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For individual molecules quantum mechanics (QM) offers a simple, natural and elegant way to build
large-scale complex networks: quantized energy levels are the nodes, allowed transitions among the levels are
the links, and transition intensities supply the weights. QM networks are intrinsic properties of molecules
and they are characterized experimentally via spectroscopy; thus, realizations of QM networks are called
spectroscopic networks (SN). As demonstrated for the rovibrational states of H2

16O, themolecule governing
the greenhouse effect on earth through hundreds ofmillions of its spectroscopic transitions (links), both the
measured and first-principles computed one-photon absorption SNs containing experimentally accessible
transitions appear to have heavy-tailed degree distributions. The proposed novel view of high-resolution
spectroscopy and the observed degree distributions have important implications: appearance of a core of
highly interconnected hubs among the nodes, a generally disassortative connection preference, considerable
robustness and error tolerance, and an ‘‘ultra-small-world’’ property. The network-theoretical view of
spectroscopy offers a data reduction facility via aminimum-weight spanning tree approach, which can assist
high-resolution spectroscopists to improve the efficiency of the assignment of their measured spectra.

H
igh-resolution molecular spectroscopy is one of the high-end analytical tools which can be used to obtain
detailed chemical information about complex natural systems. These systems include the earth’s atmo-
sphere, where spectroscopy helps to understand the greenhouse effect, and astronomical bodies of our

universe, where spectroscopy helps, among other things, to answer principal questions concerning life on earth.
The extensive spectroscopic data required by related modelling efforts have been consolidated into information
systems1–11. The data deposited in these information systems traditionally come from a large number of high-
resolution experimental investigations. Experiments are usually done by different groups employing different
techniques in different regions of the spectrum, resulting in a broad range of data accuracy. The relative accuracy
of transition frequencies detected in the lab ranges from 1025 to 10210, while for transition intensities it is only
1022. As to theory, in the fourth age of quantum chemistry12 it is possible to determine accurate high-resolution
spectroscopic data and spectra13,14. To satisfy the demand of modellers, for a number of small molecules nearly
complete first-principles linelists have been computed15. These lists contain from thousands to millions of entries
in the form of rotational-vibrational-electronic energies and transitions and their most important characteristics
(e.g., quantum numbers, symmetries, and intensities).

Although high-resolution spectroscopic experiments yield highly accurate data, at the same time these data are
highly incomplete. For example, the 5 000 experimental eigenenergies reported byMellau16–18 are complete up to
7 000 cm21 above the HCN ground state, yet they cover only 98 vibrational states. The 25 000 rovibrational states
determined in these high-resolution infrared emission studies correspond only to 15% of the vibrational states up
to isomerization. When compared with experimental data, ab initio linelists show the following important
characteristics: while the relative accuracy of the ab initio energy levels is 10 to 10 000 times worse than that
of typical experimental data, most of the transition intensities have accuracies similar to experimental data. The
striking disparity between the accuracy and the number of first-principles computed and experimentally mea-
sured energy levels and transitions and the fact that in many cases ab initio intensities may directly be used for
high resolution analyses leads to the conclusion that for the foreseeable future one should consider the com-
bination of experimental and ab initio information to satisfy the needs of modellers, who often require nearly
complete high-resolution (line by line) spectroscopic data19. In turn, this conclusion leads immediately to ques-
tions how results of the various experiments should be viewed, how experimental and theoretical data could be
unified, how ab initio datamay be used to simplify the assignment ofmeasured spectra, and how to build themost
dependable information systems containing line-by-line spectroscopic data.

We believe that to obtain the best answers to these questions one should consider the energy levels and the
spectroscopic transitions of a molecule from the point of view of graph theory. Thus, earlier we introduced the
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concept of spectroscopic networks (SN)20–24, where quantized energy
levels are the nodes (vertices) and allowed transitions among the
levels are the links (edges) of a graph (see Fig. 1). SNs are considered
to be an intrinsic property of molecular systems, though character-
istics of SNs can be slightly different based on how we actually probe
these systems experimentally (e.g., in absorption or in emission). SNs
provide a convenient representation of the experimental and theor-
etical data and ways for their most advantageous unification, as well.
In this paper we extend the network-theoretical analysis of SNs

and, furthermore, develop novel tools for high-resolution spectro-
scopy research based on the concept of SNs. We use H2

16O as the
model system of our present investigation. The SN of the H2

16O
molecule is chosen for several reasons. Water is the most abundant
polyatomic molecule in the Universe. It is present in many different
environments and at many different temperatures. Detailed char-
acterization of the spectroscopic properties of this triatomicmolecule
is needed to understand and predict the greenhouse effect on earth
and its spectroscopy is of high astrophysical and astrochemical rel-
evance. Furthermore, H2

16O was the subject of a large number of
experimental high-resolution spectroscopic studies validated
recently25. This experimental dataset of H2

16O, one of the spectro-
scopically most thoroughly studiedmolecules, contains 14 319 nodes
(energy levels) and 97 868 unique links (transitions)25. A high-quality
first-principles linelist26, including energy levels, assignments, tran-
sitions, and Einstein A coefficients, is also available for H2

16O. This
computed, so-called BT2 linelist contains altogether 221 097 nodes
and 505 806 255 links. Based on the number of nodes and links and
the underlying structure one can conclude that even this simple
triatomic molecule corresponds to a very complex system if the
allowed one-photon transitions among its quantized energy levels
are considered.

Spectroscopic networks
A graph G, corresponding to an SN of a molecule, say H2

16O, is an
ordered pair, G5 (L,T), where L is the set of energy levels (vertices)

andT is a set of transitions (edges), the edges being 2-element subsets
of L (see Fig. 1). The number of transitions that emanate from an
energy level is called the degree of the level. SNs do not contain loops
and since different experiments may measure the same transitions,
SNs corresponding to experiments are in fact multigraphs. First-
principles SNs are, on the other hand, simple graphs. SNs contain
a large number of cycles of widely differing size. In SNs non-negative
transition intensities, different for different experimental techniques,
are assigned to edges as weights. In summary, SNs are large, finite,
weighted, and rooted graphs.
Construction of a first-principles SN goes through the following

steps: (1) take all (available) energy levels for the given molecule as
nodes; (2) use the quantum chemical selection rules appropriate for
the molecule and the experiment to link the nodes; and (3) add the
intensities as weights to the links based on the type of experiment and
the chosen temperature. The number of links in the graph built is
naturally much smaller than all the possible links between the nodes.
Consequently, the corresponding adjacency matrix is extremely
sparse. In the particular case of H2

16O, consideration of nuclear spins
results in two distinct connection schemes. In the language of graph
theory these are components of a network. The two principal com-
ponents (PC) correspond to the two nuclear spin isomers (usually
called ‘‘ortho’’ and ‘‘para’’) of H2

16O and both have unique roots.
Selection rules cause the two PCs of the SN of H2

16O to be bipartite
graphs. This interesting fact explains why only even-numbered
cycles exist in the SN of H2

16O and of molecules of a similar nature27.
Measurements map only a very limited part of an SN and yield a

graph calledAm. The intensity of the transitions is responsible for the
incompleteness of Am as below a certain intensity it is impossible to
detect a transition in a given type of experiment. Using the intensity
as a cut-off parameter, a series of model networks can be constructed
from the complete SN built upon the BT2 linelist26. We used the
following cut-off parameters to construct model networks for the
examination of the evolution of one-photon absorption SNs: 10220,
10222, 10224, 10226, and 10228 cm molecule21 (see Fig. 1 for a visual

Figure 1 | Visual representation of the first-principles spectroscopic networks ofH2
16O in absorptionwith an intensity cut-off of 10220, 10222, and 10224

cm molecule21, from left to right, with clearly visible ortho and para components and buildup of hubs.

Table 1 | General properties of the spectroscopic networks considered for H2
16O

Quantity A20 A22 A24 A26 A28 Am

intensity cut-off 10220 10222 10224 10226 10228 measured
number of nodes 547 1 952 5 815 15 603 44 843 18 572
number of links 1 238 7 288 31 283 115 886 397 147 98 927
S(G) 0.617 0.429 0.284 0.182 0.091 0.130
r(G) 20.199 20.356 20.420 20.443 20.469 20.202
diameter, d 19 23 28 31 34 44
average path length 5.9 6.2 6.5 6.8 7.1 10.7
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representation of three of the first-principles model SNs and Table 1
for details about these SNs, including the number of nodes and links
they possess). To emphasize that these SNs belong to absorption, the
corresponding graphs are called A20 2 A28.
Floating components (FC), those which do not connect to the

roots of PCs, arise frequently in measurements. Since no known
transitions exist between the two PCs of the rovibrational SN of
H2

16O, the absolute energy of the higher-energy root, set to a relative
energy of zero by definition, can be determined only from an outside
source, hindering the high-accuracy absolute determination of all
measured energy levels. Artificial transition energies connecting
roots of SNs may be called ‘‘magic numbers’’. The traditional route
to obtain them is provided by highly accuratemodel Hamiltonians. A
network-theoretical possibility is to take advantage of omnipresent
degeneracies of certain higher-energy rovibrational levels in the two
PCs, which can be identified straightforwardly by fourth-age12 vari-
ational nuclear-motion computations. These degeneracies are able to
connect the distinct components via zero-energy artificial transi-
tions. This was done in Ref. 25 for H2

16O and in Ref. 28 for D2
16O

with the comforting result that the network-theoretical and model
Hamiltonian approaches yield the same magic number.

Degree distributions
For many observables there is a typical mean value they cluster
around. As to SNs, where the number of experimentally measured
links is about an order of magnitude larger than the number of
nodes25,27,29–32, the question is whether there is a mean value for the
number of transitions that an ‘‘average’’ energy level has. To answer
this question one needs to investigate the distribution of the links
among the nodes.
Fig. 2 depicts the size–frequency [logk2 logP(k)] plots for the Am

and A28 SNs of H2
16O. One can find a very broad distribution and,

apart from the very low and very high k part, a reasonably linear
relationship in both cases. As detailed in the Methods section, an
elaborate search has been performed to estimate the form of the
underlying discrete degree-distribution functions of these and the
other model SNs. The search included a power-law form of P(k)
/ k2c, where c is the scaling index, as well as exponential and log-
normal forms. The analyses indicate a definitely heavy-tailed and,
after constraining k to the middle range, a power-law-like behavior
with a scaling index of about 2 (Table 2, vide infra). As found for
many complex networks33–35, it is not possible to distinguish between
the power-law and the log-normal distributions but the exponential
distribution is definitely not compatible with the data. The observed

heavy-tailed distribution is one of the most important overall char-
acteristics of SNs and it seems to be generally valid for the PCs of
SNs23.
Whether the degree distribution follows a power law or it is just

simply top heavy, the degree distribution functions obtained suggest
that SNs are characterized by hubs, i.e., a small number of nodes with
a large number of connections. As expected, themost important hubs
in a room-temperature absorption spectrum are on the ground
vibrational state, (0 0 0), where (v1 v2 v3) are approximate vibrational
quantum numbers corresponding to symmetric stretch, bend, and
antisymmetric stretch, respectively. For Am the hubs are as follows:
JKaKc 5 634, 523, and 423, with 458, 455, and 447 links, respectively25,
where JKaKc is the standard rigid-rotor-type quantum number nota-
tion applied for asymmetric top molecules, such as H2

16O. In the A28

SN the energy levels with the largest number of transitions are
634(1487), 523(1433), and 625(1431), where the number of links is
given in parentheses. Remarkably, the two largest hubs coincide,
proving how extensive the experimental investigations are for
H2

16O. Note that the most important hub for HD16O in absorption
is also the (0 0 0)634 level

23.
To investigate the hubs of SNs further we determined an SN cor-

responding to emission created from the first-principles BT2 linelist
with an intensity cut-off of 10220 cm molecule21 at 1650 K, which
could be called E20. In emission the hubs with the largest number of
connections belong to different vibrational states, they are the
(0 2 0)963, (0 0 1)633, and (0 1 0)1038 levels with 102, 101, and 100
links, respectively. The most important hubs in absorption appear to
be important hubs in emission but the reverse is obviously not true.
Detailed comparison of the connectivity of measured and first-

principles hubs helps to determine the ‘‘weakest’’, least well deter-
mined hubs within Am. This allows the design of new experiments

Figure 2 | Distribution of links among nodes given as log-log size–frequency [logk 2 logP(k)] plots for the measured (Am, left panel) and a first-
principles (A28, right panel) spectroscopic network of one-photon absorption transitions for H2

16O.

Table 2 | Parameters for the best power-law models fitted to the
SNs of H2

16O

network scaling index kmin p(KS)

A22 2.11 4 0.1060
A24 2.13 8 0.1867
A25 2.15 10 0.2853
A26 2.16 14 0.0460
A28 2.10 17 2.56e-09
A30 2.47 6 2.46e-17
A40 2.83 54 ,0
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which help to determine a more accurate and robust experimental
description of the SN with a minimum amount of effort.
One can also ask the question whether the hubs with the largest

number of links take part in the most intense transitions. The answer
is a clear no. The 634, 523, and 423 pure rotational energy levels take
part in the 16th, 18th, and 13th most intense rovibrational absorption
transitions, respectively. Vice versa, the two energy levels taking part
in the most intense transition are only 69th and 89th in the list of hubs
based on the number of connections.

Complexity measures
Complexity of a graphG can be assessed by severalmetrics35–39. Three
of them, C(G), S(G), and r(G) have been investigated in this study
(see Table 1).
The local clustering coefficient, C(G)38, quantifies how close local

graphs are to being a complete graph. This metric cannot be used for
the bipartite PCs of themodel SNs ofH2

16Oas bipartite graphs do not
contain odd-numbered cycles such as triangles.
A second metric is the structural metric (s-metric) with the cor-

responding S(G) value39 (see the Methods section for details). The
S(G) values of the different networks investigated are collected in
Table 1.
As shown by Newman36, social networks seem to show ‘‘assort-

ative mixing’’, i.e., their high-degree vertices preferentially attach to
other high-degree vertices. On the contrary, technological and bio-
logical networks tend to show36 ‘‘disassortative mixing’’, i.e., their
high-degree vertices attach to low-degree ones. A graph assortativity
measure is the Pearson correlation coefficient, r(G)39. The r(G) values
for the first-principles and measured SNs investigated are given in
Table 1. For details see the Methods section.
Ordinarily36,37, one expects a large value of S(G) to be associated

with a large positive r(G) value. As seen in Table 1, the S(G) and r(G)
values decrease when the intensity cut-off parameter of the first-
principles SNs is decreased. This unusual behavior can be rationa-
lized once the evolution of the underlying SNs is understood. If we
examine the smallest model SN, A20 (see the leftmost panel of Fig. 1
for its visual representation), we find that it contains only two com-
ponents (it would not be surprising if the energy levels involved in the
largest intensity lines would produce several components but this is
not the case here). In these two components, containing the most
intense transitions, the likelihood of connections among high-degree
nodes (hubs) is high; in other words, their eigenvalue centrality37 is
high. This is the reason why the S(G) value is relatively large, while
r(G) is close to zero. While the r(G) value of A20 is negative, the
corresponding large S(G) value indicates that this graph is disassor-
tative with hubs showing an assortative behavior. This means that in
A20 hubs do like to connect to each other but each hub has many
connections to low-degree nodes. Investigating the other SNs we can
make another interesting and important observation: the nodes char-
acterized as hubs do not change with the cut-off parameter. Of the
first 100 hubs of themodelA20 andA28 SNs 98 are common,meaning
that the hubs already appear in the smallest SN and hubs remain hubs
when the SN is enlarged. When increasing the size of the SN by
decreasing the intensity cut-off parameter, the number of low-degree
nodes increases substantially and the ratio of the connections among
high-degree nodes to that of high-low connections decreases. This is
the reason why the S(G) values show a decreasing tendency when
going from A20 to A28 and the SNs become increasingly disassorta-
tive. Note also how nicely the experimental SN, Am, fits this picture,
supporting these findings about SNs.

Small worlds
The small world and ultra-small world properties of graph theory
characterize networks where the average path length, defined as the
average length of the shortest paths, of two arbitrarily chosen nodes
scales as,logN or,loglogN, respectively, whereN is the number of

nodes in the network. Scale-free networks are closer to ultra-small
worlds40. Heuristically this means that most vertices are within reach
via a small number of steps.
The structure resulting from the extreme number of connections

within a particular SN can be described efficiently by two numbers,
the diameter and the average path length. Of the possible definitions
of a diameter we use the one which states that the diameter of a
network, d(G), is the maximal shortest path between any two ver-
tices. The diameters and the average path lengths of the SNs studied
are given in Table 1. The average path length for the first-principles
and measured SNs of H2

16O is only about 7, the measured SN has a
slightly larger value. The diameter of the first-principles SNs grow as
the size of the SN grows but remains at relatively small values. As the
data of Table 1 suggest, SNs are ultra-small worlds.

Network vulnerability
A spectroscopic network becomes larger either via new measure-
ments (for an experimental SN) or by a decrease in the intensity
cut-off (for a first-principles SN). In either case, the number of tran-
sitions increases substantially faster than the number of energy levels,
in complete accord with the degree distribution observed. The num-
ber of cycles within the network also increases drastically. As a result,
SNs appear to be extremely robust.
Robustness of SNs can be ascertained by random removal of

nodes41. In scale-free networks removal of nodes leads to an increase
in the diameter41. In SNs, after random removal of 10 to 90% of the
nodes, d(G) reflects how the graph fragments and thus provides
useful characteristics about SNs. The original diameter of the largest
first-principles graph investigated, A28, is 34 (Table 1), and this value
does not change until we randomly remove some 95% of the nodes.
Then the diameter suddenly drops to 22. The observed robustness of
the SN of H2

16O can be explained by the nature of the selection rules
leading to a bipartite graph and the presence of an assortative core of
interconnected hubs. To prove the latter we note that in A28 the first
448 hubs, 1% of the nodes, own almost 40% of the links. On one
hand, the probability of random removal of hubs is small, on the
other hand, if we remove such hubs, another hub ‘‘takes over’’ in the
graph, as hubs are ‘well connected’. The situation is quite different
when we attack the graph, i.e., we remove the high-degree nodes
systematically. If we delete the first 200 hubs, 0.45% of the nodes,
which have 20.45% of the links, the diameter reduces to 18. The
extreme error tolerance is another characteristic property of SNs
and this property is somewhat similar to that observed in other
complex networks.

Data reduction via SNs
Since high-resolution spectroscopic measurements yield an extreme
amount of information, the reduction of the data to manageable size
is a basic challenge for the theory of spectroscopy. The standard
solution is to use model Hamiltonians with a small number of para-
meters and least-squares optimize these parameters to represent all
the measured data42. In a way this means that spectroscopic transi-
tions are converted to parameters yielding energy levels. These para-
meters allow excellent interpolation but they may fail drastically
when used to extrapolate beyond the measured range.
SNs offer another data reduction facility via an inversion of transi-

tions to energy levels. For example, the 500 million transitions of the
BT2 linelist can be converted back to about 200 thousand energy
levels. This feature of SNs has been exploited in the MARVEL
(Measured Active Rotational-Vibrational Energy Levels) proced-
ure21,22 used, among other applications, to derive the IUPAC spec-
troscopic database of water isotopologues25,28,29,31,32.
The best way to reduce the information content of SNs is through

the use of weighted spanning trees. By using weighted spanning
trees43, see the Methods section, one can reduce the information
contained in the huge number of measured transitions of the
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complex Am network to a relatively small set of energy levels. Each
link of Am has a widely different uncertainty. The network-theor-
etical view allows to appreciate how cycles, containing a lot of extra
information compared to, for example, minimum weight spanning
trees, within a component of an SN help to fix the energy levels and
tighten their uncertainties.

Assignment of spectra
High resolution spectroscopy is also a science (and art) of quantum
number assignment ofmeasured lines and levels. The traditional way
of analysing high-resolution experimental spectra is the a priori
assignment of lines with good and approximate quantum numbers
followed by a fitting of the levels via a small number of spectroscopic
parameters of a well-designed model Hamiltonian42. This type of
assignment procedure fails in the case of highly excited rovibrational
states and in general when the number of rovibrational transitions
exceeds a limit corresponding to an acceptable analysis time. A com-
bined microwave to visible spectrum of any polyatomic molecule is
converted to a list of labelled eigenenergies16–18 in a high-resolution
study.
Hereby we advocate a novel protocol for the assignment of

spectra based on SNs: detect the lines in a measured high-resolu-
tion spectrum leading to the largest number of new energy levels
via an investigation of a suitable first-principles SN and assign the
transitions with quantum numbers by mapping the ab initio line-
list onto experimental spectra using graph theory. Taking the
negative logarithm of the intensity of the transitions as the weight
function for the transitions of the SN, the minimum-weight span-
ning tree displays the transitions with the largest intensities; thus,
it readily identifies the most intense and thus the practically most
useful spectral features. An illustration of the concept is provided
in Fig. 3.
The proposed method based on graph theory allows the auto-

mated and fast conversion of very large experimental datasets into
complete eigenenergy lists. These lists are the starting points for the
development of theoretical models connecting our physical and
chemical view on molecules18.
Finally, let’s create an artificial spectrum, in order to show the

utility of the weighted spanning-tree approach. The complete set of
1 916 H2

16O rovibrational energy levels up to 7 000 cm21 is known
with high-resolution accuracy from a MARVEL study25. Based
on these energy levels a simulated room temperature absorption
spectrum is obtained containing 45 266 allowed transitions with
intensities larger than 10228 cmmolecule21. The correspondingmin-
imum-weight spanning tree contains 1 914 transitions, theminimum
number of intense transitions needed to convert the spectrum back to
an energy list. This represents a significant, more than 20-fold reduc-
tion in the data. In other words, analysis of only 1 914 intense transi-
tions yields the maximum number of energy levels that can be
determined from this spectrum. It is worth adding that out of the
45 266 lines 19 482, an order of magnitude more than minimally
needed, have indeed been measured and assigned25, which is a likely
unusually high degree of completeness.

Conclusions
Driven by the need of scientific and engineering applications, com-
plex spectroscopic networks, perhaps as part of active databases20–24,
are expected to become an intrinsic part of the description of the
high-resolution spectra of molecules. A good opportunity to advance
the field of high-resolution molecular spectroscopy and to turn data
into knowledge, as emphasized in the article defining the fourth age
of quantum chemistry12 and confirmed here, is offered via the joint
use of accurate experiments, accurate first-principles computations,
and efficient mathematical and numerical algorithms provided by,
for example, graph and database theory.

Methods
An assumption at the beginning of this study was that a power-law distribution
would be the best choice for modeling the degree distribution of SNs23. The in-
depth analysis of the degree distributions of the SNs studied utilized a review
article43 and two codes: igraph [igraph is a free software package for creating and
manipulating undirected and directed graphs, see http://igraph.sourceforge.net/]
and an open-source Python package44. The density function of power-law dis-
tributions can be written as P(k) , L(k) k2c. This function is undefined for k 5 0;
hence, a suitable kmin value must be defined. This kmin can be specified by various
methods, e.g., choosing a noise threshold value or the minimum value in a given
sample. Often the low end of the dataset, which contains small values
compared to the whole data, does not follow a power-law behavior. Therefore,
one can fit a power-law distribution for each value in the dataset acting as
kmin and compute the best fit by minimalizing the Kolmogorov–Smirnov (KS)
distance, p(KS), between the empirical data and the fitted model. After
determining the parameters of the power-law distribution, we analyzed our
hypothesis that the best model for the empirical degree distribution is the
power-law one by implementing a one-sample KS test. We reject the hypothesis
if the p values obtained from the test fall below 0.05. The results are summarized
in Table 2.

The KS test results suggest that the optimal fitting model depends heavily on the
intensity cut-off value used to create the model SN. We observe that A25 is a ‘‘sweet
spot’’ graph in the power-law modelling of the first-principles absorption SN of
H2

16O. By using lower absorption intensity cut-offs, one can no longer properly fit a
power-law distribution to the dataset.

Note that there are two observations which help to explain the observed
behavior. First, as we incorporate transitions with smaller intensities the
network does not expand in terms of new vertices but becomes denser. Second,
we refer the reader to the section on complexity measures. As seen there, the
intensities of transitions involving hubs are generally considerably larger than
those of non-hub ones. This observation is responsible for the fact that while the
number of edges increases, the new edges do not substantially boost the degree of
the hubs.

The normalization constant for discrete power-law distributions is 1/f(c, kmin)
44,

where f(s, a) stands for the Hurwitz zeta function,

f(s,a)~
X

?

k~0

1

kzað Þs
ð1Þ

We note that we cannot model the empirical degree distribution of the current
measured SN, Am, with a power-law distribution. The same algorithm as above leads
us to a scaling index of 2.66 choosing 16 as the optimal kmin. However, the KS test
gives a p value of 0.02; thus, we must reject the hypothesis that the dataset was drawn
from a power-law distribution.

The s-metric is defined by

s~
X

i, j[T
didj, ð2Þ

where di is the degree of node i. If we introduce smax as

Figure 3 | Rotational spectrum, between 0 and 1100 cm21, of the first
three bands, (0 0 0) (in red), (0 1 0) (in yellow), and (0 2 0) (in green), of
para-H2

16O for rotational quantum number J less than nine along with
the bipartite graph of the transitions, where the spanning tree of the
transitions is indicated by red lines and filled circles.
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smax~

X

N

i~1

d3i
2
, ð3Þ

we can define the normalized s-metric used in the text as

S Gð Þ~s=smax: ð4Þ

The graph assortativity, r(G), is defined by the Pearson coefficient,

r Gð Þ~

P

i, j[T

didj
l {

P

i, j[T

dizdj
2l

 !2

P

i, j[T

d2i zd2j
2l {

P

i, j[T

dizdj
2l

 !2 , ð5Þ

where l is the number of edges in the graph.
To build a minimum-weight spanning tree from the SNs, we implemented

Kruskal’s algorithm45. For the weight function, the negative logarithm value of the
intensities on the edges were used. Admittedly, amore accurate result can be achieved
by multiplying the base intensity values by 21 to obtain a weight function.
Nevertheless, the differences are within the same order of magnitude and are neg-
ligible for practical considerations; therefore, we believe the weight function
employed is adequate.
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