
Simple Parallel Statistical Computing
in R

Luke Tierney

Department of Statistics & Actuarial Science

University of Iowa

Joint work with A. J. Rossini and Na Li

Biostatistics, University of Washington

March 13, 2003

Simple Parallel Statistical Computing in R March 13, 2003

What Is R?

• R is a language for statistical computing and graphics.

• Similar to S (John Chambers et al., Bell Labs).

– ACM Software System Award, 1999.

– De facto standard for computing in Statistical research.

– Documented in many books, e.g. Venables and Ripley.

• Can view R as a different implementation or dialect of S.

There are some important differences, but much code written

for S runs unaltered under R.

1

Simple Parallel Statistical Computing in R March 13, 2003

History and Development Model

• R is an Open Source project.

• Originally developed by Robert Gentleman and Ross Ihaka.

• Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Kurt Hornik Stefano Iacus
Ross Ihaka Friedrich Leisch Thomas Lumley
Martin Maechler Guido Masarotto Paul Murrell
Brian Ripley Duncan Temple Lang Luke Tierney

2

Simple Parallel Statistical Computing in R March 13, 2003

Why Parallel Computing?

• Many computations seem instantaneous.

• Some would take hours, days, or months.

• Often multiple processors are available:

– multiple workstations

– dedicated cluster

– high-end SMP machine

• Can we make effective use of these resources?

3

Simple Parallel Statistical Computing in R March 13, 2003

Ideal Performance Improvement

• p processors should be p times faster than one processor.

• Some time scales:

Single processor 30 Processors

1 minute 2 seconds

1 hour 2 minutes

1 day 1 hour

1 month 1 day

1 year 2 weeks

4

Simple Parallel Statistical Computing in R March 13, 2003

Ideal Programming Requirement

• Minimal effort for simple problems.

• Be able to use existing high level (i.e. R) code.

• Ability to test code in sequential setting.

5

Simple Parallel Statistical Computing in R March 13, 2003

Parallel Computing on Networks of
Workstations

• Use multiple cooperating processes.

• One process per available processor.

• Processes need to communicate with each other.

• Usually one process communicates with the user.

6

Simple Parallel Statistical Computing in R March 13, 2003

Available Communications Mechanisms

• Sockets

• Message passing libraries (PVM, MPI)

– very powerful

– not easy to use

– designed for C, FORTRAN

• R interfaces

– socket connections

– rpvm, Rmpi

7

Simple Parallel Statistical Computing in R March 13, 2003

Master/Slave Model

• Start with an “embarrassingly parallel” problem:

• Divide jobs among slave processes and collect results:

• Ideal: p times faster with p slaves.

8

Simple Parallel Statistical Computing in R March 13, 2003

A More Realistic Picture

• Jobs vary in complexity.

• Machines vary in speed/load.

• Communication takes time.

• Dividing up jobs and collecting results takes time.

9

Simple Parallel Statistical Computing in R March 13, 2003

SNOW: Simple Network of Workstations

• Snow is a package for R (available from CRAN).

• Snow uses the master/slave model.

– The user starts an ordinary R session

– The R session creates a cluster of slave processes.

– Jobs are sent to the slave processes and results are

returned.

• Communication can use sockets, PVM, MPI.

10

Simple Parallel Statistical Computing in R March 13, 2003

Starting A SNOW Cluster

• Create a cluster of 10 R slave processes:

library(snow)
cl <- makeCluster(10)

• Find out where the processes are running:
> do.call("rbind", clusterCall(cl, function(cl) Sys.info()["nodename"]))

nodename
[1,] "node02"
[2,] "node03"
...
[5,] "node06"
[6,] "beowulf.stat.uiowa.edu"
[7,] "node02"
...
[10,] "node05"

11

Simple Parallel Statistical Computing in R March 13, 2003

Stopping A SNOW Cluster

• Stop the cluster:

stopCluster(cl)

• Emergency break: Exit R, and

– for PVM, halt the PVM.

– for LAM-MPI, use lamhalt or wipe
– for sockets, should just stop; if not, yoyo

12

Simple Parallel Statistical Computing in R March 13, 2003

Cluster Level Functions

• Call function on all nodes:

clusterCall(cl, exp, 1)

• Evaluate an expression on all nodes:

clusterEvalQ(cl, library(boot))

• Apply function to list, one element per node:

clusterApply(cl, 1:5, get("+"), 2)

13

Simple Parallel Statistical Computing in R March 13, 2003

Higher Level Functions

• Parallel lapply

> unlist(parLapply(cl, 1:15, get("+"), 2))
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

• Parallel sapply

> parSapply(cl, 1:15, get("+"), 2)
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

• Parallel apply

> parApply(cl, matrix(1:10, ncol=2), 2, sum)
[1] 15 40

14

Simple Parallel Statistical Computing in R March 13, 2003

Parallel Random Numbers

• Random number generation needs help:

> clusterCall(cl, runif, 3)
[[1]]
[1] 0.4351672 0.7394578 0.2008757
[[2]]
[1] 0.4351672 0.7394578 0.2008757
...
[[10]]
[1] 0.4351672 0.7394578 0.2008757

• Identical streams are likely, not guaranteed.

15

Simple Parallel Statistical Computing in R March 13, 2003

One Solution: SPRNG

• Scalable Parallel Random Number Generator library

• R interface rsprng (Na Li)

• Snow provides a convenience function:

> clusterSetupSPRNG(cl)
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.014266542 0.749391854 0.007316102
[[2]]
[1] 0.8390032 0.8424790 0.8896625
...
[[10]]
[1] 0.591217470 0.121211511 0.002844222

16

Simple Parallel Statistical Computing in R March 13, 2003

Example: Parallel Bootstrap

• Bootstrapping is embarrassingly parallel.

• Replications can be split onto a cluster.

• Random number streams on nodes need to be independent.

• boot package allows bootstrapping of any R function.

• Help page shows example of bootstrapping glm fit for data

on the cost of constructing nuclear power plants.

17

Simple Parallel Statistical Computing in R March 13, 2003

Example: Parallel Bootstrap (cont.)

• 1000 replicates on a single processor:

> wallTime(nuke.boot <-
+ boot(nuke.data, nuke.fun, R=1000, m=1,
+ fit.pred=new.fit, x.pred=new.data))
[1] 27.44

• Parallel version: 100 replicates on each of 10 cluster nodes:

> clusterSetupSPRNG(cl)
> clusterEvalQ(cl,library(boot))
> wallTime(cl.nuke.boot <-
+ clusterCall(cl,boot,nuke.data, nuke.fun, R=100, m=1,
+ fit.pred=new.fit, x.pred=new.data))
[1] 3.03

18

Simple Parallel Statistical Computing in R March 13, 2003

Example: Parallel Kriging

• Several R packages provide spatial prediction (kriging).

• Sgeostat has a pure R version, krige.

• Computation is a simple loop over points.

• Fairly slow when using only points within maxdist.

• Result structure is fairly simple.

• Easy to write a parallel version.

19

Simple Parallel Statistical Computing in R March 13, 2003

Parallel Version of krige

parKrige <- function(cl, s, ...) {
split the prediction points s
idx <- clusterSplit(cl, 1: dim(s)[1])
ssplt <- lapply(idx, function(i) s[i,])

compute the predictions in parallel
v <- clusterApply(cl, ssplt, krige, ...)

assemble and return the results
merge <- function(x, f) do.call("c", lapply(x, f))
s.o <- point(s)
s.o$zhat <- merge(v, function(y) y$zhat)
s.o$sigma2hat <- merge(v, function(y) y$sigma2hat)
return(s.o)

}

20

Simple Parallel Statistical Computing in R March 13, 2003

Zink in Maas Flood Plane Ground Water

• Measurements at 155 points.

• Predict on 50m× 50m grid.

• Use only data within 1

kilometer.

• Sequential version takes

38.12 seconds.

• Parallel version (10 nodes)

takes 6.22 seconds.

• Only a factor of 6 speedup.

179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

x

y

21

Simple Parallel Statistical Computing in R March 13, 2003

XPVM: Visualizing the Parallel Computation

• Graphical console for

starting/stopping PVM.

• Shows hosts used in the

PVM (all dual processor).

• Displays activity

dynamically.

• Shows uneven load

distribution.

22

Simple Parallel Statistical Computing in R March 13, 2003

Load Balanced Kriging

• clusterApplyLB: load balanced clusterApply.

• Give more jobs n than cluster nodes p.

– Places first p jobs on p nodes,

– job p + 1 goes to first node to finish,

– job p + 2 goes to second node to finish,

– etc., until all n jobs are done.

23

Simple Parallel Statistical Computing in R March 13, 2003

Load Balanced Kriging (cont.)

• Load balanced version takes 4.62 seconds (speedup of 8.25).

Load Balanced No Load Balancing

• Communication is increased.

• Node executing a particular job is non-deterministic.

24

Simple Parallel Statistical Computing in R March 13, 2003

Example: Cross Validation

• Useful for choosing tuning parameters.

• Common structure:

– Outer loop over tuning parameters

– Inner loop over omitted data

– Additional inner replication loop if random (nnet)

• Good initial approach:

– parallelize loop over omitted data

– replace loop by lapply; test and debug

– replace lapply by parLapply

25

Simple Parallel Statistical Computing in R March 13, 2003

Example: Cross Validation (cont.)

Nested loops lapply in inner loop
cv <- function(parameters, data)

for (p in parameters) {
v <- vector("list", length(data))
for (d in data)

v[[d]] <- fit for p, omitting d

summarize result for p

}

lcv <- function(parameters, data)
for (p in parameters) {

fit <- function(p, d)
fit for p, omitting d

v <- lapply(data, fit)
summarize result for p

}

Parallel version
parCv <- function(cl, parameters, data)

for (p in parameters) {
fit <- function(p, d)

fit for p, omitting d

v <- parLapply(cl, data, fit)
summarize result for p

}

26

Simple Parallel Statistical Computing in R March 13, 2003

Different Example: Parallelized Animation

• Animation shows effect of varying one parameter.

• Needs several frames per second to be effective.

• Sometimes frames take several seconds to compute.

• Parallel frame computation can help.

27

Simple Parallel Statistical Computing in R March 13, 2003

Performance Consideration

• Communication.

– explicit data

– hidden data

• Load balancing.

– variable task complexities

– variable node performance/load

28

Simple Parallel Statistical Computing in R March 13, 2003

Discussion

• Design goals:

– simplicity of design

– portable

– easy to use

– user cannot deadlock

• Drawbacks:

– cannot express all parallel algorithms

– some can be expressed but not efficiently

29

Simple Parallel Statistical Computing in R March 13, 2003

Future Directions

• Issues to address:

– better error handling

– sensible handling of user interrupts

• Extensions

– effective interface to queue/stream of jobs

– parallel animation tools

– inter-node communication (BSP?)

30

