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TABLE I 
MAINBEAM DIRECTIVITY LOSS (IN DECIBELS) 

V 

i:l 0.049  0.073 1 Sinc  Pattern 

Chebyshev  Pattern 

AU 1M = 2  3  4  5 

0.024  0.073  0.1 1.1 4.4 
1.2 4.7 10.4 

0.012 0.099 0.004 -0.2 0.1 
0.024 0.100 -0.2 0.05 2.0 
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Fig. 6. Higher order  nulling versus multiple  nulling.  Shown is 2 0 d B  
Chebyshev  pattern  with  third-order  null  imposed  at u = 0.20 (dashed 
line)  and Same pattern  with  three  nulls  imposed  at u = 0.15,  0.20, 
0.25 (full line). Former  pattern  contains 1.6 dB  more  power  within 
AU than  latter.  Sidelobe-peak  cancellation is 10  dB  and  17  dB,  respec- 
tively. N = 2 1, d = h/2. 

iJ:SIN( T H E T R I  

written as the sum of  the original pattern  and  a  set  of M weighted 
cancellation  beams [ 3 ] .  In this case the  nth  cancellation beam is 
given by  the  nth derivative, with  respect to  u ,  of a sinc beam  at 
u = uo.  

We have also evaluated  this  approach,  but  omit  the analysis 
here, since this  method  turns  out  to  be less effective  for wide- 
band  sidelobe  suppression  than  the  multiple nulling method. 
This  conclusion is obvious  when  the  maximum  magnitude  of  the 
residual pattern is used as a  measure, but  it holds even in the 
sense of  integrated  power over the nulling sector.  Qualitatively, 
this can be  understood in view of  the  fact  that an Mth-order 
jerivative null is equivalent to a  cluster of M infinitesimally 
closely spaced single nulls at  the  center  of  the nulling sector. 
This  scheme therefore  cannot  be  expected to provide  pattern 
control as efficiently as when  the  nulls  are  spaced evenly over 
the  sector. 

An illustrative  comparison of a  pattern  with  a  third-order  null 
(p = dp/du = d2p/du* = 0) and  a  pattern  with  three closely 
spaced single nulls is shown in Fig. 6. Clearly,  the  multiple  nul- 
ling technique  provides  superior  sidelobe  cancellation over the 
desired nulling sector (Au = 0.1, uj = 0.2). 

V. SUMMARY  AND CONCLUSION 

The problem  of wide-band nulling has been  analyzed in an 
attempt  to  relate  the  sidelobe  cancellation over a given bandwidth 
to the  number  of  null  constraints imposed on the  antenna  pat- 
tern.  Two  constraint  methods,  multiple nulling and derivative 
nulling: were considered  and the  former was found  to  be  the 
nore effective  method. 

The  mathematical  complexity of the problem  has  been  re- 
duced  considerably  through  appropriate  approximations. To 
first  order the sidelobe  cancellation is shown to be  independent 
of  the  actual  pattern  type  and  determined  by  only  two  param- 
eters:  the  number  of null constrabts M and  the  number of side- 
lobes v to  be  cancelled.  Since Y directly  translates into a desired 
nulling  bandwidth Af/fo or  a  nulling  sector Au, either  one  of  the 
latter  may  be used as  alternative variable. 

An exact  analytic  solution to  the  problem seems  difficult 
to  derive and  therefore  a  numerical  solution is offered.  From 
this  set of curves, the  number  of  pattern  nulls  required  to  sup- 
press a  jammer over a given bandwidth  can  be  conveniently  esti- 
mated.  This  number is indicative of  how  many degrees of  free- 
dom  a  fully  adaptive  antenna system must  allocate to  attain  a 
specified  wide-band nulling performance. 
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Simple hlethod for Pattern Nulling by Phase 
Perturbation 

HANS STEYSKAL, MEMBER, IEEE 

Abstract-A method of sidelobe  nulling,  which  involves  perturbing  the 
array  illumination  phase  only, is presented.  The  general  nonlinear 
problem is linearized  by  assuming  the  perturbations  to  be  small,  and  an 
analytic  solution is derived.  Illustrative  examples of sinc  and  Chebyshev 
patterns  with  imposed  nulls  are given. 

INTRODUCTION 
Methods  for forming  nulls in the  radiation  pattern of an an- 

tenna in order to suppress  directional  interference  presently re- 
ceive much  attention. A  problem of  particular  interest  is  pattern 
nulling by  perturbation of the  aperture  illumination  phase, since 
in  a phased array  the  required  controls  are  already  incorporated. 
Although singular cases are certainly  conceivable  where  phase 
control  alone is insufficient,  for  nulls in the  sidelobe region of 
normal  antenna  patterns, it seems to  be  quite  effective.  The  phys- 
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ical  reason is of course  that  at  a  low  pattern level an imposed 
null  represents  a  relatively  small  pattern  change. 

In this  communication we present  a  deterministic  method  for 
the synthesis of  the desired pattern  nulls using  phase perturbation 
only. By assuming the  perturbations  to be  small, the general non- 
linear problem is linearized and  an  analytic  solution is derived. To 
ensure the validity of  the initial assumption,  the small  perturba- 
tion  condition is explicitly  imposed on the  solution. The  ap- 
proach  therefore  leads to good  nulling performance even though 
it is approximate. 

Publications on this problem  appear to be limited t o   [ l ]  and 
[2] ,  which  focus on the adaptive minimization  of  a generalized 
performance  index.  The  present  method  differs  from [ 11 mainly 
in  that  it provides  a  direct  rather than  an iterative  solution. Also, 
due  to  the  difference in approximation  criteria,  the  resultant 
cancellation  beams  reflect  the  general  characteristics of the ori- 
ginal pattern. 

METHOD OF SOLUTION 

Consider the  pattern 

of  a linear uniform  array of 2N + 1 isotropic  elements.  Here 
u = sin 0,  where 0 denotes  the angle from  broadside, d is the 
element spacing, and a, is the  complex  excitation of the  nth 
element. We limit our  attention  to  the usual  case  where f o ( t f )  
is a  real function so that a. is  real and a_,  = an*, with  the 
asterisk denoting  complex conjugate. Our problem is to find 
2N + 1  excitation  phase  perturbations &, such that  the per- 
turbed  pattern f ( ~ )  has nulls at  the prescribed  directions u = u,, 
m = 1, -, 1M. 

Performing  a Taylor  expansion  of  the phase factor of the per- 
turbed  excitation  coefficients a, exp (@,) and retaining the first 
two terms,  we obtain 

The  term f,(u) represents  a  cancellation  pattern  which  can be 
used to achieve the M desired  nulls.  These M conditions consti- 
tute 2M real equations  for  the 2N + 1 unknown @, and since 
usually 2M < 2N + 1, the  solution is not  yet  completely  deter- 
mined.  Therefore, we also impose the  condition  that  the  pertur- 
bations  be  small  (in  a  mean  square  sense),  since  our  approach is 
based on this very assumption.  This leads to  the fmal system of 
equations 

Defining  a ( 2 h r  + 1)-dimensional  phase perturbation vector a= 
($-!v, -., @,v) and  constraint  vectors Em = ( a - N  exp (Nkdu,), 
e-, UN exp (-Nkdu,)), it is shown in the  Appendixthat  the 
solution  of (3) can  be written  in  the form 

11.1 - 
9 =  xmImc, 

m= 1 

where Im C denotes  the imaginary component  of  the  complex 

vector C and the M unknown  coefficients X, are  determined 
from  the IM linear equations (3a). Note  that  this usually  consti- 
tutes a very small  system  of  equations,  which is easily  inverted. 
Further,  it is found  that 4-, = -9, and when fo is an even 
(odd)  function,  then f, is a real odd (even) function. 

For  the case of a single null  imposed on an even pattern,  the 
cancellation pattern is found to  be, using (2) and (4), 

N 

f,(u) = (1/2)hl[ a i e - i n k d ( u - u l )  

- a ; e - i n k d ( u + u l )  

- N  

N 

-N 1- (5) 
The pattern is  seen to consist of a  pair of beams, pointing  at 

u = u1 and u = - u l ,  respectively,  and each beam corresponds  to 
an  aperture  amplitude  distribution  which  is  the  initial  amplitude 
squared.  An  initial  sinc pattern will thus lead to sinc-type  cancel- 
lation beams, and,  interestingly, an initial  Chebyshev pattern will 
lead to  Chebyshev-type  cancellation beams.  The latter  relation is 
only of  an approximate qualitative nature and  follows from  the 
fact  that  the cancellation  beam is the  convolution  of  the initial 
pattern  with  itself.  For  multiple nulls the  cancellation  pattern 
clearly  is  a properly weighted sum of such beam  pairs. 

The property of  a  beam-pair  cancellation pattern has been 
shown earlier  in [ I ] .  However, due  to  the error  criterion  chosen, 
the beams obtained  there  are necessarily  sinc-beams,  whereas ours 
preserve the  characteristic of the initial pattern. 

RESULTS 

The  method  for  pattern nulling presented above is based on an 
approximation. To validate the  approach,  therefore,  a few  illus- 
trative  examples  of perturbed  patterns have  been  calculated,  using 
perturbed  excitation  coefficients a, exp (i&) instead  of the coef- 
ficients a, in (1). 

A sinc pattern  and  a  30-dB Chebyshev pattern,  each  with  one 
prescribed  null,  are shown in Figs. l(a)  and 2(a). Although  the 
nulls  are not  perfect,  due  to  the  approximations  inherent in the 
method,  the  initial sidelobe  levels  have been reduced by 48 and 
60 dB,  respectively. Note  the unavoidable  sidelobe  increase at 
u = -ul since the  cancellation  patterns f, are  odd  functions. 
These patterns  are shown in  Figs. l(b)  and 2(b),  which  verify the 
expected characteristics:  a  sinc-type  beam  pair in  the  former case, 
a Chebyshev-type beam pair in the  latter case. The phase pertur- 
bations  corresponding  to these two cases  are  listed  in Table I. For 
the Chebyshev pattern  the  perturbations are considerably smaller 
than  for  the sinc pattern,  due  to  the lower  initial  sidelobe level. 

With closely  spaced  multiple  nulls the  pattern  can be  sup- 
pressed  over an  extended angular sector, which for  a phase  scanned 
array  is tantamount  to  an increased  nulling bandwidth. This  is 
shown  in Fig. 3, where with  three nulls  a 36-dB sidelobe  cancel- 
lation  is achieved  over  a  sector & = 0.012, corresponding  to 
about 5 percent  bandwidth. A similar example  with five pre- 
scribed  nulls is shown in Fig. 4. Although  this obviously  strains 
our  approximate  method, still  22-dB  cancellation  is obtained over 
Au = 0.024, corresponding  to  about 10 percent nulling band- 
width.  For  comparison, Fig. 5 shows the nulled pattern when 
both  the illumination  amplitude  and  phase  are  perturbed [3] ,  
which gives 85-dB cancellation. A  unified  perspective on dif- 
ferent  methods  for  pattern nulling  may  be found in [4] ,  which 
also  contains  additional  examples. 
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U = S I N (   T H E T R  1 

(b) 
Fig. 1. (a) Pattern  with  one  null  imposed  at u = 0.123.  Dashed  line 

shows  initial  sinc-pattern  envelope.  Sidelobe  cancellation is 48 dB. (b) 
Cancellation  pattern. 

A 2N+1=41  ,kd=n 

TABLE I 
COMPUTED PHASE PERTURBATIONS  FOR FIGS. 1 , 2  

PATTERN : SI NC 30DB CHEBYSHEV 

FI FMFNT l o .  +Il I") +" (0) 

0 (Array Center) 

1 
2 
3 
4 
5 
5 
7 
6 
5 
10 
11 
12 
13 
14 
15 
16 
17 
16 
19 
20 

C 0 
5 2 
10 3 
13 4 
14 5 
14 4 
10 3 
6 2 
1 0 

-5 -1 
-10 -2 
-12 -3 
-14 -3 
-14 -2 
-11 -2 

-7 -1 
-2 0 

4 0 
9 1 

12 1 
14 2 

I I -: - .8 -:6 - .4 -.'2 0 i 2  :4 :6 :8 i 
U = S I N (   T H E T A  I 

(b) 
Fig. 2. (a) Pattern  with  one  null  imposed  at u = 0.123.  Dashed  line  shows 

initial  30-dB  Chebyshev  pattern  envelope.  Sidelobe  cancellation is 60 
dB. @) Cancellation  pattern. 

- 1  -:8 - : 6  - . 4  - . 2  6 :2 1 . 4  .'6 : 8  I 
U=SIN[ THETQ I 

Fig. 3. Pattern  with  three  nulls imposed at u = 0.214,  0.22, and 0.226, 
respectively.  Dashed  line  shows  initial 4 0 d B  Chebyshev  pattern  en- 
velope. Sidelobe  cancellation is 36  dB. 

c. 
2H+1=41,kd= ~i 

I I  1 

U = S I N I T H E T A )  
.'2 . 4  .'6 : 8  1 

Fig. 4. Pattern  with five nulls  imposed  at u = 0.214,  0.22,0.226,0.232, 
and  0.238,  respectively. Dashed line  shows  initial 40dB Chebyshev 
pattern  envelope.  Sidelobe  cancellation is 22  dB. 
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Fi N 

2N+!=41,kd= 7 I 

Fig. 5 .  Same case as in Fig. 4 when in addition to excitation phase also 
amplitude is perturbed. Sidelobe cancellation is 85 dB. 

CONCLUSION 

We conclude  that this simple  approximate  approach to  the 
nonlinear  problem  of  phase-only  pattern  nulling  works satisfac- 
torily so long as the  nulls  are imposed in the sidelobe region and 
the  number  of  nulls M the  number  of  elements (7J f 1).  A 
general limitation  of  phase-only nulling methods  appears to  be 
that  they  are  incapable  of nulling two  jammers, which  are  dis- 
posed  perfectly  symmetrically  about the  main beam. This,  how- 
ever, is a rather academic situation  and,  for a modest  number  of 
interference  sources,  therefore,  these  methods  should prove 
useful. A matter of practical  interest is the smallness of  the phase 
perturbations,  which possibly demands a larger number  of  phase 
shifter  bits  than  that  required  for  the  beam  scanning  function 
alone. 

APPENDIX 

Equation (3) can  be  written, using the vectors  introduced 
in the  text, as 

1 -  (4, C, *) = ifo(um) m = 1, ... ,M 

llQ112 =minimum 
( 6 )  

where as usual the  inner  product  and  the  norm  are  defined  by 
(?, jj’) = C x d n *  and I IX I I = @, q 1 1 2 .  Separating (6) into 
real and  imaginary  parts  leads to  the system of real equations 

’(&ReC,) = 0, (7a) 

~ (3, Im?,) =fo(um) ,  m = 1, -., M .  (7b) 

11 $ 1 1 ~  = minimum (7c) 

Ignoring for a moment  (7a),  the  solution  to  (7b) and (7c) is 
given by (see [S, p. 81 11) 

,If 
6=C h,Imcm (8 )  

where  the  constants Am are  determined  by  the M equations 
(7b).  Further,  it is easily shown that 

(ReFm,ImFn)=O,  t l m , n .  (9) 

The  vector  defined  by (8) thus satisfies also (7a),  and  conse- 
quently  it  constitutes  the  desired  solution. 

m = l  
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Scattering by a Rotating Circular Cylinder with 
Finite Conductivity 

DANIEL DE ZUTTER 

Absrract-The effect  of  motion on the signal  scattered by a  rotating 
circular  cylinder  with  finite  conductivity  is  investigated.  The  problem is 
solved by means of the  “instantaneous  rest-frame”  hypothesis.  The 
analysis  shows  that a surface  current  must  be  taken  into  account  to 
calculate  the jump in  the  tangential  magnetic  field  at the cylindrical 
surface.  This holds even  in  the  case of finite  conductivity. For a  perfectly 
conducting  cylinder,  the  influence  of  the  motion on the  fields  is  negligible. 
This  is  shown by  considering  the  limit of high  but  finite 0. 

I. INTRODUCTION 

The field scattered  by a moving body,  illuminated by an inci- 
dent wave, is influenced by  the  motion  of  the  scatterer. This 
phenomenon  can  be  exploited to gain information  on  the  proper- 
ties  and  the  state  of  motion  of  the  target. In the past,  much  at- 
tention  has been given to targets in translational motion  with con- 
stant  velocity.  In  this case the special theory  of  relativity  can  be 
used to  find  the  scattered  fields  and  the  associated  Doppler spec- 
tra [ 11, [2]. The  simplest  approach to  the problem of  rotating 
targets is to  apply  the  quasi-stationary  method.  There,  the  fields 
in the  presence  of  the  rotating  body  are  calculated  by assuming 
that  at  any given time,  they have the value corresponding to the 
instantaneous  position  of  the  body [3] -[5]. According to this 
method,  the  fields  scattered  by a rotating  homogeneous  circular 
cylinder  or  sphere  should  not  be  influenced by the  rotation. 

A more  accurate analysis shows that  the  rotation  produces  an 
additional field of  order n / w ,  where C2 is the angular velocity 
and w the angular frequency  of  the  incident wave [3],  [6]. This 
analysis uses the  instantaneous  rest-frame  hypothesis [3], accord- 
ing to which a scattering  problem involving an accelerated  body 
can  be solved by using the  local  boundary  conditions  and  constitu- 
tive equations  of  the special relativity. The  constant  velocity  ap- 
pearing  in  these  equations must  now  be  replaced  by  the  time 
and/or  space-dependent  velocity  at  the  various  points  of  the ac- 
celerated  body.  The  validity  of  this  hyporhesis is generally ac- 
cepted  for  sufficiently  low  accelerations [3] ,  [7],  [SI. In this 
communication,  the  theory will be used to investigate scattering 
by a rotating,  homogeneous  circular  cylinder  with  finite  conduc- 
tivity. A solution  of  this problem  already  exists for  nonconduc- 
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