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Simple plane wave implementation for photonic 
crystal calculations 
Shangping Guo and Sacharia Albin 

Photonics Laboratory, Department of Electrical & Computer Engineering,  
Old Dominion University, Norfolk, Virginia 23529 

sguox002@odu.edu 

Abstract: A simple implementation of plane wave method is presented for 
modeling photonic crystals with arbitrary shaped ‘atoms’. The Fourier 
transform for a single ‘atom’ is first calculated either by analytical Fourier 
transform or numerical FFT, then the shift property is used to obtain the 
Fourier transform for any arbitrary supercell consisting of a finite number of 
‘atoms’. To ensure accurate results, generally, two iterating processes 
including the plane wave iteration and grid resolution iteration must 
converge. Analysis shows that using analytical Fourier transform when 
available can improve accuracy and avoid the grid resolution iteration. It 
converges to the accurate results quickly using a small number of plane 
waves. Coordinate conversion is used to treat non-orthogonal unit cell with 
non-regular ‘atom’ and then is treated by standard numerical FFT. 
MATLAB source code for the implementation requires about less than 150 
statements, and is freely available at http://www.lions.odu.edu/~sguox002. 

©2003 Optical Society of America 

OCIS codes: (350.3950) Micro-optics 
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1. Introduction 

The plane wave method (PWM) is often used for photonic crystal modeling since it can yield 
accurate and reliable results. This method requires intensive computations for complicated 
systems, involving thousands of plane waves, and places a high demand on computer 
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resources and time [1]. There is a tradeoff between the computing time and accuracy. In this 
paper, we present a simple and fast implementation method using MATLAB, utilizing its 
abundant functions for numerical analysis and graphics. The whole program may have less 
than 150 statements for performing the calculations and graphical output. However, the 
computing time and accurately can be much improved. The key point is to obtain the Fourier 
transform of the unit cell as accurate as possible. For commonly used ‘atoms’ with regular 
shapes, such as square, rectangular, circular cylinders, cubes and spheres, we use the 
analytical Fourier transform; there is no need to do a numerical Fast Fourier Transform (FFT), 
avoiding the step of dividing the space into small grids. The computation time is effectively 
reduced and accuracy can be improved. For a finite sized supercell, the Fourier transform is 
obtained using the shift property. 

2. Theory of PWM 

The PWM is illustrated in several papers [2-5]. Here, we summarize the theory very briefly.  
Maxwell’s equations in a transparent, time-invariant, source free and non-permeable (µ=µ0) 
space can be rewritten as Helmholz’s equation: 

 ( ) ( ) ( )rH
c

rH
r

rr
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21 ω
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=×∇×∇  (1) 

where ε(r) is the dielectric function, ω is the angular frequency and c is the speed of light in 
vacuum. 

In an infinite periodic photonic crystal, using Bloch’s theorem, a mode in a periodic 
structure can be expanded as a sum of infinite number of plane waves: 
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are perpendicular to each other. λ,Gh is the coefficient of the H component along the axes λê . 

Using the Fourier transform, the dielectric function can be written as:  
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where Ω is the unit cell and V is the volume of the unit cell. 
Finally, Helmholz’s equation can be transformed to an algebraic form [6]: 
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This is a standard eigenvalue problem and it can be solved using a standard eigen-solver. 
For 1D and 2D cases, the equation can be simplified. 

3. Implementation 

For simplicity, we assume there is only one kind of ‘atom’ in a photonic crystal and the 
number of ‘atoms’ in the unit cell or supercell is finite. Once the unit cell or supercell is 

determined, the set of reciprocal lattice vector G
r

 and unit vectors 1̂e , 2ê  can be calculated 

easily. The key part is to obtain the Fourier coefficient matrix ( )GG ′−
rr

ε  according to Eq.(3). 
It is obtained by calculating the Fourier coefficient of a single atom first using analytical or 
numerical Fourier transform, and then calculating the Fourier coefficients for the supercell 

using shift property, finally re-arranging to get the coefficients ( )GG ′−
rr

ε  and inversing to get 

( )GG ′−− rr

1ε . 
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3.1 ‘Atoms’ with regular shape 

It is advantageous to use analytical Fourier transform when available. We illustrate this using 
the 2D photonic crystals with the most commonly used circular cylinder. The same procedure 
can be followed for other shapes and their Fourier transforms can be found in Ref. [6].  

Assuming the radius of the cylinder is R, the dielectric constant for the cylinder is εa, the 
background dielectric constant is εb, the lattice structure can be represented by the two lattice 
basis vector 1a

r

 and 2a
r

. The area of the unit cell is calculated as 21 aaA
rr

×= , the Fourier 

transform of the unit cell is: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
GR

GRJ
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GR

GRJ
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R
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11
2

2
2 εεδεπεεδεε −+=−+=  (5) 

where J1 is the 1st order Bessel function, G is the modulus of G
r

,  f is a fraction parameter: 
  cellatom VolVolf = . (6) 
Here the advantage is that in different lattice geometries, the Fourier transform is the same as 
in Eq. (5) except that the values of f and G are different. 

3.2 ‘Atoms’ with arbitrary shape 

When atom shape is not regular, only numerical FFT can be used. To use FFT in a non-
orthogonal lattice, a non-orthogonal unit cell is first converted to an orthogonal cell using 
coordinate conversion as illustrated below.  

In Cartesian coordinate system, the three basis vectors in real space 321 ,, aaa
rrr

 are:  
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The dielectric function in the unit cell is ( )rε  and the column vector is 321 alanamr
rrrr

++= , 
where m, n and l are coordinates along the basis vectors. In Cartesian coordinates:  
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[g] is called the metric for the oblique coordinates [7, 8]. 
In Fig. 1 we show how these conversions are applied in the case of two examples: A 

circular cylinder in a triangular lattice is converted to an oblique elliptical cylinder in a square 
lattice as shown in Fig.1(a), while Fig.1(b) shows the conversion of an elliptical cylinder in a 
triangular lattice. The resulting band diagram for a photonic crystal of elliptical atoms 
illustrated in Fig.1(b) is shown in Fig.1(c) using appropriate material and structural 
parameters for GaAs. The conversion can be conveniently applied to treat photonic crystal 
fiber with non-regular shaped ‘atoms’ such as the one with elliptical air holes. 
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(a) (b)  

 
(c) 

Fig. 1. (a) Conversion of a triangular lattice with a circular cylinder ‘atom’; (b) Conversion of a 
triangular lattice with an elliptical cylinder ‘atom’; (c) TE band structure of a 2D triangular 
lattice with elliptical air holes in GaAs. Data used: aRx 28.0= , aRy 14.0= ,εa=13, εb=1.0. 

3.3 Shift property of Fourier transform 

Assuming the Fourier transform of a single atom ε(r) is known as εG, if ε(r) is shifted by an 

amount r0, then its Fourier transform must be multiplied by 0rkie
r

r

⋅ [6] which we call shift 
property here:  

 ( ) G
rGierr εε 0

0

r

r

rr ⋅↔+ . (11) 
Therefore, for a supercell with several atoms in periodic or random positions, the Fourier 
transform can be obtained using addition and subtraction: 

 ( ) ∑∑
⋅⇔+

i

i

i r
G

rGi

r
i err εε

r

r

rr

, (12) 

where ir
r

 is the location of ‘atom’ i in the supercell.  
Equations (11-12) are especially suitable for supercell method, such as the photonic crystal 

with defects. We can obtain the accurate Fourier coefficients of the supercell at the required G 
grid points by doing simple additions and subtractions, requiring only the Fourier coefficients 
of each single kind of atom. This is especially advantageous for a large supercell with many 
periodic or random atoms in it. 

As an example, we show below how the 3D diamond lattice is worked out: 
The diamond lattice is a complex FCC lattice with two spherical atoms in the primitive 

cell. Assuming the length of the simple cubic side is a, the primitive lattice vector basis are 
defined as [ ] [ ] [ ] 20,1,1,21,0,1,21,1,0 321 aaaaaa ===

rrr

. The locations of the two atoms in the 
primitive cell are chosen as [ ] 81,1,10 ar −−−=

r  and [ ] 81,1,11 ar =
r  to keep inversion symmetry. 

The primitive reciprocal lattice vectors 321 ,, bbb
rrr

 are calculated according to (5) in Appendix 
B of Ref. [10]. 
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Using shift property and Fourier transform for a sphere, the Fourier coefficient at the 
reciprocal lattice grid is expressed as: 

 ( ) ( )
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GR
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r

rr

⋅












 −−= εεε  (13) 

where R is the radius of the sphere, VRf 3
3
42 π×=  and 321 aaaV

rrr

×⋅= . 

In Fig. 2 we show the band structure for aR 83= , εa=13, εb=1 using our simple 
program with 343 plane waves, which is in excellent agreement with the result in Ref. [3]. In 

this paper, the set of G is chosen as nnbnbnbnG i ≤++= ,332211

rrrr

 and in this example n=3. 

0

0.1
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0.5
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a/
λ

X U L Γ X W K 

 
Fig. 2. Band structure of a 3D diamond lattice using 343 plane waves for this calculation, the 
inset shows the unit cell of the diamond lattice. 

4. Convergence, accuracy and stability 

We performed the TM/TE band calculation for an ideal triangular lattice with air holes in 
GaAs. The radius of the air hole is 0.28a, where a is the lattice constant, and the dielectric 
constant for GaAs is 13.0. All the eigen-frequencies with k-point located at M (see the inset of 
Fig. 1(c)) are calculated.  

Figures 3 and 4 show the convergence for TM and TE modes as a function of the number 
of plane waves with different mesh resolutions. Two methods are compared: the analytical 
Fourier transform and FFT with each grid point averaged by a 10x10 submesh. The iteration 
error is calculated as ( ) ( )[ ]1−− nXnXnorm , where X(n) is the eigen-frequency vector of the 
first 10 bands for the nth iteration, and the number of plane waves used is NPW=(2n+1)2.  
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Fig. 3. Convergence of TM mode. (a) Convergence of the first band. (b) The iteration errors for 
the first 10 bands. A uniform mesh with different resolution is used to represent the unit cell, 
and each grid is averaged by a 10x10 submesh. 
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Fig. 4. Convergence of TE mode. (a) Convergence of the first band. (b) The iteration errors for 
the first 10 bands. A uniform mesh with different resolution is used to represent the unit cell, 
and each grid is averaged by a 10x10 submesh.  

 
In Fig. 3 and Fig. 4, there exist two converging processes: number of plane waves and 

mesh resolution. These two processes are almost independent of each other. To achieve 
accurate results, both convergences must be reached. The iteration errors shown in these two 
figures are not enough to determine whether the accurate values are achieved, since they 
represent only one process. When a fine enough mesh and enough number of plane waves are 
used, the frequencies converge to the accurate values. The mesh grid number does not need to 
be the same as the number of plane waves as in Ref. [4], since that makes the computation too 
large. In our case, the number of plane waves is always much smaller than the grid number. 
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Analytical method has only one converging process; numerical FFT and mesh formation 
procedures are not required. Therefore, analytical method has higher accuracy for the same 
number of plane waves than FFT; it can be faster and save a lot of memory and computation 
time. It may be advantageous especially for 3D cases when the problem size is large and 
computation is long.  The reason why analytical method converges a little bit slower than FFT 
with a certain mesh resolution (see the iteration error) is probably due to the Gibbs’ 
phenomenon in Fourier series. 
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Fig. 5. Eigen frequency convergence as a function of grid resolution for TM mode in a 2D 
triangular lattice. 225 plane waves are used for this calculation. Line with ‘o’: grid is averaged 
by a 10x10 submesh; line with ‘+’:not averaged. 
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Fig. 6. Eigen frequency convergence as a function of grid resolution for TE mode in a 2D 
triangular lattice. 225 plane waves are used for this calculation. Line with ‘o’: grid is averaged 
by a 10x10 submesh; line with ‘+’: not averaged. 
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Also, Figs. 5 and 6 respectively show the convergence for TM and TE with mesh 
resolution using FFT approach; both of them show some oscillations, leading to difficulty in 
convergence. The effect of averaging at each grid point using a finite mesh is also shown. The 
convergence is improved by some degree using averaging. 

In addition, we compare our results using analytical Fourier coefficients with those by 
Hermann et al. [9], as shown in Table 1. The computing time for their methods is measured on 
different computers.  

Table 1. Comparison of several methods 
 

Method Grid # of 
PWs 

Band 1 at 
X 

Band 2 at 
X 

Band 3 at 
X 

Band 4 at 
X 

CPU-
time(s)* 

Analytical FT - 169 0.15071 0.18778 0.31852 0.36231 2.60 
Analytical FT - 225 0.15071 0.18778 0.31851 0.36229 5.06 

Our FFT 243X243 169 0.15073 0.18781 0.31855 0.36240 33.10 
PWM [9] 40X40 - 0.15163 0.19066 0.31962 0.36678 99.80 

Multigrid [9] 256X256 - 0.15071 0.18778 0.31851 0.36219 47.60 
* Measured on a Sun Sparc 400MHz UNIX machine as a telnet user, which may vary with load. - means no data. 

The advantage of using analytical Fourier Transform is evident from Table 1. It requires a 
small number of plane waves, yet produces accurate results, and converges quickly. The 
method is even better when some very small features exist in the lattice, where FFT needs 
larger mesh to reflect all the details. 

An example of a heavier computation is shown for a defective photonic crystal: a square 
lattice with alumina rods in air with the center rod absent. The dielectric constant for alumina 
is 8.9, and the radius of the rod is 0.2a, where a is the lattice constant. A 7x7 supercell is used 
to approximate the crystal structure. The defect frequency in the band gap at k=(0,0,0) was 
calculated using different number of plane waves. The Fourier transform of this 7x7 supercell 
is easily obtained using Eq. (5) and Eqs. (11-12). The calculated defect frequencies are listed 
in Table 2. The iteration error is calculated as ( ) ( )[ ]1−− nXnXnorm , where X(n) is the eigen-
frequency vector of the first 50 bands for the nth iteration. The band structure of a 7x7 
supercell is folded 72 times and the defect band is band 49 in this case.  

Table 2. Defect frequency of TM mode in a 2D square lattice using a 7x7 supercell 
 

N # of PWs Defect freq. Iteration Error CPU Time(s)* 
4 81=9x9 0.421996 3.6769e-02 0.49 
5 121=11x11 0.415577 6.8329e-02 1.10 
6 169=13x13 0.410824 3.1510e-02 2.18 
7 225=15x15 0.407251 2.7674e-02 4.39 
8 289=17x17 0.405432 1.6684e-02 7.45 
9 361=19x19 0.404108 2.1813e-02 12.98 
10 441=21x21 0.399563 2.8045e-02 20.38 
11 529=23x23 0.398201 1.7524e-02 32.63 
12 625=25x25 0.397168 5.4067e-03 51.49 
13 729=27x27 0.396306 2.4535e-03 78.79 
14 841=29x29 0.395868 2.7855e-03 112.89 
15 961=31x31 0.395736 1.3450e-03 165.65 
16 1089=33x33 0.395492 1.6496e-03 238.34 
17 1225=35x35 0.395005 2.2181e-03 331.06 

* Measured on a Sun Sparc 400MHz UNIX machine as a telnet user, which may vary with load 

As illustrated in Table 2, the convergence vs 21
PWN  for a large supercell is much slower. 

Much more plane waves are needed than that for the 1x1 ‘supercell’ to achieve the same 
accuracy and the computing time increases exponentially with the number of plane waves. 
Analytical method may save plenty of time by eliminating the converging process of grid 
resolution. 

The defect mode fields H or E can be obtained conveniently at the same time using the 
calculated eigen-vector hG,λ and Eq. (2). Defects with one or more cylinders of different sizes 
[11] or dielectric constants can be treated as different ‘atoms’ and their Fourier transform are 
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obtained the same way as Eq. (5) using different R or ε and then added to the supercell 
according to Eqs. (11-12). Similar mode fields as in Ref. [11] can be obtained, but are not 
shown here. Other defects such as waveguides can be treated in the same way. 

To reduce the interaction of the neighboring defects, a large supercell is generally needed, 
but the computation will increase accordingly. The convergence curve of the defect frequency 
using different supercell size is shown in the Fig. 7. The defect frequency for a point defect 
should be independent of k-vectors for an infinitely large supercell; however for small 
supercells, coupling between neighboring defects will lead to a finite width of the defect 
frequency. For large supercells, the interaction between neighboring defects becomes smaller.  
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Fig. 7. Convergence of defect frequency for TM mode using different supercell size in a square 
lattice with the center rod being removed 

5. Discussion 

Though plane wave method is quite successful in PBG calculations, it has several limitations. 
The computation grows exponentially when the problem size increases. For complicated 
problems, such as 3D PBG calculations, the computation is intensive. A less computationally 
intensive eigen-solver is critical to reduce computation effectively. A few good eigen solvers 
like Lanzcos and subspace methods may be able to greatly improve the performance from 
O(n3) to O(n2) or less, a good example is Ref. [1].  

In conclusion, we provide a simple implementation of the plane wave method using 
MATLAB. Our implementation yields good convergence and accurate results, and the 
programming effort is minimized. We demonstrated how using analytical Fourier coefficients 
could improve accuracy and reduce the computation time. The shift property is employed to 
get the Fourier transform of a supercell, thereby reducing computation and increasing 
flexibility in treating different problems while maintaining accuracy. Using coordinate 
conversion, ‘atoms’ with arbitrary shapes can be dealt with easily. 
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