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Abstract

This paper introduces a new method for shift scheduling in multi-skill call centers.
The method consists of two steps. First, staffing levels are determined and next, in
the second step, the outcomes are used as input for the scheduling problem. The
scheduling problem relies on a linear programming model that is easy to implement
and has short computation times, i.e., a fraction of a second. Therefore, it is useful
for different purposes and it can be part of an iterative procedure: for example, one
that combines shifts into rosters.

keywords: contact centers, multi-skill call centers, shift scheduling, skill-based
routing, staffing, workforce management.

1 Introduction

This paper deals with the allocation of labor resources over time, which is an integral part
of workforce management (WFM). Labor allocation is typically an operational problem
with a time horizon of only a few weeks. It is common to distinguish four phases in the
process of labor allocation:

1. workload prediction,

2. staffing,

3. shift scheduling, and

4. rostering.

Workload prediction is concerned with the prediction of the future amount of work offered
to the call center. Staffing translates this amount of work in numbers of required agents
such that a pre-specified service level is met. Shift scheduling then generates shifts such
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that these staffing levels are met. Finally, rostering refers to the pairing of shifts into
rosters and the assignment of employees to the rosters.

It is important to find a good match between the predicted workload and the scheduled
workforce. An inadequately sized workforce can lead to low service levels, such as long
waiting times. This can be avoided by scheduling a sufficiently large number of employees.
However, it is undesirable to schedule too many employees because, besides service levels,
contact centers also have to meet economical objectives, in particular, minimizing costs
due to employee salaries. Minimizing the number of employees is an important subject
because labor is expensive; about eighty percent of operating costs in call centers are due
to personnel (see Gans, Koole & Mandelbaum [GKM03]). Therefore, the cost reductions
obtained with good scheduling algorithms can be substantial.

Optimal labor allocation in single-skill call centers is a complex issue, and the inte-
gration of the four phases described above results in intractable models. Multi-skill call
centers come with additional complexity, because agents need to handle jobs that require
different skills. With regard to labor allocation, the predicted workload is often specified
per job/skill type in a multi-skill setting. Hence, the determination of optimal staffing lev-
els is much more complicated as compared to single-skill call centers where the workload
is specified by a single number.

Contribution

In this paper we deal with phase three of the labor allocation process: shift scheduling.
Our main contribution is that we develop a method to determine schedules in multi-skill
call centers such that a rough match between the predicted workload and labor capacity
is realized taking the randomness of the arrival process into account. Our method iterates
between phase 2 and 3 of the labor allocation process. The incentive to solve these steps
separately is computational, since an integrative approach yields calculations that are very
time consuming to execute. In practice, obtaining good rosters often requires several
iterations between the different phases. In these cases, it is important to have a scheduling
and rostering method with short computation times. The possible drawbacks of solving
both steps separately are discussed in Section 4.

To solve the shift scheduling problem of phase 3, we develop a model that generates a
set of feasible solutions such that integer programming techniques can be used to obtain
the optimal shifts. Feasible solutions are generated by using a fast and accurate heuristic
that solves the phase 2 staffing problem (Pot, Bhulai & Koole [PBK06]). The integer
programming model then encapsulates the flexibility of multi-skilled agents to work in
different groups that may use various subsets of their skills in different periods of the day.
Both phases have small computational requirements such that rostering (phase 4) can be
performed much more quickly than is currently possible using methods from the literature
(Cezik & L’Ecuyer [CL06]).
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Literature

The literature offers different models and algorithms for shift scheduling in single-skill call
centers. However, not much literature is devoted to scheduling in multi-skill call centers.
The most relevant papers on scheduling in call centers are discussed next.

Most models that deal with shift scheduling in a multi-period and single-skill environ-
ment are based on the standard set-covering model presented of Dantzig [Dan54]. The
model of Dantzig finds an optimal set of shifts, while obeying the service-level constraint
in each period. A cost is associated with each shift and the objective is to select the shifts
that minimize the total costs.

Keith [Kei79] extended the set-covering model with slack and surplus variables. His
model allows for deviations from the predicted staffing levels to be penalized by costs. This
creates a balance between the costs of deviating from the staffing levels and the reduction
in the number of scheduled shifts while satisfying the service level.

Thompson [Tho97] introduces two models for shift scheduling. He distinguishes between
minimum acceptable service levels per period and a constraint on the average service level
over the planning horizon. An integer programming model is described that includes both
types of service-level constraints. It solves the staffing problem and the shift scheduling
problem in an integrated fashion. Thompson also gives an extensive overview of the liter-
ature on scheduling and makes a classification of the different shift scheduling models. In
Section 1 in Bhulai, Koole & Pot [BKP07] we give a short description of one of the models
that can be used to obtain lower bounds for more complex models.

Ingolfsson & Cabral [ICW02] focus on cases in which the planning intervals are not
assumed to be independent. Most staffing methods perform badly in this case due to
transient effects between intervals. This is typically the case when long service times are
present, because they create dependency between consecutive periods. In addition, the
paper introduces a method for staffing and scheduling in single-skill call centers.

In Atlason et al. [AEH04a, AEH04b], the model of Thompson [Tho97] is adjusted for
cases in which the service level is only obtainable via simulation. The benefit of simula-
tion is that it allows for the calculation of the service level in a transient setting. Since
simulation is a very time-consuming operation, the method deals with the conditions on
the service level differently and more efficiently by means of cutting-plane techniques, see
Gomory [Gom58].

There are two methods from the literature that are used in this paper, which we discuss
next. Cezik & L’Ecuyer [CL06] describe a generalization of the method from Atlason et
al. [AEH04a] in the context of multi-skill call centers. The method reduces the solution
space by means of cutting-plane methods that were developed to solve large-scale linear
integer programs. The computation time of this algorithm is relatively long because each
cut requires the multi-skill call center to be simulated multiple times and very accurately.
Hence, they are not able to solve the shift scheduling problem, but only to determine the
staffing levels that are constant over the day. For this purpose it is used only in step 1 in this
paper. Note that the computation time is important because phase 4 (rostering) is usually
an iterative procedure in which phase 3 is executed several times with small adjustments.

3



Thus, for practical purposes it is desirable to have an algorithm that executes phase 2 and
3 relatively quickly. Pot, Bhulai & Koole [PBK06] solve the same problem by means of a
Lagrange relaxation.

Outline

The paper is organized as follows. The main contribution of the paper is in Section 2,
presenting an efficient method for shift scheduling in a multi-skill environment when con-
sidering a service level constraint in each planning period. The method consists of two
steps: methods for the determination of staffing levels, discussed in Section 2.1, and the
determination of an optimal set of shifts, which is the subject of Section 2.2. The new
methods for scheduling in multi-skill call centers are numerically evaluated by a case study
in Section 3. We show that the method yields nearly optimal results. Finally, a summary
of the results is given in Section 4, which also discusses directions for future research.
Additional numerical examples can be found in Bhulai, Koole & Pot [BKP07].

2 Multi-Skill Environment

This section introduces methods for shift scheduling in multi-skill call centers for two
types of service-level constraints. The methods consist of phase two and three of the labor
allocation process. The first method executes both steps separately. Since this method
cannot deal with service level conditions that are specified as an average over the day, the
second method describes a heuristic that iterates between both steps.

The major difference with a single-skill environment is the presence of multiple agent
groups with different skills. We assume that agents from the same group have an equal set
of skills. Our objective is to meet the service-level constraint against minimal costs.

In the first step, a minimal staffing level is determined such that the service-level
constraints are satisfied, i.e., the fraction of calls (over all types) that have a waiting
time of less than twenty seconds (the AWT) is greater than or equal to α. The staffing
levels denote the required number of agents in each agent group for each period. This
scheduling problem is significantly more difficult in comparison to scheduling in single-skill
call centers. We solve this difficult problem using the heuristic developed in Pot, Bhulai &
Koole [PBK06]. We discuss the heuristic in Section 2.1.

In the second step, a set of shifts has to be composed that minimizes the costs and
satisfies the required staffing levels. This step is also more complex than in a single-skill
environment. In a multi-skill environment an agent with a specific set of skills can be
assigned to different agent groups with potentially fewer skills in each period. Modeling
this in a straightforward way leads to many decision variables, which easily results in
intractable models.

Before presenting the two methods we define the multi-skill model as follows. We con-
sider a call center that handles calls which require a skill from the setM := {1, 2, . . . ,M}.
Calls of type m ∈M arrive in period t ∈ T = {1, 2, . . . , T} according to a Poisson process
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with rate λm,t. Moreover, we assume that the arrival rate is constant in each period. Every
agent in the call center belongs to an agent group, that can be different in each period,
from the set G = {1, 2, . . . , G}. The service times are assumed to be exponential with rates
that are skill and group dependent, denoted by rate µm,g for skill m ∈M and group g ∈ G.
We assume that a control policy π is given that defines a call-selection and agent-selection
rule. Call assignment occurs according to the agent-selection rule. If a call is not assigned
to an agent group, it is queued, after which it is served according to the call-selection rule.

A shift is defined by a subset of the working hours from the set T and a subset of
skills from M. The number of shift types, i.e., the number of different shifts, is fixed and
denoted by K. Each shift type has an index and the corresponding indices are enclosed in
the set K = {1, 2, . . . , K}. Each shift has an offset, which is denoted as the index of the
starting period and a length. However, additional characteristics, e.g., breaks and splitted
shifts, are also easy to include.

Let Sg be the set of skills of group g. We assume that for each shift there is a group of
agents that has exactly the skills to work that shift. Hence, for notational convenience we
can denote the skill set of shift k with fk, i.e., the index of the corresponding agent group
for shift k. In this context, a shift k is workable if there is a group g such that fk = g,
and agents that work shift k can work in all groups g′ that satisfy Sfk

⊆ Sg′ . In order to
meet the service level constraints we suppose that for every agent group there is a set of
workable shifts such that for some agent configuration the requirements are met. The cost
of shift k is denoted as ck, and the working hours are defined by ak,t:

ak,t =

{
1, if an agent assigned to shift k works during period t
0, otherwise.

2.1 Step 1: Staffing Levels

In this part we describe methods to compute the staffing levels of the agent groups for
each interval of the day. To this end, we consider two existing methods from the literature,
that are described in Cezik & L’Ecuyer [CL06] and Pot, Bhulai & Koole [PBK06]. For a
summary of these papers we refer to Section 1.

Both methods require several input parameters. The main parameters are the arrival
rates λm,t, the service rates µm,g, the routing policy, and the staffing costs as a function of
the group sizes Kg(sg). The arrival rates can be specified for each job type in each interval.
The service rates and staffing costs need to be specified for each agent group, at each point
in time. We let the class of routing policies be limited to priority routing policies. See for
example Franx, Koole & Pot [FKP06] for an explanation.

Staffing costs require additional attention because these are not always directly available
in call centers. The reason is that an agent can sometimes work in an agent group requiring
a subset of his/her skills. Hence, the staffing costs depend on the costs of the shifts. To
this end, we suggest deriving staffing costs from the costs of the shifts in the following way

Kg(sg) :=
sg

|{k ∈ K : fk = g}|
∑

k∈K:fk=g

ck

ake
, with e the unity-vector.
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It is the average cost of the possible shifts the agents from the group can work, normalized
by the shift lengths.

Each of the methods proposed by Cezik & L’Ecuyer [CL06] and Pot, Bhulai & Koole [PBK06]
has at least one advantage and one disadvantage, and the advantage of the one is the disad-
vantage of the other. A disadvantage of the first method is the longer computation times
and the lower accuracy. A disadvantage of the second method is that the service-level
constraints can not be specified per job type, but only as an average over all job types.

In our opinion, requiring service-level constraints to be uniform across call types is not
a big restriction for the following reason. Schedules are most often generated at least a few
weeks ahead of time based on predictions. As a result, call centers often have to reschedule
during the day when the real workload deviates from the predictions. Thus, service levels
often can be and need to be adjusted during operations.

In the numerical experiments of this paper, we decided to use the method of Pot, Bhulai
& Koole [PBK06], because we only consider service levels that are an average over all job
types.

2.2 Step 2: Shift Scheduling

This section describes the second step of the 2-step algorithm. A solution is found to the
question of how to determine the optimal number of shifts of each type. We also answer
the question of how to allocate agents to agent groups in each period.

The main feature of this method is that agents can work in different groups during the
same shift. The skill set of the shift determines if an agent with a specific type of shift is
allowed to work in a certain agent group. An agent with skill set X is allowed to work in
a group with skills X ′ if X ′ ⊆ X. The objective of the integer programming model is to
minimize personnel costs while meeting the staffing requirements for each group in each
period.

Introduction

We introduce the integer programming model by means of an example. Consider a call
center with three skills M = {1, 2, 3} and six agent groups S1 = {1}, S2 = {2}, S3 =
{3}, S4 = {1, 2}, S5 = {2, 3}, and S6 = {1, 2, 3}. Information about the arrival streams,
control policy, and service time distributions is not relevant for shift scheduling. They are
only needed to determine the required number of agents st,g in step 1. The example is
depicted in Figure 1, showing the agent groups and the arrival streams.

We are interested in an integer programming model that determines the cheapest set
of shifts such that the requirements concerning minimum numbers of agents are met. To
get more insight we assume that the optimal values xk and the number of agents working
shift k are given. Then, the assignment of the available agent numbers xk to the agent
groups can be modeled as a linear assignment problem. This is depicted as a graph in
Figure 2. The nodes on the left side represent the scheduled number of agents for each
skill set, which is determined by the variables xk. These numbers represent the sizes of the
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1 2 3

4

5

6

λ1 λ2 λ3

Figure 1: Example of a 3-skill call center

flows from the source. Note that the number of scheduled agents with skills M′ ⊆ M in
period t is equal to ∑

k:Sg=M′,ak,t>0

xk,

with g ≡ fk. The nodes on the right side denote the required number of agents per agent
group in period t. These represent the capacities of the arcs that are connected to the sink.
The agents scheduled on the left side need to be assigned to the agent groups on the right.
A feasible solution of the linear assignment problem gives a feasible assignment of the
scheduled agents to the different agent groups. However, the assignment from Figure 2 of
available agents to agent groups is not explicitly modeled in the integer program because a
reduction of decision variables is possible. The reduction is obtained by introducing dummy
variables yg′,g,t for each group g′, g such that Sg ⊆ Sg′ . The variable yg′,g,t denotes the
number of agents that are removed from group g′ and work in group g that has fewer skills in
period t. Note that any subset X ′ of X can be obtained by removing elements successively,
assuming that all types of agent groups are present in the call center. Therefore, the dummy
variables yg′,g,t make all feasible assignments possible. For example, an agent from group 6
can operate as a specialist in group 1 by setting the two dummy variables y6,4,t and y4,1,t to
one. We can depict the dummy variables by arcs between groups that have 1 skill less as
shown in Figure 3. The introduction of the dummy variables leads to a significant reduction
in decision variables. Suppose that we have a call center with groups having all possible
combinations of skills. The linear assignment model has

∑M
k=1

(
M
k

)
(Mk − 1) = 3M − 2M

variables. The simplified model has
∑M

k=2

(
M
k

)
k = M(2M−1 − 1) variables when yg′,g,t has

the additional constraint |Sg| = |Sg′|−1. If not all combinations of skills are represented by
a group, then the number of decision variables can be reduced further, as we will explain
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{1}

{2}

{3}

{1, 2}

{2, 3}

{1, 2, 3}

{1}

{2}

{3}

{1, 2}

{2, 3}

{1, 2, 3}

Source Sink

st,1

st,2

st,3

st,4

st,5

st,6

∑
k:Sg={1},ak,t>0

xk

∑
k:Sg={1,2,3},ak,t>0

xk

. . .

. . .

. . .

. . .

Figure 2: Linear assignment problem

1 2 3

4 5

6

y4,1,t y4,2,t y5,2,t y5,3,t

y6,4,t y6,5,t

Figure 3: Simplified assignment model
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in the following section.
Note that any subset X ′ of X can be obtained by removing elements successively only

if all types of agent groups are present. However, call centers often have a limited number
of groups in practice, which we also allow in our model formulation. Hence, we will choose
the dummy variables more carefully in the integer programming model that we formulate
in the next section.

Model

For the model, the necessary dummy variables are determined as follows. We consider each
period t, t ∈ T . For notational convenience we define the set Gt as a subset of the agent
group indices that are required at time t. Group g is included in Gt if

• st,g > 0, or

• ak,t > 0 for some k ∈ K and fk = g.

Thus, it contains the indices of agent groups with a positive number of required agents or
a potential positive number of scheduled agents (by having a shift with the same skills).
Next, we define two sets of decision variables: It,g and Jt,g. Set It,g contains the decision
variables associated to agents moving from higher level groups to agent group g and set
Jt,g contains the decision variables associated to agents moving from group g to lower level
groups. Variable g′ ∈ It,g is included in the model if

• g′, g ∈ Gt,

• Sg ⊂ Sg′ , and

• there exists no g∗ ∈ Gt such that Sg′ ⊃ Sg∗ ⊃ Sg,

and variable g′ ∈ Jt,g is included if

• g′, g ∈ Gt,

• Sg′ ⊂ Sg, and

• there exists no g∗ ∈ Gt such that Sg′ ⊂ Sg∗ ⊂ Sg.

Note that we require that no strict subset Sg∗ exists between Sg′ and Sg. By using this
notation we can describe the integer programming model as

min
∑

ckxk

subject to∑
k∈K:fk=g ak,txk +

∑
g′∈It,g

yg′,g,t −
∑

g′∈Jt,g
yg,g′,t ≥ st,g, ∀t ∈ T , g ∈ Gt,

xk, yg′,g,t ≥ 0 and integer, ∀k ∈ K, t ∈ T , g, g′ ∈ Gt.
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Shift Composition

Having obtained a solution (x, y), we can compose a schedule that specifies, for each shift,
the agent groups in which the associated agent works during the different periods. This is
done according to the following algorithm.

Shift composition()
1 Choose k such that xk ≥ 1. Set agent group g = fk.
2 For each period t with ak,t = 1:
3 Initialize ḡ ← g.
4 Repeat:
5 If variable yg,g′,t exists and yg,g′,t > 0 for some g′

6 ḡ ← g′ and yg,g′,t ← yg,g′,t − 1
7 else stop and assign the shift to group ḡ at time t.
8 End for
9 Decrease xk by one and go to line 1 unless xk = 0 for all k.

Note on Numerical Complexity

As we will show in Section 3.1, the problem in case of 2, 3 or 5 skills is numerically
tractable. According to the literature, we can expect that this also holds for cases with a
much larger number of different skills and many different types of shifts. The literature
shows that set-covering problems are relatively easy to solve. There is a large number of
papers available on crew scheduling on trains and airplanes. In particular, we would like
to mention the shift-scheduling problems, in which tasks are paired to shifts. Studies show
that problems of over 30k tasks are solved within reasonable time, e.g., hours, with shifts
including breaks and many other features. In these problems, each task corresponds with a
constraint, similar to a staffing level in our problem. The largest problems are solved close
to optimality using column generation in conjunction with a Lagrangean relaxation. See
for example Caprara et al. [CFT99], which also is applicable to our integer programming
problem.

Note on Suboptimality

A possible drawback of our determining staffing levels and generating shifts separately, in 2
steps, is suboptimality. This is to some extent prevented by the condition from Section 2.2,
i.e., there should be at least one shift available for each group. However, one should be
careful in certain cases.

When there are many different agent groups with only a few number of skills and
all shifts require only a small number of skills, the algorithm schedules more shifts than
necessary leaving agents with a lot of idle time. Perhaps, the idle time could be reduced
by choosing the agent groups more carefully. However, we expect this situation is not
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time t
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0.37 1.15 1.43 1.47 1.33 1.55 1.47 1.48 1.37 1.02 0.72 0.68 0.60 0.37
2 0.80 1.68 2.03 2.28 2.22 2.38 2.27 2.15 2.13 1.60 1.35 1.32 0.98 0.82

Table 1: Arrival rates per minute, λm,t

likely to occur in practice. First, in many call centers the number of different skills is
limited, or the dependency between certain skills is low, as if there are several smaller
multi-skill call centers. Second, our experience is that if there are at least some agent
groups with more than 2 skills, the results of the algorithm are nearly optimal. The reason
is that solutions obtained by the algorithm prescribe in realistic cases the usage of relatively
many specialists, since specialists are cheaper and work faster, and solutions often require
relatively few cross-trained agents with 2 skills, and hardly any agents with more than 2
skills. By including some agent groups with more than 2 skills, the time that agents are
idle is expected to be low. A disadvantage is that solutions can require more agents with
additional skills than an optimal solution would require. This is undesired if agents with
more skills are significantly more expensive. However, call centers often prefer a sufficient
flexibility of agents in case that the actual workload deviates from the predictions, such
that agents can be rescheduled. Then, it is desired to have agents available with additional
skills. Indeed, call centers often have a sufficient number of agents with more than 2 skills.

3 Numerical Experiments

In this section we discuss a realistic example.
The example considers infinite waiting queues, customers having infinite patience for

service, and service according to a first-in-first-out service discipline per job type. At
arrival, calls are assigned to employees according to overflow policies, see for example
Franx et al. (2005), and in such a way that specialists have the highest priority, agents
with 2 skills the second-highest priority, and agents with 3 skills the third-highest priority.
At a service completion, the job that arrived earliest is served among the queues with jobs
for which the agent has the right skill.

Additional examples, with 3 and 5 skills, can be found in Bhulai, Koole & Pot [BKP07].

3.1 Case Study

This study is based on the statistics of a Dutch call center, having two groups of specialists
and one group of generalists. Two types of jobs arrive to the call center, denoted by 1
and 2. The arrival rates during a particular day are given in Table 1, where the first row
denotes the index t of each interval, t ∈ {1, 2, . . . , 14}. Each column shows the average
rates of both types during one hour. Three agent groups are distinguished, having indices
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time t
g 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 6 8 7 8 10 6 8 9 5 5 5 3 2
2 3 5 6 6 7 8 5 6 7 4 5 5 3 2
3 1 2 2 3 1 0 5 2 0 3 0 0 2 2

Table 2: Required group sizes, st,g (with 2 skills)

1,2 (the specialists), and 3 (the generalists). The service rates for each group and call type
are µ1,1 = 0.186, µ2,2 = 0.577, µ3,1 = 0.169, and µ3,2 = 0.526. We consider shifts with a
length of 5 and 6 hours. The costs of a five-hour shift is 5, 4.5, 4 for generalists, specialists
of type 1, and specialists of type 2, respectively. The costs of a six-hour shift is 6, 5.5, 5
for generalists, specialists of type 1, and specialists of type 2, respectively. The objective
is to compute schedules such that 80% of the callers waits less than 20 seconds, i.e., AWT
is 20 seconds and α = 0.8, against minimal personnel costs.

We apply the two-step method from Section 2. Solving the mathematical programming
model requires an integer integer programming solver. We used SA-OPT1 that is written
by one of the authors. The result of step 1 from Section 2.1 is presented in Table 2. The
table shows for each period and agent group the minimum number of agents to meet the
service level. The optimal set of shifts according to the model from Section 2.2 is presented
in Table 3, having an objective value of 167. The columns represent the different periods
and each row represents a shift, consisting of the group indices that the corresponding
agent works in. The solution consists of 8 shifts requiring skill 1 and 2 (6 of length 5 and
2 of length 2), 14 shifts requiring skill 1 (8 of length 5 and 6 of length 6), and 13 shifts
requiring skill 2 (9 of length 5 and 4 of length 6). The value 3 indicates that the agents
work in agent group 3, i.e., the group of generalists. The value 0 denotes idleness, meaning
that conditions concerning the service level are already satisfied such that the employee is
redundant in that period.

We note that a generalist sometimes works as a specialist. This is beneficial because
specialists have a higher service rate. A second observation that an agent sometimes idles
during a shift. These idle periods can be used for serving other contact channels (such
as emails and faxes, see Section 3.1 of [BKP07], for training, and for administrative tasks
without compromising the service level.

To check the optimality of the methods from Section 2.1 and 2.2, we evaluated the
results of Table 3. Two methods were considered for obtaining lower bounds of the objective
function. First, we extended the integer programming model from Section 1 of [BKP07] to a
multi-skill call center. Unfortunately, the number of decision variables turned out to be very
large (hundreds of thousands) and, given the fact that all variables must be integer, we were
not able to obtain a feasible solution. However, without satisfying the integer requirement,
we did succeed in finding an optimal solution, yielding a lower bound of 150. This result

1See http://www.math.vu.nl/~sapot/software/sa-opt for technical details.
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time t
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 3 3 1 3
2 3 3 3 0 1 3
3 3 3 3 3 0
4 1 3 1 1 3
5 2 3 3 1 3
6 3 3 1 3 2
7 0 2 2 3 3
8 0 0 2 3 3
9 1 1 1 1 1 1

10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1
14 1 1 1 1 1 1
15 1 1 1 1 1
16 1 1 1 1 1
17 1 1 1 1 1
18 1 1 1 1 1
19 1 1 1 1 1
20 1 1 1 1 1
21 0 1 1 1 1
22 1 1 1 1 1
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2
27 2 2 2 2 2
28 2 2 2 2 2
29 2 2 2 2 2
30 2 2 2 2 2
31 2 2 2 2 2
32 2 2 2 2 2
33 0 2 2 2 2
34 0 2 2 2 2
35 2 2 2 2 2

Table 3: Optimal shifts

13



was not satisfying because the gap between 150 and 167 is relatively large. Hence, we
considered a second approach for obtaining a lower bound. We determined a lower bound
for the costs of an agent working during 1 time interval in a certain group. This can be
easily derived from the costs of the shifts, yielding 0.8, 0.9, and 1.0 for specialists of type 1,
type 2, and generalists, respectively. Next, for each period we calculated the cheapest agent
configuration that satisfies the service-level constraint. Since there are only three agent
groups this is doable by enumerating all possible configurations and simulations. The lower
bound of the total costs for the whole day is calculated by multiplying the group sizes by the
costs and by summing over the intervals, yielding 155.0. But the optimal solution could be
higher than 155.0 because it is likely that the optimal set of shifts exceeds the staffing levels
at certain periods, resulting in idle times as we saw in Table 3. We calculated a tighter
lower bound by determining the idle time that is minimally required. To achieve this we
calculated the minimum number of required agents for each time interval (by summation
of the number of specialists and generalists) in a single-skill call center. We solved2 the
Dantzig’s model [Dan54] and concluded that the minimum idle time is 8 periods, which is
equal to the number of idle periods in the solution from Table 3. Then, the lower bound
becomes 155.0+0.8*8 = 161.4. This shows that the solution from Table 3 is less than 3%
from the optimal objective value.

4 Concluding Remarks

The contribution of this paper is a method of shift scheduling in multi-skill call centers.
This is among the first methods in the literature that are numerically capable to efficiently
generate shifts for multi-skill call centers. An advantage is short computation time. Al-
though our experiments deal with two, three, and five skills, computations are still tractable
for call centers with more skills; we experienced that the computation times are in the or-
der of minutes for extremely large call centers, in favour of the optimization procedures
from Section 2.1 that are of logarithmic order in the size. Another advantage is that the
methods are easy to implement.

In this paper the integer programming model of the shift scheduling method is developed
for call centers. However, it is also applicable to other service systems than call centers.
In general it can solve shift scheduling problems in organizations that:

• distinguish multiple skills,

• allow employees to work consecutively on different tasks, and

• have employees with identical productivity within the same skill group.

An example is the scheduling of nurses in hospitals. It is likely that staffing levels are
expressed similarly as in call centers. For example, by choosing the staffing levels in each
period in such a way that the workload is covered as accurate as possible. It is realistic that

2An online tool is available at http://www.math.vu.nl/~sapot/software/shift-scheduling.
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some nurses use only one skill to obtain a high productivity, while others have several skills
to minimize the total number of nurses. Also the physical location of the different tasks
can play a role. If the distance between the location of two tasks is large, it is unattractive
to schedule the same employee on these tasks.

As a possible extension, it might be necessary or beneficial to perform phase two and
three of the labor allocation process several times and iteratively. This is for example
desired if scheduled agents get ill and agents are rescheduled, or if workload predictions of
a certain job type change. For that reason, it is likely that call center managers prefer fast
methods for each separate phase such that they can iterate between the four phases within
short time.

There are different possibilities for future research. It is straightforward to use the
model from Section 2.2 to perform multi-skill rostering, i.e., combining daily shifts to
weekly rosters. The main difference is that the rows represent the shifts, instead of required
group sizes, and each column represents the weekly schedule of an agent, instead of shifts.
Then, the schedules can be assigned to the available employees afterwards. To handle the
large number of possible schedules column generation (a well-known method from linear
programming) can be used. These problems are numerically tractable and have short
computation times. This even has the potential to solve phases three and four at once.

Another promising method for shift scheduling is the method of Cezik & L’Ecuyer [CL06].
The advantage of their method is that it takes the transient behaviour into account and
can solve phase two and three simultaneously. However, the computation times become
extremely long as the size of the call center increases. If the efficiency of the algorithm can
be increased, it would interesting to combine their method with the integer problem from
Section 2.2.

Note that, although it is out of the scope of this paper, suboptimality can be significant
in phase four of the labor allocation process. This phase is about the assignment of shifts
to employees. Suboptimality can occur if not enough employees are available to satisfy the
requirements for a type of shift, requiring a specific set of skills. There are several ways to
avoid this. For example, by creating agent groups only with skill sets that occur among
the agents. Additionally, the staffing algorithm can be extended by adding constraints on
the group sizes or on sums of several group sizes. Afterwards, by studying the results from
the shift-scheduling step and changing the staffing levels, it is likely that improvements are
possible also.
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