copyright 2014 American Chemical Society).

J. Phys.: Condens. Matter 28 (2016) 323001
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whereas ‘dynamical’ quantities more generally involve time-

correlation functions and their time integrals as expressed, 

e.g., in transport coef�cients. We start by looking at the former.

4.1. Structure

The simplest structural characteristic is the density spa-

tial autocorrelation function. By neutron or x-ray scatter-

ing experiments one measures its Fourier transform, the 

so-called coherent scattering function ( )S k . If k is the scat-

tering vector and the system’s N particles are located at the 

positions r r, ..., N1 , the coherent scattering function is de�ned 

by ( ) ⟨ ( ) ⟩/= |∑ ⋅ |S Nk k rexp ij j
2  in which the sharp brackets 

denote a thermal average [1]. A crystal’s ( )S k  has pronounced 

peaks at the reciprocal lattice vectors [29, 30], whereas for a 

liquid the peaks are broader and ( )S k  is independent of the 

direction of k.

Figure 4(a) shows static structure factors of the HS (dots) 

and LJ (full curve) liquids based on almost 50 years old comp-

uter simulations [92]. The striking �nding already at that time 

was that these quite different systems have very similar struc-

ture. Figure  4(b) shows the structure factor of IPL systems 

de�ned by ( )∝ −
v r r

n with exponents n ranging from 10 to 

36, as well as that of the HS system (corresponding to the 

→∞n  limit), all simulated close to freezing. Again there is 

approximate identity. Experiments show that simple liquids 

like molten metals [94] and inactive gases [95] have structure 

factors close to those of the HS system.

4.2. Dynamics

Experimental signatures of dynamic quasiuniversality have 

been obtained for molten metals and inactive gases. In the 

latter case, the half width of the coherent inelastic scattering 

factor follows the prediction of the HS model solved in the 

so-called Enskog theory [97]. The dynamics of liquid Gallium 

likewise follows the Enskog prediction [98]. Experimental 

data for the self-diffusion constant and viscosity of certain 

small-molecule liquids like methane and ethane have also been 

interpreted successfully in terms of the HS model [99], thus 

establishing experimental quasiuniversality for the dynamics.

Computer simulations have documented dynamic quasi-

universality in greater detail [42, 56, 96], [100–102]. 

Figure 5(a) shows the inverse diffusion constant as a function 

of the HS packing fraction φ
HS

 determined by �tting the given 

system’s static structure factor to that of a HS system. The 

�gure shows data for different LJ-type systems simulated with 

both Newtonian and Brownian dynamics. Figure 5(b) shows 

similar results, including here also experimental data for a 

clearly non-quasiuniversal pair-potential system. Figure 5(c) 

shows the product of diffusion constant and viscosity for IPL 

systems ( ( )∝ −
v r r

n) plotted as a function of 1/n; the lower 

data set refers to this product in reduced units, demonstrating 

quasiuniversality.

One de�nes the so-called excess entropy of a system as 

the entropy minus that of an ideal gas at the same density 

and temper ature (appendix). Note that since the ideal gas is 

maximally disordered, the excess entropy is negative. In 1977 

Rosenfeld pointed out that the excess entropy of a simple liquid, 

Sex, in simulations determines the reduced diffusion constant 

and the reduced viscosity [103]. He justi�ed this by arguing as 

follows. A thermodynamic state point of the HS system is char-

acterized by the packing fraction φ (temper ature merely scales 

the particle velocities). In part icular, φ determines Sex. Thus if 

two systems at two state points are well described by HS sys-

tems with the same packing fraction, they have the same excess 

entropy. For such systems the excess entropy determines the 

reduced-unit dynamics in a quasiuniversal way. By reference 

to Enskog theory Rosenfeld in 1999 interestingly managed to 

extend excess entropy scaling to the gas phase [104], but our 

focus below remains on the condensed ‘ordinary’ liquid phase.

Excess-entropy scaling did not receive a great deal of 

attention until about the year 2000, although a closely related 

two-particle entropy scaling was discussed brie�y in 1996 by 

Dzugutov [108]. By now many systems, primarily in computer 

simulations, have been shown to conform to excess-entropy 

scaling [109–112]. Examples are given in �gure 6, which in (a) 

shows numerical data for several systems. This �gure also pre-

sents data for three exotic systems not obeying excess-entropy 

scaling revealed as an absence of data collapse; the two left-

hand �gures demonstrate quasiuniversal excess-entropy scal-

ing for IPL systems. Other simple liquids like the LJ or the 

Yukawa (screened Coulomb) systems have reduced diffusion 

constants that fall virtually on top of the IPL data when plotted 

as functions of the excess entropy [103]. Figure 6(b) shows the 

reduced viscosity and diffusion constants for IPL systems as a 

function of the two-particle entropy, a quantity that gives the 

dominant contribution to Sex. Figure 6(c) presents exper imental 

data for nitrogen at various temperatures and pressures.

Figure 7. Excess isochoric speci�c heat for several models plotted 
as a function of T −2/5 at constant density in order to allow for 

a comparison to the Rosenfeld–Tarazona prediction /
∝

−
C TV

2 5 
(reproduced with permission from [113]; copyright 2013 American 
Institute of Physics, which that gives details of the systems studied). 
The orange lines are best �t power laws; when these lines are straight, 
the Rosenfeld–Tarazona relation is obeyed. The �gure includes data 
for molecular models, as well as experimental data for supercritical 
argon (inset). The Rosenfeld–Tarazona relation is seen to work fairly 
well for all systems, but best for the single-component Lennard-
Jones (SCLJ) and IPL pair-potential liquids.
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4.3. Thermodynamics

Important features of simple liquids’ thermodynamics are not 

quasiuniversal, for instance the equation of state connecting 

temperature, pressure, and density. There are some thermo-

dynamic quasiuniversalities, however. One of these relates to 

the constant-volume speci�c heat CV’s temperature variation. 

As noted by Rosenfeld and Tarazona [103, 114], simple liq-

uids obey /
∝

−
C TV

2 5 to a good approximation at constant den-

sity. Figure 7 gives computer simulation data con�rming this. 

While the �gure also includes simulation data for non-simple 

liquids like water, inspection reveals that the Rosenfeld–

Tarazona relation works best for the LJ and IPL systems.

Interesting thermodynamic quasiuniversalities have been 

reported going beyond the condensed liquid phase in focus 

here. These involve, e.g. the liquid-vapor coexistence region  

[115, 116], the so-called Zeno line [117], the behavior of 

supercritical �uids [118], and the existence of generalized 

corresp onding-states equations [116, 119].

4.4. The freezing and melting transitions

Quasiuniversality applies also for crystallization and melting 

[120–127]. Figures 8(a) and (b) show data for the structure 

factor of iron at ambient and high pressure along the freezing 

line. Invariance of the structure along the freezing line is dem-

onstrated in (b) reporting reduced-unit structure factor data for 

iron at freezing up to a pressure of 58 GPa. This case is impor-

tant because the Earth’s core consists largely of molten iron 

[128–130]. Figure 8(c) gives the reduced viscosity of �fteen 

metallic elements plotted as a function of melting temperature 

over temperature. Clearly these metals behave very similarly. 

In particular, the reduced viscosity is quasiuniversal at freez-

ing [131–133].

Freezing and melting of simple systems are characterized 

by several quasiuniversal properties [123, 127], for instance 

the following:

 1. A crystal melts when the thermal vibrational amplitude is 

about 10% of the nearest-neighbor distance [120, 121, 123, 

136, 137] (the Lindemann melting criterion from 1910) .

 2. A liquid freezes when the maximum of its structure factor 

exceeds a quasiuniversal value close to, but slightly below 

3 [138] (the Hansen–Verlet criterion).

 3. At freezing the ratio between the minimum and the 

maximum of the liquid’s radial distribution function is 

= ±0.20 0.02 [139] (the Raveche–Mountain–Streett  

criterion). Likewise, the ratio between the magnitudes of 

the structure factor’s �rst and second peak is quasiuni-

versal at melting of crystals [140].

 4. For a liquid of particles subject to Brownian motion the 

ratio between the long- and short-time diffusion constants 

is about 0.1 at freezing [141, 142] (the Löwen–Palberg–

Simon criterion).

 5. At freezing a liquid’s CV is close to 3kB per particle  

[14, 24, 143].

 6. The constant-volume melting entropy is close to k0.8 B per 

particle [123, 144].

4.5. De�ning quasiuniversality

The HS paradigm makes it possible to give a precise de�ni-

tion of quasiuniversality. Consider two systems at two ther-

modynamic state points. If the systems are here described by 

HS systems with the same packing fraction, all reduced-unit 

quantities referring to structure and dynamics of the two sys-

tems are identical to a good approximation. In practice one 

does not know the HS packing fraction, but this inspires to the 

following characterization of quasiuniversality:

 • If two systems have in common a single reduced-unit 

quantity characterizing structure or dynamics at two—

possibly different—thermodynamic state points, all other 

reduced-unit structural or dynamical quantities at these 

state points are also identical to a good approximation.

Figure 8. Experimental data illustrating liquids’ quasiuniversality close to freezing. (a), (b) Structure factor of liquid iron along the 
freezing line up to pressures found far inside the Earth [130] (reproduced with permission from [134]; copyright 2004 American Physical 
Society). As shown in (b) the structure is approximately invariant as a function of the reduced wavevector sQ. The full curves in (a) are HS 
structure factors, the full red curve in (b) is iron’s structure factor at ambient pressure. (c) Natural logarithm of the reduced viscosity of 
�fteen metals plotted as a function of melting temperature over temperature, demonstrating quasiuniversality (reproduced with permission 
from [135]; copyright 2005 Carl Hanser).

J. Phys.: Condens. Matter 28 (2016) 323001
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The above property de�nes an equivalence relation among 

liquids. There could be more than a single equivalence class 

(which we in section 8 suggest is the case for mixtures), but 

the focus below is on the large equivalence class of single-

component systems that includes the HS system, the LJ and 

related systems, the IPL systems, and the Yukawa system. 

As we shall see, this class also includes the purely repulsive 

exponential pair potential, as the most prominent member in 

a certain sense.

5. Challenges to the hard-sphere paradigm

In the van der Waals picture any simple liquid is well repre-

sented by a HS system. This explains quasiuniversality, which 

was con�rmed by the numerical and experimental data pre-

sented in the last section, implying that the present liquid-state 

paradigm works well, right? This is undoubtedly the case. 

Nevertheless, there are a few challenges to the HS paradigm:

 • Physically and formally. The HS system consists of 

particles moving most of the time according to Newton’s 

�rst law, i.e. along straight lines with constant velocity, 

until collisions instantaneously change their velocities to 

new, constant values. In any realistic liquid model and 

for any real liquid each particle is kept in check by fairly 

strong forces from its several (10–14) nearest neighbors. 

Given this difference, how can one understand why so 

many simple liquid’s structure and dynamics are close to 

those of the HS system? Moreover, the HS system is non-

Figure 9. The EXP system de�ned by equation (6) [160]. (a) Temperature-density thermodynamic phase diagram with temperature 
in units of /ε kB and density in units of /σ1

3. The color coding gives the virial potential-energy correlation coef�cient R (equation (7)). 
Three isomorphs are indicated with black dashed lines (see section 6.2). The freezing and melting lines are both isomorphs to a good 

approximation [166]; the solid black line covers the liquid–solid coexistence region. (b) Potential energies U2 of 20 con�gurations, each 

taken from an equilibrium simulation at the state point ( / ) ( )ρσ ε =
− −

k T, 10 , 103
B

4 3  and subsequently scaled uniformly  ±20% up and down 

in density. At each density the average of the 20 scaled con�gurations’ potential energy was subtracted and the energies subsequently 
scaled to unit variance. If the curves rarely cross, which is the case here but not for all systems, the scaling inequality equation (8) is obeyed 
to a good approximation, which ensures the existence of isomorphs. (c) Time development of the normalized virial and potential energy 
equilibrium �uctuations at the same state point as (b), con�rming the existence of strong correlations.
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analytic with a discontinuous potential-energy function. 

It would be nice to be able to explain quasiuniversality in 

terms of an analytical reference system.

 • Operationally. How to determine the effective HS packing 

fraction of a given simple liquid at a given state point? 

The literature gives many different answers to this ques-

tion, for instance those of [99], [145–152]. The simplest 

of these criteria determines the effective HS radius from 

the equation  ( ) =v r k THS B  [150], but after half a century 

of research there is still no recipe for calculating the HS 

packing fraction that is generally agreed upon. Why is 

this so dif�cult? Perhaps it re�ects the following more 

fundamental problem:

 • Exceptions. The van der Waals picture is not able to pre-

dict which systems are quasiuniversal and which are not. 

It is not surprising that complex liquids like water violate 

quasiuniversality [12, 20], [153–157]. But even some 

simple liquid models (i.e. pair-potential systems) with 

strong repulsive forces have highly complex behavior 

[158], although according to the HS paradigm this should 

not be the case. Examples of non-quasiuniversal simple 

systems are the Gaussian core model and the Jagla ramp-

type potential models, both of which have water-like 

anomalies in parts of their thermodynamic phase diagram 

[35, 36, 159]. Thus in parts of their phase diagram these 

models exhibit the anomalies of density increasing upon 

isobaric heating, the diffusion constant increasing upon 

isothermal compression, melting instead of freezing upon 

isothermal compression, etc.

Which property of the HS system is crucial for deriving quasi-

universality? The HS explanation of quasiuniversality hinges 

on the fact that the HS system’s reduced-unit structure and 

dynamics are determined by a single number, the packing frac-

tion. This property makes the HS system’s phase diagram effec-

tively one-dimensional in regard to structure and dynamics. 

This implies quasiuniversality according to the de�nition given 

in section 4.5 because any reduced-unit structural or dynamical 

quantity identi�es the corresponding HS system’s packing frac-

tion, which in turn determines all of structure and dynamics. In 

particular, any quasiuniversal liquid is predicted to have lines 

in its thermodynamic phase diagram along which structure and 

dynamics are (virtually) invariant in reduced units.

An alternative explanation of quasiuniversality should 

preferably retain this feature. The concept of packing fraction 

is unique to the HS system, of course, but since the packing 

fraction determines the excess entropy Sex, an obvious candi-

date for the lines in the phase diagram of invariant structure 

and dynamics are the con�gurational adiabats, i.e. the lines 

de�ned by =S Const.ex

6. The exponentially repulsive pair potential  

and quasiuniversality

This section presents an alternative to the HS justi�cation of 

simple liquids’ quasiuniversality [160]. Sections 6.2– 6.4 are 

a bit technical, but all necessary information is provided for 

verifying the calculations carried out.

6.1. The EXP system

The EXP potential is the purely repulsive pair potential 

de�ned by

( ) /
ε=

σ−

v r e .
r

EXP (6)

Born and Meyer already in 1932 used an exponentially repul-

sive term in a pair potential [161], justifying it from the fact—

at that time recently established—that electronic bound-state 

wavefunctions decay exponentially in space. There are only 

few studies of the pure EXP system in the literature; usually an 

EXP term appears in tandem with an r−6 attractive term [161, 

162] or multiplied by a 1/r term as in the Yukawa ‘screened 

Coulomb’ pair potential [43, 163, 164]. Kac and coworkers 

used a HS pair potential minus a long-ranged EXP term for 

rigorously deriving the van der Waals equation of state in one 

dimension [165].

Like any other purely repulsive system, the EXP system 

has a well-de�ned freezing transition, but no liquid-vapor 

transition—there is just a single �uid phase. The density-

temper ature phase diagram of the EXP system is shown in 

�gure 9(a), in which the full black line covers the solid–liquid 

coexistence region. The colors re�ect the virial potential-

energy (Pearson) correlation coef�cient R de�ned by

⟨ ⟩

⟨( ) ⟩⟨( ) ⟩
=

∆ ∆

∆ ∆

R
W U

U W

.
2 2

 (7)

Here ∆ denotes deviation from the equilibrium value and 

the sharp brackets are constant-volume canonical averages; 

recalling that ( )≡R r r, ..., N1  is the con�guration vector and 

( )U R  the potential energy, the virial function is de�ned by 

( ) ( / ) ( )= − ⋅ ∇W UR R R1 3  (the average virial W determines 

the pressure via the identity = +pV Nk T WB  [1, 48, 167]).

We see from �gure 9(a) that the EXP system has strong 

WU correlations in the low-temperature part of its phase 

diagram. This is where ( ) ε= ≫v k T0EXP B , implying that 

the �nite value of ( )v 0EXP  is of no signi�cance because zero 

particle separation is highly unlikely. Systems with R  >  0.9 

were initially referred to as ‘strongly correlating’ [168], but 

that term was repeatedly confused with strongly correlated 

quantum systems and instead the term R (Roskilde) sim-

ple is now sometimes used [107], [169–176]. As shown in 

the next section, R systems are simple because in regard 

to structure and dynamics they have, just like the HS sys-

tem, an essentially one-dimensional thermodynamic phase 

diagram.

6.2. Isomorphs

The ‘EXP explanation’ of quasiuniversality given in sec-

tion  6.3 below makes use of the theory of isomorphs [38, 

166]. Independent of quasiuniversality, isomorphs are lines in 

the thermodynamic phase diagram of certain systems along 

which structure and dynamics in reduced units are invariant to 

a good approximation. Real-world liquids and solids with iso-

morphs are believed to include most metals and van der Waals 

bonded molecular systems, but exclude most covalently or 

hydrogen-bonded systems [19, 177].

J. Phys.: Condens. Matter 28 (2016) 323001
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Figure 10. Examples of applications of the isomorph theory to other systems than simple liquids, demonstrating that invariance of the 
reduced-unit structure and dynamics along isomorphs is not limited to simple, quasiuniversal systems. (a), (b) Incoherent intermediate 
scattering function for the center of mass of the asymmetric dumbbell model consisting of two different-sized LJ spheres connected by a rigid 
bond (reproduced with permission from [180]; copyright 2012 American Chemical Society). The �gures compare results along an isotherm 
and an isomorph, demonstrating isomorph invariance of the dynamics for this molecular system. (c) Radial distribution functions (RDFs) 
for a face-centered cubic crystal of particles interacting via the so-called Buckingham pair potential consisting of an exponentially repulsive 
term and an r−6 attractive term [161, 162] (reproduced with permission from [181]; copyright 2014 American Physical Society). The upper 
�gure shows results for three isomorphic state points; for comparison the two lower �gures give results obtained by varying only temperature 
and density, respectively. Clearly isomorph invariance of structure is not limited to liquids. (d), (e) Mean-square displacement (MSD) for 
the 10-bead �exible Lennard-Jones chain model, a primitive polymer model in which each molecule consists of ten LJ particles bonded 
with rigid but freely rotating bonds (reproduced with permission from [182]; copyright 2014 American Institute of Physics). (d) shows the 
MSD along an isomorph for the segments and center of mass, (e) shows the same quantities along an isotherm for less than half the density 
variation.
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An isomorph is de�ned as a con�gurational adiabat, i.e. a 

curve with =S Const.ex , for any system characterized by the 

following scaling property [178]

( ) ( ) ( ) ( )λ λ< ⇒ <U U U UR R R R .a b a b (8)

Only for systems with a potential-energy that is a constant 

plus an Euler-homogeneous function is the above ‘hidden-

scale-invariance’ identity rigorously obeyed. For the isomorph 

theory to work to a good approximation it is enough, however, 

that equation (8) applies for most con�gurations Ra and Rb, 

i.e. for most of the typical con�gurations.

Equation ( 8) is mathematically equivalent to the conformal-

invariance condition ( ) ( ) ⇔ ( ) ( )λ λ= =U U U UR R R Ra b a b , 

which by differentiation with respect to λ implies for the virial 

function ( ) ( )=W WR Ra b . Thus same potential energy implies 

same virial to a good approximation, so equation (8) implies 

strong correlations between the equilibrium �uctuations of W 

and U and that the correlation coef�cient R of equation (7) is 

close to unity. Thus only R simple systems have isomorphs.

Figure 9(b) validates equation (8) for the EXP system by 

showing how properly normalized potential energies of 20 

selected con�gurations change under uniform scaling—the 

�gure  is constructed such that whenever the curves do not 

cross, equation (8) applies. Figure 9(c) shows how the virial 

and potential energy of the EXP system �uctuate strongly cor-

related over the course of time. In summary, �gure 9 shows 

that EXP system is R simple in the low-temperature part of 

the phase diagram [160].

What are the characteristic properties of R systems? 

Following the Landau and Lifshitz theory of entropy �uc-

tuations [179], one can de�ne a microscopic excess entropy 

function by ( ) ( )
( )

ρ≡ | =S S UR ,
U U Rex ex  in which ( )ρS U,ex  is the 

thermodynamic excess entropy of the state point with den-

sity ρ and average potential energy U [178]. By inversion, 

the potential-energy function obeys ( ) ( ( ))ρ=U U SR R, ex  

in which ( )ρU S, ex  is the thermodynamic average potential 

energy as a function of density and excess entropy.

The above de�nition is completely general. Consider 

now a system obeying equation  (8) and suppose that R1 

is a con �g uration  of density ρ
1
 with the same reduced 

coordinate as R2, a con�guration of density ρ
2
, i.e. 

/ /
ρ ρ=R R
1

1 3
1 2

1 3
2 (compare the de�nition of reduced units 

equation  (5)). It follows from the microcanonical expres-

sion for the excess entropy (appendix) that if ‘Vol’ is 

the reduced-coordinate con�guration-space volume, one 

has  ( )/ ( { ˜ ( ˜ ) ( )})
/

ρ= − + | <′ ′−
S k N N U UR R R Rln ln Volex 1 B 1

1 3
1   

and ρ= − + | <′ ′−
S k N N U UR R R Rln ln Volex 2 B 2

1 3
2( )/ ( { ˜ ( ˜ ) ( )})

/ . 

Applying / /λ ρ ρ=
−

2

1 3

1

1 3 to the inequality of the �rst set, we see 

that the two sets are identical since equation (8) works ‘both 

ways’. This means that ( )S Rex  depends only on the con�gura-

tion’s reduced coordinate ˜ /
ρ≡R R
1 3 , implying that

( ) ( ( ˜ ))ρ=U U SR R, .ex (9)

Since the thermodynamic excess entropy Sex at any given 

state point is the average of the microscopic excess entropy 

function, ⟨ ( ˜ )⟩=S S Rex ex , equation  (9) implies invariant 

structure and dynamics along the isomorphs [178]. To show 

this in detail, note �rst that in the reduced unit system de�ned 

by equation (5) Newton’s second law is ˜ / ˜ ˜
=d dtR F

2 2  in which 

the reduced force F̃ is de�ned from the full 3N-dimensional 

force vector F by ˜ /
/

ρ≡
−

k TF F
1 3

B . Since ˜/
ρ∇ = ∇
1 3 , equa-

tion  (9) implies ( / ) ˜ ( ˜ )/
ρ= −∇ = − ∂ ∂ ∇ρU U S SF Rex
1 3

ex . 

Because ( / )∂ ∂ =ρU S Tex  (appendix) this means that

˜
˜ ˜ ˜ ( ˜ )/= = −∇

t
S kR F R

d

d
.

2

2
ex B (10)

Equation ( 10) implies that the reduced-unit dynamics is invari-

ant along the isomorphs. Since structure is found by averag-

ing over the equilibrium time development, the reduced-unit 

structure is also isomorph invariant.

How to map out the isomorphs in the phase dia-

gram? Calculating Sex at a given state point is possi-

ble, but tedious. One can avoid this and identify the 

curves of constant Sex by utilizing the �uctuation identity 

( / ) ⟨ ⟩/⟨( ) ⟩ρ∂ ∂ = ∆ ∆ ∆T W U Uln ln S
2

ex
 [166]. For instance, 

if the right-hand side is �ve at a certain state point, for a one 

percent density increase one stays on the same isomorph by 

increasing temperature �ve percent. The �uctuation identity 

was used in this way to step-by-step identify the isomorphs of 

�gures 9(a) and 10. Another method for tracing out isomorphs 

utilizes equation (12) derived below, which for any two con-

�gurations at different densities with the same reduced coor-

dinates, R1 and R2, implies

( ) ( )
= +

U

T

U

T

R R
Const.

1

1

2

2

 (11)

Here T1 and T2 are the temperatures of the state points at 

which the two con�gurations are typical equilibrium con�gu-

rations. Equation  (11) implies the same canonical-ensemble 

probability of the con�gurations R1 and R2, which was the 

original isomorph de�nition [166]. In experiments, for any 

R simple system isomorphs may be identi�ed with the lines 

of constant reduced viscosity or diffusion constant [19]; for 

highly viscous liquids the isomorphs are basically the lines of 

constant relaxation time, the so-called isochrones [76, 170], 

[183–185].

In the next section  the isomorph theory is used to derive 

quasiuniversality for a large class of simple liquids. The 

theory is not limited to such systems, however. To illustrate 

this we show in �gures 10(a) and (b) the incoherent interme-

diate scattering function as a function of reduced time for a 

molecular model along an isotherm and an isomorph respec-

tively, demonstrating isomorph invariance of the dynamics. 

Figure  10(c) shows results for the pair correlation function 

of a crystal evaluated along an isomorph, an isochore, and an 

isotherm [181]. Figures 10(d) and (e) show results for a sim-

ple polymer model, again demonstrating isomorph invariance 

of the dynamics.

Other applications of the isomorph theory beyond the realm 

of simple liquids include, for instance, rationalizing simula-

tions of non-linear shear �ows and zero-temperature plastic 

�ows of glasses [186, 187]. Several well-known melting line 

invariants like the Lindemann ratio may also be understood in 
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terms of the isomorph theory, because the melting and freez-

ing lines are both isomorphs to a good approximation [166].

6.3. The EXP family and quasiuniversality class

Figure 9 demonstrated that the EXP system obeys equa-

tion  (9) well in the low-temperature part of the phase dia-

gram. Expanding equation  (9) to �rst order at a state point 

with excess entropy Sex and average potential energy U leads 

to ( ) ( ( ˜ ) )≅ + −U U T S SR Rex ex  (recall that ( / )∂ ∂ =ρU S Tex ). 

In terms of the excess Helmholtz free energy ≡ −F U TSex ex, 

if the EXP system’s microscopic excess entropy function is 

denoted by ( ˜ )S Rex

EXP , one thus has

( ) ( ˜ )≅ +U T S FR R .ex

EXP
ex (12)

The EXP system’s reduced-unit dynamics is given by 

equation (10),

˜
˜ ˜ ( ˜ )/= −∇

t
S kR R

d

d
.

2

2 ex

EXP
B (13)

We proceed to show that a sum of two EXP systems from 

the low-temperature part of the phase diagram de�nes a 

system that also obeys equation  (13). This fact is the basis 

for de�ning below the EXP ‘family’ of quasiuniversal pair 

potentials. Consider two systems, ( ) ( / )ε σ= −v r rexp1 1 1  and 

( ) ( / )ε σ= −v r rexp2 2 2 , obeying ε≪k TB 1 1 and ε≪k TB 2 2 at 

the respective state points of some con�guration R. The sys-

tems’ dynamics are both described by equation  (13), and 

equation  (12) implies ( ) ( ˜ )≅ +U T S FR R1 1 ex
EXP

ex,1 as well as 

( ) ( ˜ )≅ +U T S FR R2 2 ex
EXP

ex,2. For the ‘sum’ system de�ned by the  

pair potential ( ) ( )+v r v r1 2  one has ( ) ( ) ( )= +U U UR R R1 2 , i.e.

( ) ( ) ( ˜ )≅ + +U T T S FR R1 2 ex

EXP
ex (14)

in which = +F F Fex ex,1 ex,2. This implies for the force vector

( )= − + ∇T T SF .1 2 ex

EXP
 (15)

To show that the dynamics of the sum system is also described 

by equation (13) we �rst note that = +T T T1 2, in which T is 

the temperature of the sum system state point at which the 

con�guration R is a typical equilibrium con�guration. This is 

shown by making use of the con�gurational temperature iden-

tity ⟨( ) / ⟩= ∇ ∇k T U UB
2 2  [179, 188], which via equation (14) 

implies

( )
( )

= +
∇

∇
k T T T

S

S
.B 1 2

ex

EXP 2

2
ex

EXP
 (16)

On the other hand, substituting ( ) ( ˜ )≅ +U T S FR R1 1 ex
EXP

ex,1 

into the con�gurational-temperature identity leads to 

⟨( ) / ⟩= ∇ ∇k T T S SB 1 1 ex

EXP 2 2
ex

EXP , i.e. ⟨( ) / ⟩= ∇ ∇k S SB ex

EXP 2 2
ex

EXP . 

Thus equation  (16) implies the required = +T T T1 2. Since 

the reduced force is de�ned by ˜ /
/

ρ≡
−

k TF F
1 3

B , we conclude 

from equation (15) that ˜ ˜ /= −∇S kF ex

EXP
B. This shows that the 

sum system’s equation of motion is also equation (13) (com-

pare equation (10)).

The above generalizes to an arbitrary sum of EXP terms and, 

in fact, also to a difference of such systems if thermodynamic 

stability is maintained [189, 190]. In order to state a precise 

(suf�cient) condition for quasiuniversality of a system with 

pair potential ( ) ( / )ε σ= ∑ −v r rexpj j j , we switch to reduced 

units. De�ning the dimensionless numbers /εΛ ≡ k Tj j B  and 

/
/

ρ σ≡
−uj j
1 3  and noting that the condition ε| |≪k T jB  translates 

into |Λ |≫ 1j , if the reduced pair potential of a system at the 

state points of interest is given by

∑= Λ − |Λ |≫v r u rexp , 1,
j

j j j˜( ˜) ( ˜)
 (17)

the system obeys equation  (13). In particular, any sum or 

product of two pair potentials that can be written as in equa-

tion (17) with all Λ > 0j  gives a pair potential that also obeys 

equation  (13). Note that for equation  (13) to apply it is not 

enough that the pair potential can be written as a superposition 

of exponentials with large coef�cients—the ‘wavevectors’ uj 

cannot be so closely spaced that large positive and negative 

terms almost cancel one another, because that would effec-

tively result in a term that does not have a numerically large 

prefactor [160].

Thus any system for which ˜( ˜)v r  at the state point in ques-

tion can be approximated as in equation (17) with ujs that are 

not too closely spaced has the same dynamics as the EXP sys-

tem to a good approximation. Such systems are quasiuniver-

sal in the sense of section 4.5, because knowledge of a single 

number characterizing the reduced-unit structure or dynamics 

is enough to identify Sex and thereby, via equation  (13), all 

other reduced-unit structure and dynamics.

Having in mind the de�nition of quasiuniversality of sec-

tion 4.5, the class containing the EXP pair-potential system 

will be referred to as the ‘EXP quasiuniversality class’. It fol-

lows from the above that whenever equation (17) applies to a 

good approximation for a given pair-potential system (at the 

state points of interest), this system is in the EXP quasiuniver-

sality class. It is an obvious conjecture that the EXP quasiu-

niversality class does not include other regular pair-potential 

systems, but at this point there is no proof of this. It is likely 

that the EXP quasiuniversality class contains also non-pair-

potential systems, however (section 8 proposes that this is the 

case). In view of the above we shall refer to pair-potential sys-

tems obeying equation (17) (with not too closely spaced ujs) 

as members of the ‘EXP family’.

In summary, any member of the EXP family obeys equa-

tion  (13) and is consequently in the EXP quasiuniversality 

class. The HS system is in the EXP quasiuniversality class, 

but not a member of the EXP family because it does not obey 

equation  (13). Finally, there may very well exist also non-

pair potential members of the EXP quasiuniversality class but 

these are by de�nition not in the EXP family.

6.4. Examples

The numerical data presented in section  4 show that the 

IPL systems, ( ) ( / )ε σ≡
−

v r rn
n, are quasiuniversal. How 

would one justify this from the above [160]? Write �rst the 

reduced IPL pair potential in terms of the reduced radius 

r̃ as = Γ
−

v r rn n
n˜ ( ˜) ˜  with ( ) //

ρσ εΓ ≡ k Tn
n3 3

B . The well-

known identity ∫ − = −
∞ −
x x x nexp d 1 !n

0

1 ( ) ( )  implies  
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˜ ( ˜) [ /( ) ] ( ˜)∫= Γ − −
∞ −

v r n u ur u1 ! exp dn n
n

0

1 . Discretizing the  

integral leads to ˜ ( ˜) [ /( ) ] (( / ) )≅ Γ − ∆ ∑ + ∆=
∞ −v r n u j u1 ! 1 2n n j

n
0

1

  

( ( / ) ˜)− + ∆j u rexp 1 2 . If one writes (( / ) )+ ∆ −j u1 2
n 1 as 

[( ) (( / ) )]− + ∆n j uexp 1 ln 1 2 , differentiation with respect 

to j shows that the dominant contributions to the sum come 

from the terms with ( )/( / ) ˜− + ∆≃n j u r1 1 2 . For typical 

nearest-neighbor distances one has ˜≃r 1, so the terms with 

( / ) ( )+ ∆ −≃j u n1 2 1  are the most important ones. For these 

j’s the prefactor of the exponential in the above sum is roughly 

( ) /( )Γ ∆ − −
−

u n n1 1 !n
n 1 . The largest realistic discretization 

step obeys ∆ ∼u 1. Thus for values of n larger than about 

3  −  4, equation (17) is obeyed unless Γn is very small, a con-

dition that applies for the state points that have typically been 

studied [98], [191–194]. It follows that the IPL pair poten-

tials are generally in the EXP family, but that quasiuniver-

sality is expected to gradually break down when n decreases 

and, in particular, goes below 3–4 [160] (note that for n  <  3 

there is no thermodynamic limit because the integral ( )∫ v r rd  

diverges). The gradual breakdown of quasiuniversality as the 

exponent is lowered is consistent with the �nding that the 

crystal structure changes from face-centered cubic to body-

centered cubic as n goes below 7 [195]. The one-component 

plasma [196], the n  =  1 case of a Coulomb system of identi-

cal particles in a charge-compensating background, is not in 

the EXP family (although it interestingly does obey excess-

entropy scaling [103]).

Adding or subtracting two pair potentials in the EXP fam-

ily de�nes a new system in the EXP family as long as the 

condition |Λ |≫ 1j  is obeyed for all j and the resulting ujs are 

not close to one another. An example is the LJ pair potential 

equation (2) at the liquid state point de�ned by ρσ = 1
3  and 

ε=k T 2B . In terms of the reduced IPL functions introduced 

above, since /Γ = Γ = 1 212 6  at this state point, we have here 

˜ ( ˜) ( ˜ ( ˜) ˜ ( ˜))= −v r v r v r2LJ 12 6 . This is of the form equation (17), 

implying quasiuniversality of the LJ liquid at that state point. 

Similar arguments may be applied for LJ-type systems with 

exponents different from 6 and 12, but if the two exponents 

are close, a more detailed investigation is required because 

one may run into the problem of having close ujs. The Yukawa 

pair-potential system is quasiuniversal in much of its phase 

diagram [45].

We �nally note an alternative connection to the HS system. 

As shown by Brito and Wyart the HS system’s interactions are 

described in a mean-�eld, i.e. time-averaged, sense by the 

continuous pair potential = − −v r k T r dln 1BW B( ) ( / ) in which 

σ=d 2  is the sphere diameter ( ( ) = ∞v r  for r  <  d) [88]. This 

may be rewritten ( )/ ( / ) ( / ) /= − +∑ =
∞ −

v r k T r d r d nln
n

n
BW B 1

, 

which at high packing fractions is a sum of quasiuniversal IPL 

terms because here ≅r d and consequently the large n terms 

dominate.

7. The HS challenges revisited

Having established quasiuniversality for systems in the EXP 

family de�ned by equation (17) and shown that this includes 

the standard examples of quasiuniversal simple systems, one 

may ask to what degree using the EXP system as reference 

system addresses the issues with the HS paradigm listed in 

section 5.

 • Physically and formally. The HS system does not con-

form to equations (13) and ( 17) and is not a member of 

the EXP family. On the other hand, the HS system is the 

→∞n  limit of IPL pair potentials (∝ −
r

n). This suggests 

placing the HS system on the EXP family’s border (�gure 

11). In particular, the HS system has the same structure 

and dynamics as the EXP family members, i.e. it is in 

the EXP quasiuniversality class. In regard to the formal 

mathematics, all systems in the EXP family have analytic 

potential-energy functions.

 • Operationally. The problem that there is no unique 

method for determining the HS packing fraction of a 

quasiuniversal system at a given state point becomes 

irrelevant when the EXP system is taken as the basic 

reference system.

 • Exceptions. The Lennard-Jones Gaussian and the Jagla-

type models, which are simple liquid exceptions to 

quasiuniversality [35, 36, 159], are not in the EXP family 

as we shall see. It was conjectured above that all regular 

pair-potential systems in the EXP quasiuniversality class 

are in the EXP family, and if this holds true, it explains 

why these two systems are not quasiuniversal. They are 

Figure 11. Schematic representation of quasiuniversality according 
to the picture proposed in this paper. In the traditional explanation of 
quasiuniversality, two quasiuniversal systems have virtually identical 
reduced-unit structure and dynamics because they are both like the 
HS system; this argument places the HS system at center of the set 
of quasiuniversal systems. The above �gure illustrates the set of 
members of the EXP family de�ned as the pair-potential systems 
that obey equation (17), exempli�ed by the systems A, B and C. 
These systems are all in the EXP quasiuniversality class because 
they conform to the same equation of motion as the EXP system, 
equation (13). In this picture the HS system lies on the border 
of the EXP family because it is the →∞n  limit of the r−n IPL 
systems (which explains the HS system’s quasiuniversal structure 
and dynamics). The �gure illustrates the two main points of this 
paper: (1) The EXP system may be regarded as the fundamental 
reference system from which simple liquids’ quasiuniversality 
derives. (2) The HS system is not a regular member of the EXP 
family of quasiuniversal systems. In this picture the fact that the 
HS system has quasiuniversal structure and dynamics is an effect of 
quasiuniversality, not its cause.

EXP

C

B

HS

A 
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not in the EXP family because their pair potentials have 

Laplace transforms with no poles on the negative real 

axis, whereas any function in the form of equation (17) 

must have one or more such poles (it follows from the 

calculations of section 6.4 that, for instance, an IPL pair 

potential has all poles of its Laplace transform on the 

negative real axis).

8. Outlook

The van der Waals picture has served liquid-state theory well 

for many years, in particular as the basis for highly successful 

perturbation theories [1, 7, 40], [62–65]. In regard to simple 

liquids’ quasiuniversality there is also much to be learned 

from the van der Waals picture and the HS paradigm. The 

latter leads to the ‘macroscopic’ reduced units equations (5), 

which are essential for de�ning isomorphs, as well as to a pre-

cise de�nition of quasiuniversality (section 4.5). Moreover, 

the HS system provides the insight that quasiuniversality 

should be explained in terms of a reference system with a ther-

modynamic phase diagram that is basically one-dimensional 

in regard to structure and dynamics. Finally, the HS system 

points to the signi�cance of the excess entropy for identify-

ing the lines of virtually invariant structure and dynamics 

in the phase diagram [103]. Despite these several important 

points, the HS paradigm also has some challenges as we saw 

in section 5.

According to the van der Waals picture and the HS par-

adigm, the harsh repulsive forces determine the structure 

and dynamics of simple liquids implying that—to lowest 

order—these are well represented by a HS system. This can-

not explain, however, why certain systems with strongly 

repulsive forces violate quasiuniversality, nor is it possible to 

predict a priori which simple systems are HS like and thus 

quasiuniversal, and which are not. The EXP family, on the 

other hand, consists of a well-de�ned class of systems (equa-

tion (17)), which all to a good approximation conform to the 

same equation  of motion, equation  (13), re�ecting the fact 

that they basically have the same high-dimensional potential-

energy surface. The degree to which this applies depends on 

how well the reduced pair potential can be represented as a 

�nite sum of exponentials with large prefactors and how large 

these prefactors are.

A recent challenge to the HS paradigm relates to the underly-

ing assumption that the repulsive and attractive pair forces play 

well-de�ned, separate roles for a liquid’s physics [197–203].  

The HS paradigm is a bit counterintuitive in this regard, in 

fact, because along the lines of constant HS packing fraction 

of a given system, the repulsive reduced forces change signi�-

cantly. An illustration of this is given in �gure 12(a), which 

shows Lennard-Jones pair potentials that all according to the 

isomorph theory at the given state point correspond to the 

same HS packing fraction. Inspecting these pair potentials, it 

is not obvious why they to a good approximation should have 

the same HS radius. They have the same structure and dynam-

ics because the force on a given particle from its surround-

ing particles is almost the same (�gure 12(b)). The take-home 

message is that it may be misleading to focus merely on the 

pair potential; there is a lot of cancellation going on when the 

individual pair forces are added as vectors to arrive at the force 

on a given particle, which after all via Newton’s equations of 

motion is what determines the structure and dynamics.

This paper focused on simple liquids’ quasiuniversality. 

The corresponding crystals also have quasiuniversal struc-

ture and dynamics, although this remains to be investigated 

in detail. Just as for liquids, not all crystals are quasiuniversal 

or have isomorphs. A numerical study of crystals with and 

without isomorphs was recently published [181], compare 

�gure 10(c).

Figure 12. Different Lennard-Jones pair potentials resulting in the same structure and dynamics to a good approximation (reproduced with 
permission from [197]; copyright 2013 IOP Publishing). (a) Different LJ pair potentials that according to the isomorph theory have virtually 

the same structure and dynamics at the state point ρσ ε =k T, 1, 13
B( / ) ( ). In the van der Waals picture of quasiuniversality this is because 

these potentials’ different repulsive forces are all represented by the same HS particle radius, i.e. at the state point in question each of the 

LJ systems in the �gure is represented by a HS system with the same packing fraction. In the EXP explanation of quasiuniversality, the 
different pair potentials de�ne systems that conform to the same equation of motion, equation (13), re�ecting the fact that these apparently 
quite different systems have basically the same high-dimensional potential-energy surface. (b) The x-components of the reduced-unit forces 
on a single particle coming from the different LJ potentials of (a) plotted as a function of time along a given trajectory, showing that the 
systems give rise to virtually the same forces and thus conform to the same equation of motion.
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There are a number of open questions relating to quasiuni-

versality, for instance the following:

 1. Is there just one quasiuniversality class of single-

component systems according to the de�nition proposed 

in section  4.5? Since the EXP quasiuniversality class 

includes all well-known examples of quasiuniversality, 

we conjecture that the answer is yes [160]. Most likely, 

the situation is quite different for mixtures in which case 

each composition may have its own quasiuniversality 

class(es).

 2. Are all single-component R simple systems, i.e. with 

strong virial potential-energy correlations, in the EXP 

quasiuniversality class?

 3. Do non-pair potential systems exist that obey the EXP 

quasiuniversal equation of motion equation (13)? These 

might include potentials accurately describing molten 

metals; thus recent ab initio quantum-mechanical 

density-functional theory (DFT) simulations have shown 

that most liquid metals have strong virial potential-energy 

correlations close to the triple point [177], and the DFT-

generated potentials are not pair potentials.

 4. What it the origin of the Rosenfeld–Tarazona relation 

according to which the isochoric speci�c heat at constant 

density varies with temperature as /
∝

−
T

2 5 to a good 

approximation? Can this be explained by reference to the 

EXP pair potential?

 5. What is the role of dimensionality? It was recently shown 

rigorously that all reasonable pair-potential systems obey 

hidden scale invariance (equivalent to equation (8)) in the 

limit of in�nitely many dimensions [204], con�rming a 

previous speculation [127]. In connection with the further 

intriguing �nding of dynamic quasiuniversality in high 

dimensions [205], this suggests that simple liquids and 

their quasiuniversality should be understood in terms of 

a systematic 1/d expansion quantifying the deviations 

from quasiuniversality. Thus the elusive small number λ 

needed to circumvent the strong-coupling complexities 

in liquid-state theory (section 2.3) may simply be given 

by /λ = d1 , with the yet-to-be constructed 1/d expansion 

converging more rapidly for R simple systems than for 

systems in general [127, 206]. In this view, the HS system 

may be regarded as the ‘poor man’s’ limit of high dimen-

sionality [206].

 6. Do simpli�cations arise for quantum liquids of particles 

interacting with a pair potential belonging to the EXP 

quasiuniversality class [207]?

 7. How does one explain the quasiuniversality recently 

reported for the gas phase in which the second virial coef-

�cient determines the physics [116, 119]?

It appears that there is still a lot of work to do in this funda-

mental �eld of research.

Acknowledgments

The author wishes to thank T Hecksher, A K Bacher, and H 

Larsen for technical assistance in preparing the manuscript. 

This work was supported by the Danish National Research 

Foundation via grant DNRF61.

Appendix. Excess thermodynamic quantities

This appendix is largely identical to the appendix of [178], 

but is repeated here in order to make the text self contained. 

Consider a system of N identical particles in volume V with 

number density /ρ = N V . The particles are represented by 

the 3N-dimensional con�guration vector ( )≡R r r, ..., N1 ; the 

corresp onding reduced (dimensionless) con�guration vec-

tor is given by ˜ /
ρ≡R R
1 3 . Below we review the de�nition of 

excess thermodynamic quantities and derive the following 

microcanonical expression for the excess entropy at the state 

point with density ρ and average potential energy U:

( )/ ( { ˜ ( ˜ ) })/
ρ ρ= − + | <−

S U k N N U UR R, ln ln Vol .ex B
1 3

 (A.1)

Here ‘Vol’ refers to the volume of the set in question, i.e. the 

R̃ integral of the unity function over all con�gurations with 

potential energy lower than U.

If the momentum degrees of freedom are denoted by 

( )≡P p p, ...,
N1 , ( )H P R,  is the Hamiltonian, and /β≡ k T1 B , 

the Helmholtz free energy F is given [1] by

∫=β β− −

N h

P R
e

1

!

d d
e .F

N

H P R

3

,( ) (A.2)

The Planck constant h and the indistinguishability factor /N1 ! 

are conveniently absorbed by writing = +F F Fid ex in which 

Fid is the free energy of an ideal gas at the same density and 

temperature, ( ( ) )ρ= Λ −F Nk T ln 1id B
3  where / πΛ = h mk T2 B  

is the de Broglie wavelength (m is the particle mass) [1]. The 

excess free energy Fex is thus given [1] by

( )∫=β β− −

V

R
e

d
e .

F

N

U Rex (A.3)

Due to the identity = +F F Fid ex, any thermodynamic 

quantity that is a derivative of F separates into an ideal-gas 

contribution and an excess contribution deriving from the 

particle interactions. For example, = −F U TSex ex, the pres-

sure is given by / /= +p Nk T V W VB  in which W/V is the 

excess pressure, the entropy S obeys = +S S Sid ex in which 

( / )= − ∂ ∂ ρS F Tex ex , the isochoric speci�c heat CV separates 

into a sum of two terms, etc.

The excess entropy obeys <S 0ex  because any system 

is more ordered than an ideal gas at the same density and 

temper ature. As temperature goes to in�nity at �xed density, 

→S 0ex  because the system approaches an ideal gas. The rela-

tion between excess entropy, potential energy, and temper-

ature is the usual one, i.e.

⎜ ⎟
⎛

⎝

⎞

⎠

∂

∂
=

ρ

S

U T

1
.

ex

 (A.4)

This follows by subtracting from the textbook identity 

= +T S E p Vd d d  the ideal gas case = +TS E p Vd did kin id
, 

leading to ( / ) ( / )ρ ρ= + = −T S U W V V U Wd d d d dex .
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Proceeding to derive equation  (A.1), recall that the 

Heaviside theta function ( )Θ x  is unity for positive arguments 

and zero for negative. The volume of the set of con�gurations 

with potential energy less than U relative to the full con�gura-

tion space volume VN is denoted by ( )Ω U  and given by

( ) ( ( ))∫Ω = Θ −U
V

U U
R

R
d

.
N

 (A.5)

If Xi is one of the 3N particle coordinates and /∂ ≡ ∂ ∂Xj j, the 

microcanonical (‘mc’) average of ( )∂X U Ri j  is by de�nition 

given by

∫

∫

δ

δ
∂ =

∂ −

−
X U

V X U U U

V U U
R

R R R

R R

d

d
.i j

N
i j

Nmc
〈 ( )〉

( / ) ( ( )) ( ( ))

( / ) ( ( ))
 (A.6)

Following Pauli’s derivation [208], via the fact that 

δΘ =′ x x( ) ( ) and a partial integration we get for the numerator

∫

∫

∫

∫

∫

δ

δ

δ

∂ −

= ∂ Θ −

= ∂ − Θ −

= − − Θ −

= Θ −

V
X U U U

U V
X U U U

U V
X U U U U

U V
U U U U

V
U U

R
R R

R
R R

R
R R

R
R R

R
R

d

d

d

d

d

d

d

d

d

d

d

N i j

N i j

N i j

ij N

ij N

( ( )) ( ( ))

( ( )) ( ( ))

( ( ( ) )) ( ( ))

( ( ) ) ( ( ))

( ( ))

 

(A.7)

( )δ= Ω U .ij (A.8)

The denominator of equation (A.6) is ′Ω U( ), so

′
δ∂ =
Ω

Ω
X U

U

U
R .i j ijmc

⟨ ( )⟩
( )

( )
 (A.9)

Next, the canonical (‘can’) average of ( )∂X U Ri j  is calculated. 

If / ( ( ))∫ β= −Z V UR Rd expN  is the partition function we  

have ∫ β∂ = ∂ − =X U V X U U ZR R R Rd expi j
N

i jcan〈 ( )〉 / ( ( )) ( ( ))/   

/ ( ( ))/∫ β− ∂ −k T V X U ZR Rd expN
i jB . Via a partial integration 

this gives δk T ijB . Since averages are ensemble independent, 

equation (A.9) implies

′

Ω

Ω
=

U

U
k T .B

( )

( )
 (A.10)

Combined with equation  (A.4) this means that 

( / ) / ( )/∂ ∂ = = ΩρS U T k U U1 d ln dex B , i.e.

( )= Ω +S k U Cln .ex B (A.11)

The a priori density-dependent integration constant C is deter-

mined from the boundary condition →S 0ex  for →∞T . From 

equation (A.5) we conclude that C  =  0 at all densities since 

→Ω 1 as →∞U . Rewriting �nally the de�nition of ( )Ω U  

as an integral over the reduced coordinate vector R̃ leads to 

equation (A.1).
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