
400 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

Simple Pre-Provisioning Scheme to Enable
Fast Restoration

Mansoor Alicherry and Randeep Bhatia

Abstract—Supporting fast restoration for general mesh topolo-
gies with minimal network over-build is a technically challenging
problem. Traditionally, ring-based SONET networks have offered
close to 50 ms restoration at the cost of requiring 100% over-build.
Recently, fast (local) reroute has gained momentum in the context
of MPLS networks. Fast reroute, when combined with pre-provi-
sioning of protection capacities and bypass tunnels, enables faster
restoration times in mesh networks. Pre-provisioning has the ad-
ditional advantage of greatly simplifying network routing and sig-
naling. Thus, even for protected connections, online routing can
now be oblivious to the offered protection, and may only involve
single shortest path computations.

In this paper, we are interested in the problem of reserving the
least amount of the network capacity for protection, while guaran-
teeing fast (local) reroute-based restoration for all the supported
connections. We show that the problem is NP-complete, and we
present efficient approximation algorithms for the problem. The
solution output by our algorithms is guaranteed to use at most
twice the protection capacity, compared to any optimal solution.
These guarantees are provided even when the protection is for mul-
tiple link failures. In addition, the total amount of protection ca-
pacity reserved by these algorithms is just a small fraction of the
amount reserved by existing ring-based schemes (e.g., SONET), es-
pecially on dense networks. The presented algorithms are compu-
tationally efficient, and can even be implemented on the network
elements. Our simulation, on some standard core networks, show
that our algorithms work well in practice as well.

Index Terms—Approximation algorithms, fast shared restora-
tion, local reroute, MPLS, optical, pre-provisioning.

I. INTRODUCTION

MODERN backbone and transport networks are highly
complex networks that strive to carry services with QoS

guarantees. These networks support general topologies and dy-
namic routing of bandwidth guaranteed connections, yet at the
same time they aim to provide fast recovery from network fail-
ures. Traditionally, ring-based SONET networks have offered
close to 50 ms restoration to bandwidth guaranteed services,
using pre-reserved spare protection capacity and pre-planned
protection paths. Pre-planning protection in rings has been
especially attractive, because of the availability of exactly one
backup path between any two nodes, leading to very simple
and fast automatic protection switching mechanisms. However,
in ring-based SONET networks these advantages come at the

Manuscript received October 25, 2004; revised August 16, 2005, and January
5, 2006; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A.
Somani. A preliminary version of this paper appeared in IEEE INFOCOM 2004,
Hong Kong.

The authors are with Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
USA (e-mail: mansoor@research.bell-labs.com).

Digital Object Identifier 10.1109/TNET.2007.892844

cost of reserving at least half the total capacity for protection,
thus requiring 100% redundancy.

Recently, mesh-based networks have received much atten-
tion due to the increased flexibility they provide in routing
connections, thus leading to more efficient utilization of net-
work resources. Also mesh networks are appealing due to the
high degree of protection capacity sharing that is possible in
these networks, offering the promise of fast restoration times
of ring-based SONET networks for just a small fraction of
the total capacity, reserved for protection. However, it has
remained a challenging problem to design such efficient pro-
tection schemes for mesh networks. In general most protection
schemes, including those for SONET and ring-based schemes,
have been designed to protect against a single link failure. It
is also a challenging problem to design efficient protection
schemes that protect against multiple link failures for mesh
networks.

Recently, a fast (local) reroute [9] approach to restora-
tion has gained momentum in the context of Multi-Pro-
tocol-Label-Switching (MPLS) [5] networks. The MPLS fast
or local reroute supports a local repair capability where upon
a node or link failure the first node upstream from the failure
reroutes the effected Label Switch Paths (LSP) onto bypass
(backup) tunnels with equivalent guaranteed bandwidths,
thereby achieving faster restoration times. The MPLS fast
reroute mechanism allows for bandwidth sharing between
bypass tunnels protecting independent resources, thus resulting
in efficient capacity utilization.

Two different techniques for local protection in MPLS
networks have been proposed [22]. The one-to-one backup
technique [1], [13], [15] creates bypass LSPs for each protected
service carrying LSP, at each potential point (link or node) of
local repair. The facility backup technique [29] creates a bypass
tunnel to protect a potential failure point (link or node), such that
by taking advantage of the MPLS label stacking mechanism, a
collection of LSPs with similar backup constraints can be jointly
rerouted, over a single bypass tunnel. In general, the one-to-one
backup technique does not scale very well with the number of
supported protected LSPs, since the number of bypass tunnels
can quickly become very large, not to mention the enormous
load on signaling and routing to support these extra tunnels. In
addition, for implementing the one-to-one backup technique,
either extensive routing extensions are needed to propagate
the set of bypass LSPs and their attribute information [1],
resulting in heavy load on the control plane, or the amount
of achievable sharing of protection capacity is sacrificed, by
limiting the amount of state that is propagated in the routing
updates [13], thus requiring large amounts of spare capacity
for protection.

1063-6692/$25.00 © 2007 IEEE

ALICHERRY AND BHATIA: SIMPLE PRE-PROVISIONING SCHEME TO ENABLE FAST RESTORATION 401

The facility backup technique is free from many of the draw-
backs of the one-to-one backup technique. In addition, when
used in conjunction with pre-computation and pre-reservation
of protection bandwidth (and bypass tunnels), facility backup
can be implemented, without any or minimal routing extensions
[29]. (In MPLS it is possible to pre-install a set of bypass tunnels
that may share protection bandwidth, by assigning zero band-
width [29] to each tunnel.) Moreover, by pre-reserving sufficient
protection bandwidth, it can be ensured that all primary LSPs
are protected, no matter how the primary path routing is done, as
long as the protection capacity is not used for the primary paths.
Thus, pre-reservation helps simplify network operations such as
online connection routing which can now be done oblivious to
the offered protection. Moreover, pre-reservation can be done by
an off-line algorithm with the complete knowledge of the net-
work. This makes it possible to maximize the bandwidth sharing
among the bypass tunnels, thus minimizing the total amount of
capacity that needs to be reserved for protection.

In this paper, we study the problem of determining the least
amount of protection capacity (and the bypass tunnels) to be re-
served in the network, so as to guarantee fast (local) reroute-
based restoration for the failure of any set of links. The
solution to the problem determines for each link, its bypass tun-
nels and the amount of its total capacity to be reserved for pro-
tection, so that its remaining capacity can be used for carrying
working traffic. Thus, in our model (as in [29]) there are (at least)
two pools of bandwidth, one of which can only be used for car-
rying working traffic, and the other one is reserved for protec-
tion (it may carry low priority best effort working traffic that
can get preempted by a rerouted flow, subsequent to a failure).
The pre-reserved protection capacities of the links belong to the
backup pool, and on a link failure its working traffic is rerouted,
on at most bypass tunnels, using only the available bandwidth
in the backup pool. The limit of enables the bypass tunnel
information to be stored by the head nodes, of the links, in
their limited memories. We show that the problem is NP-hard
and we provide fast, computationally efficient algorithms, with
bounded performance guarantees, for solving the problem. As
shown in [29] it is not very difficult to support a distributed im-
plementation of these algorithms since the algorithms only re-
quire the topology and the link capacities, which are available
to the LSR via LSA updates. Finally, we also show how to up-
date the pre-reserved backup bandwidth and bypass tunnels to
accommodate topology changes.

Even though the results presented in this paper are in the con-
text of MPLS networks, they are equally applicable to other
technologies (e.g., Optical, ATM etc.), where local reroute may
be used to provide restoration guarantees to service carrying cir-
cuits, in mesh topologies. Unlike MPLS it may not be possible
to pre-install the bypass tunnels, computed by the algorithm,
into the network, due to the implicit protection capacity sharing
among the bypass tunnels. The pre-computed bypass tunnels
can, however, be signaled at the time of failure, and the pro-
tection capacity needed for the signaled bypass tunnel, is guar-
anteed to be available in the backup pool.

The rest of the paper is organized as follows. Section II de-
fines the problem and summarizes our results. In Section III, we
present the background and related work. In Sections IV and

V, we present efficient algorithms for the problem of single link
failure and analyze their performance. In Section VI, we present
algorithms for multiple link failures and analyze their perfor-
mance. Section VII discusses implementation details, including
how to handle changes in topology. Section VIII presents our
simulation results. Section IX discusses extensions and future
work. Section X concludes the paper.

II. PROBLEM DESCRIPTION AND OUR RESULTS

We are given a capacitated network in which pre-planned fa-
cility-based fast reroute is used to provide protection against
link failures. The link capacities are assumed to be integral to
model the number of fibers or the smallest switchable bandwidth
on a link. The problem is to partition the link capacities into
working and protection capacities (both integral) to guarantee
link restoration for the failure of any set of links, with
the goal of minimizing the total amount of bandwidth used for
protection. We also require that on failure of a link the working
traffic of the link can be rerouted on at most bypass tunnels.
In addition, we also consider keeping the network protection ca-
pacities updated, as links are added or deleted.

We model the network as a capacitated network with no par-
allel links. The latter assumption is justified by the observa-
tion that in reality parallel links fail together and hence they
can be replaced by a single link of total capacity equal to the
sum of the capacities of the individual parallel links. Given a
network with integral link capacities and an integer , the
problem is to find for each link , an integral protection capacity

, and a set of at most bypass tunnels ,
for protecting link with bandwidth guarantees, such that

1) By reserving of each link ’s capacity for protection,
the network can recover from single link failures via
link-based local restoration. This means that on the failure
of link its maximum primary (working) traffic, which
is , can be rerouted onto its bypass
tunnels , and the reserved protection capacity, on the
surviving links, is sufficient to meet the bandwidth re-
quirements of the bypass tunnels. Here bandwidth sharing
among bypass tunnels is assumed.

2) Each bypass tunnel of a link , with bypass tun-
nels, must be able to support a rerouted traffic of approxi-
mately , on the failure of link . In addition, all
together these bypass tunnels must be able to support
the entire working traffic on link . We will assume that on
the failure of link , an integral amount of traffic is rerouted
on each of its bypass tunnels.

3) The total protection capacity is minimized.
The reason for constraining the number of bypass tunnels for

each link (by the parameter) and their minimum bandwidth,
is that in practice the network may support high bandwidth con-
nections (ATM VCs or MPLS LSPs etc.), which may not be
split. Also, the head end nodes have only limited resources to
store paths of too many bypass tunnels. Finally, if these tunnels
cannot be pre-provisioned in the network, they have to be setup
subsequent to a failure. Thus, by limiting the number of bypass
tunnels per link, the desired recovery times can be achieved.
Thus, ideally should be 1. However, one advantage of having

is that for larger values of , the total protection capacity

402 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

Fig. 1. A six-node network.

needed is usually much less. However, for most networks, the
total protection reserved is close to the best possible, even when
there are at most two bypass tunnels per link. We illustrate these
observations with an example.

Consider the six-node graph given in Fig. 1, with uniform
link capacities: units for all links . It can be shown
that when splitting is not allowed , an optimal solu-
tion must set , for all links , resulting in
90 units of total reserved protection capacity. Note that this is a
feasible solution, since on the failure of any link, say link (1,2),
its working traffic of at most 10 units can be routed on the pro-
tection capacity of a surviving path, say 1,0,3,2. Also, it can be
shown (Lemma 2 in Section V-A) that when arbitrary splitting is
allowed, then any solution must reserve at least 60 units of total
protection capacity. This bound is also achieved with 2-splitting

, where is set on the Hamiltonian
cycle 0,1,2,3,4,5 and is set for all other links. In this
case, on failure of any link, say (1,5), outside the Hamiltonian
cycle, its working traffic, of at most 20 units, is split equally
among its two incident paths, 1,0,5 and 1,2,3,4,5 on the Hamil-
tonian cycle. When a link, say 1,0, on the Hamiltonian cycle
fails, its working traffic, of at most 10 units, is routed on the
surviving Hamiltonian path, 1,2,3,4,5,0.

Thus, in practice, 2 comes close to being the best value for
, which is what we will assume in the rest of this paper. It can

be shown [16] that when is unbounded and arbitrary split-
ting of the rerouted traffic over the bypass tunnels is allowed
(no limit on the minimum capacity of the bypass tunnels), then
the above-mentioned problem can be solved optimally in poly-
nomial time, using linear programming techniques. We show,
however, that with the constraints outlined earlier, our problem
is NP-complete.

One of our algorithms is applicable to networks where the
splitting of the rerouted traffic is not allowed (i.e., has to be
exactly 1). This algorithm is guaranteed to produce a solution,
in which there is no splitting of the rerouted traffic. However, as
expected, this algorithm reserves more spare capacity for pro-
tection. Our second algorithm may create two bypass tunnels
for some links in the network, but reserves close to lowest pro-
tection capacity in the network. We show that in the worst case
both these algorithms produce a solution, which reserves at most
twice the protection capacity of the optimal solution.

Our algorithms are very efficient to implement, which makes
them amenable to devices, such as network elements (e.g.,
LSR), with limited computational resources.

III. BACKGROUND AND RELATED WORK

In general, the protection schemes for optical and MPLS
networks can be classified [14], [15] based on whether the
protection is local (link based) or end-to-end (path based), and
whether the backup resources are dedicated or shared. Fast
or local reroute mechanisms, outlined earlier, are instances of
link-based protection. In path-based protection, the entire pri-
mary service-carrying path is backed up by alternate protection
paths, such that any failure on the primary path results in its
traffic getting rerouted over its protection paths. In path-based
protection, the reroute is done by the end nodes of the path.
Compared to link-based protection, recovery may be slower
in path-based protection schemes, partly because failure infor-
mation has to reach the end nodes before restoration can be
initiated, and partly because even a failure of a single link may
affect primary paths of many different ingress–egress pairs,
all of which may initiate path protection in parallel, resulting
in high signaling loads and contention for common resources
and crankbacks. This is the reason we focus exclusively on
link restoration schemes in this work. However, path-based
restoration schemes have the advantage that they are typically
more efficient in terms of spare protection capacity usage. For
example, Iraschko et al. [11] report that path protection may
have as much as 19% less spare protection capacity requirement
compared to link protection. Ramamurthy et al. [23] also report
that path protection provides significant capacity savings over
link protection.

The protection schemes can be further classified as being
pre-planned (e.g., SONET) or event driven (dynamic). The
latter involves computing bypass routes and reserving pro-
tection bandwidth at the time when the working path is
provisioned. These schemes rely on heavy signaling to main-
tain the reservations and to effect the rerouting on the failure
of a link. These schemes, although very efficient in lowering
the over-build, tend to have longer restoration times. Note that
our scheme is based on pre-planning with the only dynamic
component coming from topology changes, due to which
some protection capacities and bypass tunnels may need to be
re-computed and re-provisioned.

For pre-planned facility-based fast reroute, many of the ap-
proaches are based on employing ring-like (e.g., SONET) pro-
tection mechanisms on a set of “covering” rings on the un-
derlying mesh topology (which is assumed to be 2-edge con-
nected). Some of these approaches only work on constrained
mesh topologies that are designed in terms of rings [7], [27].
Some of these ring-based schemes are based on the notion of
cycle covers, whereby rings or cycles are identified that include
every link of the underlying networks [7]. Each of these cycles
is then provisioned with enough protection capacity so that on
the failure of any link its working traffic can be rerouted over the
protection capacities in the surviving links of its covering cycles.
There are two drawbacks of this problem: one, the over-build
can be significant, and two, it is NP-hard to find the smallest
cycle cover of a given network [28]. An improvement to cycle
cover called the -cycle [8] is based on the observation that a
cycle can be used to protect not just the links of the cycle but
also any other link whose end nodes are contained in the cycle,

ALICHERRY AND BHATIA: SIMPLE PRE-PROVISIONING SCHEME TO ENABLE FAST RESTORATION 403

thus suggesting that far fewer cycles may be sufficient for pro-
viding full protection. An algorithm to minimize the total spare
capacity, based on solving an integer program over all possible
cycles, is given in [8]. To the best of our knowledge, no fast
approximation algorithms are known for this problem. Another
alternative approach similar to cycle cover, called the double
cycle cover, finds a set of cycles that include each link in ex-
actly two cycles [6]. A double cycle cover can be found in poly-
nomial time for planar graphs and it is conjectured that double
cycle covers exist for all 2-edge connected graphs [12], [26].
This is in contrast to the cycle cover problem which is known to
be NP-hard. However, even for double cycle cover-based pro-
tection schemes, the required network over-build can be signif-
icant. Note that all the ring-based approaches suffer from the
drawback that after any topology change, the structure of the so-
lution may change dramatically, thus limiting their scalability.

Non-ring-based approaches to link restoration on mesh net-
works include generalized loop-back [19], [20], where an ori-
entation of the edges is selected to form a digraph, called the
primary. A conjugate digraph called the secondary is then ob-
tained by orienting the edges of the graph in the opposite direc-
tion. This edge orientation is chosen to ensure that the links on
the secondary can be used to carry rerouted traffic for any link
failure in the primary. Reference [2] considers the problem of
finding the minimum cost augmentation of a given primary net-
work, so that the resulting network is capable of supporting link
protection under single link failures, for a given set of links. In
their model, no limit is imposed on the capacities of the links,
and they provide a 4-approximation algorithm when all links in
the primary network have uniform bandwidth and they provide a
10.87-approximation algorithm for the general case. In addition,
[2] also provides a -approximation algorithm for the
problem of jointly designing the primary and backup networks.

All the schemes mentioned earlier assume that protection is
provided for a single link failure. The work of [17] evaluates the
robustness of link restoration schemes in the presence of mul-
tiple link failures. A hierarchical classification of the reasons
due to which restoration algorithms fail to guarantee recovery
for multiple link failures is provided and is illustrated for some
standard networks. In [23], the authors find that path protection
is more susceptible to multiple link failures than link restoration
and dedicated protection is more resilient than shared protection
to multiple link failures. In [30], the authors propose a scheme
to deal with multiple link failures by re-provisioning protection
paths for connections that become vulnerable or are left unpro-
tected from subsequent failures. The work of [18] explores the
tradeoff between spare capacity for protection and the robust-
ness to double link failures. A restoration scheme is presented
that extends generalized loop-back to operate on a subgraph of
the full backup graph, thus providing savings on the spare ca-
pacity reserved for protection. These results indicate that the
modified scheme has equivalent or better robustness to double
link failures as the original generalized loop-back scheme and
can provide an additional 20% capacity to carry unprotected
traffic. The ability of -cycles to survive double link failures
is considered in [24]. Note that the existing work mentioned so
far mainly considers the robustness to multiple link failures of
protection schemes designed for single link failures. This is in

contrast to our protection scheme and the one presented in [3],
which guarantee 100% or exhibit almost 100% robustness, re-
spectively, to multiple link failures.

Recently, [16] also designed pre-planning schemes for sup-
porting fast reroute. This model and problem setting is very
close to ours except for one major difference. In our scheme,
we can restrict the amount of splitting that must be incurred
by the rerouted traffic, while in their case no such restriction
may be imposed. In other words, in their scheme no bound
may be imposed on the number of bypass tunnels needed to
reroute the traffic after a failure. This difference has a big im-
pact on the complexity of the problem since for the model con-
sidered by [16] the problem can be solved in polynomial time
by using a linear programming approach. However, the problem
is NP-hard in our setting and hence very different solution tech-
niques are needed.

Putting our results in perspective of the existing schemes de-
scribed earlier, our algorithms may reserve only a fraction of the
total capacity of the network for protection. On the other hand,
all the ring-based schemes (with the exception of -cycle) and
those based on generalized loop-back, may reserve at least half
the total capacity for protection. For example, for a network with
uniform capacities, nodes and links, our algorithms may re-
serve at most capacity for protection, while most ring-based
schemes (including SONET) will reserve capacity for pro-
tection. Note that can be arbitrarily large compared to , de-
pending on the average degree of the network. We also show
that changes in topology can be easily handled with our solu-
tion, which is not always the case for the existing schemes.

IV. ALGORITHMS FOR SINGLE LINK FAILURE

In this section, we present two fast algorithms, for the
problem of minimizing the total amount of pre-provisioned
protection capacity, and for computing the set of pre-installed
bypass tunnels, to ensure that the network is fully link pro-
tected. We establish that both the algorithms have the same
worst case performance. However, the two algorithms obtain
quite different solutions, where one algorithm reserves either
all or none of the capacity of every link for protection, while
the other one ensures that only a portion of any links capacity
is reserved for protection. Also, one algorithm only outputs a
single bypass tunnel per link, while the other algorithm may
require that on failure of some set of links, the traffic is rerouted
over two bypass tunnels, resulting in much lower total reserved
protection capacity on the links. Thus, depending on the needs
of the service provider, one algorithm may be better suited
than the other. We show that the solutions output by both the
algorithms reserve no more than twice the protection capacity
reserved by any optimal solution.

Let the given undirected network be denoted by ,
where is the set of vertices and the set of bidirectional links.
Recall that denotes the total capacity of link . We use the
notation and to denote the protection and working
capacities on link , as assigned by the algorithm. Note that

. Let denote an ordering of
the links in non-increasing order of their capacities. Thus, for

, we have .

404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

A. Algorithm Based on Spanning Tree Construction

We assume without loss of generality that is connected.
This is because otherwise the algorithm can be independently
run on each connected component. The algorithm maintains an
acyclic graph (collection of forests) , where initially consists
of only the nodes , and on termination is a spanning tree of .
At step , link is considered, and if it does not create a cycle
in then it is added to . Thus, after steps, all links are
considered and is a tree. The algorithm then sets ,
for all links in the tree and sets , for all other links. Note
that since there is never any working traffic carried on the links
of , there is no need to provide any protection for a failure of
any such link. Thus, for these links, there are no bypass tunnels.
For a link , which is not in , its single bypass tunnel
is the unique path from to in . Algorithm 1 describes the
algorithm.

Algorithm 1 Algorithm TREE

Let be the links sorted in non-increasing
order of capacities.

for

if does not form a cycle

else

Validity of the Algorithm: We show that the working traffic on
all links in the solution output by the algorithm is link protected,
thus establishing that the solution is feasible. In other words,
we show that if a link with working traffic is cut, then its
bypass tunnel is able to support a flow of unit. Thus, if is
a link on the bypass tunnel for link , then we have to show that

. However, since the links on the bypass tunnel are
links in , they have . Also, by construction, the
links that need protection are not in , and they have

. Hence, we have to show that

. We prove this by contradiction. So, let . Let
. Note that is a link in the unique path from to

in . Since , the algorithm must consider link
before link . Since link is not added to , there must exist a
path connecting node and in , when link is considered,

and also when link is considered. But then, adding to
would have created a cycle. Hence, cannot be in , which
is a contradiction. We show later that the solution output by
this algorithm uses no more than twice the optimal protection
capacity.

Time complexity: The algorithm finds a maximal spanning
tree, similar to Kruskal’s algorithm. Hence, the time complexity
is .

Enhancements: Note that the algorithm sets the working ca-
pacity of the tree links to zero. If the network is very sparse, we
can assign the working capacities for tree links as follows. As-
sign a working capacity of to all the tree links and a protection
capacity of to the remaining links. It is easy to see that as long
as , the total protection capacity will not increase,
and as long as capacity of the lowest capacity link,
the solution is a feasible solution with . For example, this
enhancement will assign half protection capacity on all the links
for a ring topology.

B. Algorithm Based on 2-Edge Connected Graph Construction

We assume without loss of generality that is 2-edge con-
nected.

Algorithm 2: Algorithm 2-EDGE

Let be the links sorted in non-increasing
order of capacities.

Tree output by 1

Links to which protection capacities are assigned

for such that

Let

if (and are not 2-edge connected in)

Unique cycle formed by adding to

for each link

else

Algorithm 2 describes the algorithm. It starts from the tree
, created by the first algorithm, and adds more links to it,

as follows. At all times, the algorithm maintains a connected

ALICHERRY AND BHATIA: SIMPLE PRE-PROVISIONING SCHEME TO ENABLE FAST RESTORATION 405

graph . is initially set to . The algorithm considers the
links not in , in the order of increasing index , and hence in
the order of non-increasing capacity. If, while considering link

, the nodes and are not 2-edge connected in
, then link is added to . We say a pair of vertices and
are 2-edge connected in if removal of any single link in

does not disconnect from .
For computing the backup capacities of the links in , we

keep track of the set of links that has been assigned backup ca-
pacities in a set . Initially, is empty. When a link is
added to , there is a unique cycle in which contains link

; all other links in are from . For all the links in that
are not assigned any protection capacities (i.e., links in the set

), we allocate a working capacity of and
a protection capacity of . We also add to

, the list of links that are assigned a protection capacity. The
backup tunnel for is the path formed in when is deleted
from .

The algorithm sets the protection capacity of all the links that
are not in to zero. Each of these links is assigned two bypass
tunnels, as follows. Let . Note that when is consid-
ered by the algorithm (while constructing), nodes and are
2-edge connected in (that is why is not in). Thus, when
is considered by the algorithm, there must exist two link disjoint
paths between and in . The two bypass tunnels for link
are these two paths.

Time Complexity: The algorithm iterates through all the
links and checks whether the end points and
are 2-edge connected in . It also computes the path between
the end points in . These two operations can be done in

time as follows. The path between and can be
computed in time using a depth first search (DFS) of
from one of or . It can be shown that and are 2-edge
connected in only if the end points of all the links in are
2-edge connected. The end points of a link in are 2-edge
connected only if the link is in . Hence, the time complexity
of the algorithm is .

Example: We illustrate the algorithm using Fig. 2. Here,
each link has two labels—the first one is its total capacity
and the second one is its protection capacity, as set by the
algorithm. The maximum cost spanning tree , as found by
the algorithm, is shown in thick solid lines. is initially
set to . Next, the algorithm considers the remaining links
in the decreasing order of their capacities (i.e., links (1,2),
(2,4), (1,5) and (3,4)). When link (1,2) is considered, its end
points are not 2-edge connected in . Hence, it is added to

and the cycle formed is 1-0-3-2-1. Since none of these
links are in , the working capacity of each of these links
is set to half of capacity of link , which is 4. They are
all added to . Link (2,4) is the next link considered and
since its end points are not 2-edge connected, it is added to

. 2-3-0-5-4-2 is the unique cycle in containing (2,4).
The links of , which are not assigned protection capacity
(i.e., not part of) are (2,4), (0,5), and (4,5). These are
assigned a working capacity 4, which is half of capacity of
link (2,4). Links (1,5) and (3,4) are not added to , since
their end points are 2-edge connected in , when they are
considered. They are given full working capacity.

Fig. 2. A six-node network showing the capacities.

Validity of the Algorithm: We first show that the graph
output by the algorithm is 2-edge connected. Note that if there
is a cut link in , then must also be in (since
and must be connected in). Since is assumed to be 2-edge
connected, there must be some link in that is not in or

, which when added to must create a cycle containing link
. Let be such a link, with the smallest index . Then,

link must have been considered by this algorithm, and at the
time when it is considered by the algorithm, and cannot be
2-edge connected in . Hence, the algorithm must add to .
But then cannot be a cut link of , a contradiction. Now
we show that in all links are protected.

Lemma 1: The algorithm outputs a feasible solution, in which
the working capacity of all links is protected.

Proof: We first show that on any link in , at least half
of its capacity is reserved for protection. This holds trivially for
the links in that are not in . For a link in , its protection
capacity is assigned by the algorithm while considering some
link , and cycle , such that is in . Note that since is
in , we have . By construction link ’s protection
capacity is set to , thus implying the
result.

Next, we show that working capacities of all the links in are
protected. The links in are protected by the path in the first
cycle formed in that includes . The links that
are not part of are protected by two paths present in between

and when is considered by the algorithm. It is easy to
see that these paths have at least protection capacities,
since is considered after all the links in the two paths.

C. Uniform Capacity Case: Practical Consideration

In the case when all the links have the same total capacity
(, for some integer), then both the algorithms may
consider the links in any arbitrary order. The worst case guaran-
tees, which we show later, hold for any such order. However, in
practice some orderings may be better than other ones. Here we
present a scheme based on one such ordering. Note that when all
links have the same capacity , the algorithm sets
for all links in , and for all links outside . Thus,
the amount of protection capacity reserved by the algorithm is
directly proportional to the number of links in the 2-edge con-
nected graph .

In order to minimize the number of links in the 2-edge con-
nected graph , we propose the following algorithm. Let be
obtained by doing a DFS on . The algorithm to construct ,

406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

starting from , is modified as follows. At any step, the algo-
rithm considers that link to add to , for which and

are not 2-edge connected in , and the number of links on the
unique path from to in that are not in any cycle of is
maximized. We can show that the worst case performance of this
heuristic is the same as the algorithm outlined before. However,
in practice this algorithm finds solutions with lower total pro-
tection capacity. As an example, consider the network in Fig. 1,
with uniform link capacities. The DFS tree is shown in thick
solid lines. The algorithm adds links (0,3) and (1,2) (shown as
thick dashed lines) to , in that order, to construct . All these
links in have half their capacity reserved for protection, and
the remaining two links in have no capacity reserved for pro-
tection. Thus, the total protection capacity reserved by the algo-
rithm is at most 16.7% more than the amount reserved by the
optimal solution.

V. ANALYSIS

In this section, we show that all the algorithms presented in
Section IV have good worst case performance. Specifically, we
show that these algorithms are guaranteed to find a solution with
total protection capacity no more than twice that of the optimal
solution.

First, we establish a lower bound on the amount of total pro-
tection capacity that is needed by any solution.

A. Lower Bound

Let the network have nodes denoted by the set . Let
denote the set of links incident on node . Let the maximum
capacity of any link incident on node be . Thus,

.
Lemma 2: Any solution must reserve at least

total protection capacity on the links of the network.
Proof: The following proof applies, even when there is no

limit on the number of bypass tunnels for the links, and even
when the working traffic is split arbitrarily among the bypass
tunnels. Consider any solution. Let be a node and let be a
link of capacity , incident on node . On the failure
of link , the working traffic on link must be rerouted over the
remaining links in . Since the working traffic of link can
be as large as , the sum of the protection capacities
of the remaining links in must be at least . Thus,
the total protection capacity on all the links in must be
at least . Consider the
sum . Note that this equals

. Thus, .
Corollary 3: When all links have the same capacity

, for all , then at least total protection capacity is re-
served by any solution.

Now we show that the algorithms described earlier are 2-ap-
proximation algorithms.

B. Algorithm Based on Spanning Tree Construction

Let be the tree (forest) found by the algorithm. We
first show that the total capacity of the links of is at most

.
Lemma 4: The total capacity of the links in is at most

.

Proof: The proof uses a charging argument, where the ca-
pacity of each link in is charged to at least one vertex in ,
such that the total capacity charged to each vertex is at most

. This implies that the total capacity of the links of is
at most . The charging works as follows. Let be
some arbitrary vertex in . Let be a subset of vertices, which
is initially set to , and in the end is equal to . At each
step the charging scheme picks one unpicked link of that con-
nects some vertex in to some vertex not in . Note that such
a link must always exist as long as there is at least one unpicked
link of . Let the charging scheme pick link with
in and not in . The capacity of link is charged to vertex

. Thus, gets a charge of , which is at most , since
link is one of the links in . At this point is set to ,
and the charging scheme continues by picking another unpicked
link from that connects some vertex of to some vertex not
in . Note that in this charging scheme, each vertex is charged
at most once, since it is charged only when it is brought into

. Also, as shown above, the charge on any vertex is at most
, thus establishing the result.

Theorem 5: The spanning-tree-based algorithm is a 2-ap-
proximation algorithm.

Proof: Follows from Lemmas 2 and 4.

C. Algorithm Based on 2-Edge Connected Graph Construction

Theorem 6: The algorithm based on 2-edge connected graph
construction is a 2-approximation algorithm,

Proof: Recall that this algorithm starts out with the tree ,
created by the first algorithm, and adds more links to it, while ad-
justing the reserved protection capacity on the tree links and the
newly added links. As shown in Theorem 5, the total protection
capacity reserved (which is all on) by the spanning-tree-based
algorithm is at most twice the protection capacity reserved by an
optimal solution. By using a charging argument, we show that
as link protection capacities are updated by this algorithm, the
total protection capacity does not increase, thus implying that
the total protection capacity of the solution output by this algo-
rithm is also at most twice the protection capacity reserved by
an optimal solution.

The algorithm can be thought of as starting with full protec-
tion for , and when a link which is not part of is added to

, some of the protection capacity from is transferred to that
link. When link is added to , then the protec-
tion capacity of links in – is decreased by and the
link is assigned a protection capacity of . We claim
that there is at least one link in that is in – . The proof
is by contradiction. If there is no such link , then just before

is added by the algorithm to , each of the link on the path
joining with in is already in some cycle. Thus, and

are 2-edge connected just before link is added by the algo-
rithm. However, in this case, the algorithm would not add link

to , a contradiction.
It can be shown that the uniform capacity case given in

Section IV-C is also a 2-approximation algorithm.

D. NP-Completeness Result

In this section, we show that even a simple version of the
problem is NP-complete.

ALICHERRY AND BHATIA: SIMPLE PRE-PROVISIONING SCHEME TO ENABLE FAST RESTORATION 407

Claim 7: For a given value , the problem of determining if
there exists a solution that reserves at most total protection is
NP-complete for . Furthermore, this holds even when all

are equal.
Proof: Note that given a solution to the problem (the pro-

tection capacities on each link and the bypass tunnels for each
link), it can be verified in polynomial time if it is a feasible so-
lution for protecting against any single link failure, and hence
the problem is in NP.

Consider an instance of the problem for with all edge
capacities . In any solution to this problem, each link’s
working traffic is rerouted (split equally into integral flows) on
at most two bypass tunnels.

We reduce the problem of determining if there exists a Hamil-
tonian circuit in a given connected graph to this problem. The
reduction sets and sets every link capacity to 2. We claim
that the given connected graph has a Hamiltonian circuit if and
only if the reduced instance has a solution of total protection ca-
pacity at most . Let the graph have a Hamiltonian circuit. We
set for all links in the Hamiltonian circuit,
and we set and for all the other links . Note
that this solution has total protection capacity exactly .
Each link in the Hamiltonian circuit has a single bypass tunnel,
which is the Hamiltonian path obtained by removing from the
Hamiltonian circuit.

A link which is not on the Hamiltonian circuit has two
bypass tunnels, corresponding to the two paths connecting node

to in the Hamiltonian circuit. Thus, the bypass tunnels only
use the links of the Hamiltonian circuit, each of which has one
unit of capacity reserved for protection. It is easy to see that this
is a feasible solution.

The proof in the other direction works as follows. Let the
optimal solution of the reduced instance reserve at most
total protection capacity. Note that by Corollary 3, any solution
to this instance must use at least protection capacity.
Hence, the optimal solution must use exactly protection
capacity. Consider any link with in the optimal
solution. Let . Then it must be the case that no other
link incident on node or node can have in this
solution. This is because, as shown in the proof of Lemma 2, for
every node we have , where is the
total protection capacity on the links incident on node (links
in). Thus, if some link , other than link , incident
on say node has , then . In that case,
the total protection capacity reserved by the solution, which is
shown in the proof of Lemma 2 as at least , would
be strictly greater than , leading to a contradiction. Thus,
neither node or node can have another link incident on it,
with . A consequence of this is that no bypass tunnel,
in the optimal solution, can contain a link for which .
This is because a bypass tunnel must have at least two links,
each with strictly positive protection capacity reserved on it.
Thus, a link with is not useful to any solution,
implying that by setting , we can decrease the cost of
the optimal solution, while not changing its feasibility. Thus,
there must not exist any links with in the optimal
solution.

A similar argument shows that, in the optimal solution,
for any node there are at most two links in with

. Let be the set of links with in the
optimal solution. Since there are no links with in
the optimal solution, we must have that the number of links
in is exactly . Note that the graph formed by the links
in is connected, since all the bypass tunnels must only
use links in . Therefore, if it has two or more connected
components, say and , then since the original graph is
connected, there must exist a link which is not in , with one
endpoint in and the other endpoint in with .
Note that link is not protected in the optimal solution, and
hence such an does not exist. Moreover, the graph formed
by links in is 2-edge connected. This is because, otherwise
the working traffic (of one unit) on the failure of a cut link

of cannot be routed over the protection capacities on
the surviving links (remaining links in).

The only possible solution with these properties for (links
and 2-edge connected) is that the links of must form a Hamil-
tonian circuit. Thus, the given graph must have a Hamiltonian
circuit.

VI. ALGORITHMS FOR MULTIPLE LINK FAILURES

There has been some work on survivability of networks
against multiple link failures [3], [4], [18], [25], [30]. So
far, we have presented our results for the basic version of
the problem, where we want to protect against a single link
failure. However, our results also extend to the case where we
want to protect against multiple link failures. We now show
how to extend our algorithms and their analysis to deal with

link failures. We start with the algorithm based on the
spanning tree construction (Section IV-A). Let
denote an ordering of the links in non-increasing order of their
capacities. Thus, for , we have . The new
algorithm works very much the same way as the algorithm
for the single link failure except that it computes multiple

different acyclic graphs (forests) , instead of
just a single acyclic graph , such that no pair of graphs
and share any links. Initially, each of the acyclic graphs
consists of only the nodes of and has no links. At step
, link is considered for the graphs in that

order. Link is added to the first graph (if one exists) in
which link can be added without creating a cycle. After

steps the algorithm sets for all links in the
graphs and sets for all other links.
Algorithm 3 describes the algorithm.

Algorithm 3: Algorithm MULTI-TREE

Let be the links sorted in decreasing order
of capacities.

Let for all

for

for

408 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

if (does not form a cycle)

break;

if (was not added to any of)

We first show that the algorithm finds a feasible solution.
Consider a failure of links . Without loss of
generality assume that none of the links is in
any of the acyclic graphs and each of the re-
maining links is in one of . Note
that there must be at least acyclic graphs such that the set of
links are not in any of these graphs. Again without
loss of generality let these graphs be for some

. Consider link for . Note that there
must be a path joining the end nodes and in , because
otherwise while considering link the algorithm must have
added it to the graph . By construction all the links on this path

have all of their capacity reserved for protection and this ca-
pacity is at least . Since does not have any failed link,
there are no failed links on path . In other words, none of the
links in are on . Hence, path can serve as a
bypass tunnel for link . Thus, edge disjoint bypass tunnels for
all links can be found. Note that since all links
in have zero working capacity, the working traffic
on these links is zero, and hence no bypass tunnels are needed
for them. Thus, all the working traffic effected by the failure can
be safely rerouted.

In general, for any link that is not in any of ,
one can find edge disjoint bypass tunnels , such that tunnel

consists of only edges from graph . In addition,
for the failure of any links where the
links are not in any of and the
remaining links are in some , there exists one by-
pass tunnel per from the set such that these bypass tunnels
are edge disjoint and they can carry the working traffic on the
corresponding failed link .

Time Complexity: The algorithm maintains disjoint
forests and its running time is equivalent to running in-
stances of Kruskal’s algorithm. Hence, the time complexity is

.
We now show that the extended algorithm is also a 2-approx-

imation algorithm for protecting against any failures. We

first extend the lower bound in Section V-A (Lemma 2). As be-
fore, let denote the set of links incident on node . Let

denote the degree of node . Let denote a set of
largest capacity links in . If , contains all
links of . Let be a node capacity function defined as

: the total capacity of all links in the set
.

Lemma 8: Any solution must reserve at least
total protection capacity on the links of the network.

Proof: Consider a node . Let . Consider the
links in . On their failure, the working traffic on these
links must be carried over the protection capacity on the re-

maining links. Let and be the total working
and protection capacity on these links, respectively. Note that

. Thus, the total protection capacity on the re-
maining links is at least . Hence, the total protection
capacity on the links incident on node is at least

. Now let . None of these links must carry any
working traffic since all these links may fail together and on
failure of all these links the working traffic on these links cannot
be rerouted. Hence, the total protection capacity on the links in-
cident on node is at least . Adding this for all nodes and
noting that each link’s protection capacity is counted twice in
the sum, we get that the total protection capacity on the links of
the network must be at least to protect against
link failure.

Next, we show that the total capacity of the links in the graphs
is at most . Note that since only

these links have capacity reserved for protection by the algo-
rithm, this would imply that the algorithm reserves no more than

total protection capacity, which is at most twice
the total protection capacity reserved by any optimal solution.
We denote the set of links in graph by .

Claim 9: The total capacity of the links in is at most
.

Proof: The proof uses a charging argument where the ca-
pacity of each link in is charged to at least one vertex such
that the total capacity charged to each vertex is at most .
This thus shows that the total capacity of all links in is at
most

Consider acyclic graph . We consider a connected com-
ponent of . Note that forms a tree. Let be the
set of links of restricted to this connected component.
Let be the set of nodes spanned by the tree . We
now invoke the charging scheme in the proof of Lemma 4
where it is shown that the capacity of the links in can be
charged to the vertices in such that each vertex in is
charged at most once for the capacity of a distinct link in .
In other words, it is shown that the charging guarantees that
the capacity of each link in is charged to exactly
one vertex on which it is incident (or) and each vertex
is charged at most once for one link in .

This charging is repeated for each connected component of
. Since the connected components are disjoint, the charging

guarantees that the capacity of each link in is charged
to exactly one vertex on which it is incident (or) and each
vertex in is charged at most once for one of its incident links
in .

ALICHERRY AND BHATIA: SIMPLE PRE-PROVISIONING SCHEME TO ENABLE FAST RESTORATION 409

The charging is repeated for each . Thus, overall the
charging guarantees that the capacity of each link in

is charged to at least one vertex in and each vertex in
is charged for the capacities of at most distinct link in

which are incident on it. However, note that is at least the
total capacity of any (at most) edges incident on . Thus, the
total charge on any node is at most . Since the capacity
of every link in is charged to some node , we have
the total capacity of all links in is at most .

Remark: It is possible that the algorithm described above
may yield a degenerate solution in which all edges are assigned
zero working capacity (if the acyclic graphs in-
clude all the edges). This may happen for instance if the given
graph lacks sufficient connectivity for a non-degenerate solution
to exist (for example, if the given graph has no cycles, then no
working traffic can be protected even for). However, this
may also happen even for connected graphs. Although,
for such graphs it must be the case that in any feasible solution
at least half of the total edge capacities must be dedicated for
protection (since the algorithm is a 2-approximation). For such
graphs, alternative non-degenerative solutions may be found by
other means. For example, for such graphs with uniform edge
capacity a feasible (and optimal) solution is to set each edge’s
working capacity to half its total capacity. Such alternative so-
lutions are left for future study.

The algorithm based on 2-edge connected construction
(Section IV-B) naturally extends to deal with link
failures. Since the extension mirrors the extension for the
algorithm based on the spanning tree construction, we omit the
details. Similarly, the proof for the 2-approximation ratio for
the extended algorithm is along the line of the proof given in
Section V-C and is thus omitted.

VII. IMPLEMENTATION ISSUES

So far, we have looked at the problem of computing the initial
set of protection capacities and bypass tunnels, to be pre-provi-
sioned in a network at startup. These initial set of values may be
pre-provisioned in the network by a management system. Sub-
sequent updates to these, to deal with changes in topology, may
be performed by the network in conjunction with the manage-
ment system. To this end, the reserved link protection capacities
may be advertised as part of the LSA. In order to ensure there is
no over-subscription of protection bandwidth, the bypass tun-
nels may be pre-provisioned, in the network, with zero band-
width each [29].

Next, we consider topology changes and describe our al-
gorithm to deal with them. The algorithm computes updated
protection capacities and bypass tunnels following a topology
change. We assume a central server model for computing the
updated values, where the server is implemented as a Label
Switch Router (LSR) in the MPLS network [29]. The algorithm
can be modified to operate in a distributed implementation.
However, for ease of exposition we will assume a centralized
model.

The LSR server monitors the LSA updates from the network
to identify changes in topology. Following a topology change,
it re-computes the new solution and updates the network with
the new solution. For ease of presentation, we only describe the

high level ideas, for two basic topology update operations: the
addition of a link and the deletion of a link. In the following,
we will assume and single link failure. The case when
at most one bypass tunnel is allowed per link and multiple link
failures can be similarly handled.

When a new link is added, the only update to
the solution is the protection capacity and the bypass tunnel for
link . The amount of protection capacity reserved on depends
on how much protection capacity is currently available between
nodes and in the network. This can be determined using a
max-flow computation on the protection capacities of the links
of the network. Depending on how much protection capacity is
available, the algorithm computes a lower bound on the amount
of protection capacity to be reserved on the link. Having deter-
mined a lower bound on the protection capacity for link , and
hence an upper bound on the working capacity of link , the al-
gorithm attempts to maximize the amount of working capacity
(up to the upper bound) that can be assigned to link without
changing any other links protection or working capacity. To test
whether a given amount of working capacity can be assigned
to the link, the algorithm solves a max-flow problem on an aux-
iliary unit capacity graph. In addition to determining if is fea-
sible, the max-flow computation also yields the (at most two)
bypass tunnels for link when is used as working capacity
on link . Next, to maximize the working capacity that can be
assigned to link (up to the upper bound), the algorithm uses a
binary search on the range of allowed values for .

Next, we consider the case when a link is deleted from the
network. The easy case is when none of the bypass tunnels of
any of the surviving links contains link . In this case, there is
nothing to be done. However, note that even if a bypass tunnel of
link contains link , link may still be protected in the new
network, since there may exist another bypass tunnel for link
using only the protection capacities of the surviving links. In this
case, only the bypass tunnels for link need to be updated. This
can be done easily by considering to be a newly added link to
the new network and then by using the procedure described ear-
lier for the link addition case to determine whether link can
be assigned a working capacity of . Note that this way,
the new bypass tunnels for link can also be computed. Now
consider the case when there is at least one link that is not pro-
tected in the new network. In this case, the protection capacities
of other links have to be updated as well. Note that the amount
of slack on a link, for the protection capacity, is the difference
of its working capacity and the amount of working traffic cur-
rently being carried by the link. This gives an upper bound on
how much the link’s protection capacity can be increased. The
algorithm for updating the links protection capacity operates in
two phases. In the first phase, all the link protection capacities
are uniformly increased (including link) to their upper bound
until all links are protected. In the second phase, the algo-
rithm lowers the protection capacity of those links that have a
slack in their protection capacity. Finally, the algorithm updates
the bypass tunnels for all the links.

VIII. SIMULATION RESULTS

To measure the performance of our algorithms, we did ex-
tensive simulations using various real and simulated networks.

410 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

Fig. 3. ARPANET network.

Fig. 4. NJ LATA network.

Here we only present the results for four standard networks for
single link failure. However, the presented results are typical
of all our simulations. The results are presented for ARPANET
(Fig. 3), NJ LATA (Fig. 4), National (Fig. 5) and the Euro-
pean Cost239 (Fig. 6) networks. We ran our algorithms on these
networks both with uniform link capacities and with randomly
chosen non-uniform link capacities. In the non-uniform case the
link capacities range from 20 to 40. We use, as a benchmark, the
solution to a linear program that models our problem without
the constraint on the number of bypass tunnels or their min-
imum bandwidth requirement. Note that since the linear pro-
gram models a problem with fewer constraints, its optimal so-
lution is a lower bound on the optimal solution to our problem.
Our main observations are summarized in Table I. As an ex-
ample, we describe these results for the NJ LATA network. This
network has 11 nodes (column II) and 23 links (column III). For
the uniform link capacity case, we normalize the results so that
each link’s capacity is exactly one unit. In this case, the LP (a
lower bound on the optimal solution) reserves 6 (column VII)
out of the 23 units of total link capacity for protection. The algo-
rithm based on the 2-edge connected subgraph, when optimized
with the DFS tree approach, finds an optimal solution of total

Fig. 5. National network.

Fig. 6. European Cost239 network.

protection capacity 6 (column VI) units, which is 26% of the
total link capacity. Recall that any ring-based approach (e.g.,
SONET) would reserve at least 50% of the capacity for protec-
tion. The other non-optimized algorithm based on the 2-edge
connected subgraph also obtains an optimal solution (column
V). The tree algorithm reserves 10 (column IV) units of pro-
tection capacity (43.5% of the total link capacity and at most
1.67 times the amount reserved by the optimal solution). For
non-uniform capacities, the optimal solution reserves at least
188 (column XI) out of a total 610 (column VIII) units of ca-
pacity for protection. The algorithm based on the 2-edge con-
nected graph finds a solution which reserves 236 (column X)
units of protection capacity (which is at most 1.26 times the op-
timal solution). For the tree-based algorithm, this number is 306
(column IX), which is at most 1.63 times the optimal solution.
In summary, for the uniform capacity case, the optimized 2-edge
algorithm has a solution comparable to the optimal algorithm.
The 2-edge algorithm, in general, finds a solution that is at most
1.5 times the optimal solution. The tree-based algorithm finds a
solution that ranges approximately between 1.6 to 1.9 times the
optimal solution.

Effect of hop length: In the algorithms and simulation results
presented in this paper, we do not put any restriction on the
hop length of the backup tunnels. In the simulation, some of the
paths were found to have hop length of 6 or more. The savings
were less when we restricted the path length. For example, in
NJ LATA network, LP gave a protection capacity of 6 for the
uniform case, but gave a protection capacity of 7.3, 6.4, and 6.3

ALICHERRY AND BHATIA: SIMPLE PRE-PROVISIONING SCHEME TO ENABLE FAST RESTORATION 411

TABLE I
RESULTS FROM REAL-LIFE NETWORKS

for hop limit restriction of 4, 5, and 6, respectively. For studying
the effect of hop length on the protection capacity, algorithms
that restrict the hop length need to be developed. This is left for
future study.

Comparison With Existing Work: We now compare the per-
formance of our algorithms with those of other heuristics avail-
able in the literature for link-restoration-based protection. We
selected existing works that benchmark the performance of their
heuristic on the same topologies as used in this paper. For ref-
erence purposes we use the “Normalized Spare Capacity Cost
(NC)” measure from [21]. This is defined as the ratio of the
spare (protection) capacity to the working capacity expressed
in percentage. For example, for the NJ LATA network, the NC
values for the uniform case for the tree and 2-edge algorithms
and the LP are 76.9%, 35.3%, and 35.3%, respectively. For the
non-uniform case, the corresponding values are 99.34%, 63.1%,
and 44.5%, respectively.

In the work of Herzberg et al. [10], heuristics are developed
for minimizing the spare capacity needed for guaranteeing
link restoration when hop bounds are imposed on the restora-
tion routes. Their work differs from ours in the following
respect. First, they do not impose any bounds on the number
of restoration paths on which the traffic can be rerouted upon
a link failure. Second, in their model the working capacity is
pre-determined and links have no capacity bound. Rather, they
assume a cost per unit of spare capacity per link. Finally, they
impose bounds on the number of hops in the restoration paths.
Herzberg et al. [10] used the NJ LATA network for evaluating
the performance of their heuristic. For this network, for 4 hop
bounds or more, their heuristic requires solving an LP with at
least 500 constraints and 500 variables. For hop bound of 4 or
more, their heuristic settles for 625 units of spare protection
capacity for 1252 units of working capacity, giving an NC value
of 49.9%.

Murakami and Kim [21] consider the problem of optimizing
capacity (working and restoration) and flow assignment for a
given traffic demand based on link and path restoration. They
formulate the problem as a large-scale linear program and de-
velop special mechanisms to deal with its computational in-
tractability. As in [10], no bounds are imposed on the number of
restoration paths on which the traffic can be rerouted upon a link
failure. Murakami and Kim [21] also use the NJ LATA network
for evaluating the performance of their heuristics. They vary the
traffic demand from uniform to non-uniform to random and re-
port the NC values for their different heuristics. The NC values
are observed in the range 47%–60%.

It follows that our heuristics have comparable performance
to the heuristics in [10] and [21]. These heuristics are based
on solving LPs and quickly become computationally intractable

[21]. The heuristics given in this paper are combinatorial in na-
ture and have low computational complexity. In addition, the
heuristics given in this paper can be used to control the number
of restoration paths used by rerouted traffic.

IX. EXTENSIONS AND FUTURE WORK

Note that our scheme is mainly designed for dealing with
link failures. However, node and SRLG (shared risk link group)
failures are also a common occurrence, and fast reroute-based
schemes to protect against these failures are also very appealing.
We would like to extend our algorithms to node and SRLG
failures. Quality of service is becoming important to support
real-time services. For these delay-sensitive services, the net-
work latency must be kept small by limiting the number of hops
for both the working traffic and the rerouted traffic. This requires
that some bounds be imposed on the number of hops for the
bypass tunnels. Extending our scheme to be able to limit the
number of hops for the bypass tunnels is therefore an important
future direction.

X. CONCLUSION

Pre-provisioning of protection capacities and bypass tun-
nels results in an efficient implementation of guaranteed fast
(local) reroute-based shared restoration in mesh networks. We
presented efficient approximation algorithms for minimizing
the amount of pre-provisioned protection capacities, while
supporting at most two bypass tunnels per link for guaranteed
fast (local) reroute. With simulations on standard networks,
we showed that our algorithms work well in practice. Finally,
we also showed how topology updates can be handled in our
framework.

REFERENCES

[1] L. Calvignac et al., “A method for an optimized online placement
of MPLS bypass tunnels,” Internet Draft, draft-leroux-mpls-by-
pass-placement-00.txt, 2002.

[2] C. Chekuri, A. Gupta, A. Kumar, J. Naor, and D. Raz, “Building edge-
failure resilient networks,” in Proc. Ninth Conf. Integer Programming
and Combinatorial Optimization (IPCO) 2002, pp. 439–456.

[3] H. Choi, S. Subramaniam, and H. Choi, “On double-link failure re-
covery in WDM optical networks,” in Proc. IEEE INFOCOM 2002,
pp. 808–816.

[4] M. Clouqueur and W. D. Grover, “Availability analysis of span-restor-
able mesh networks,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp.
810–821, May 2002.

[5] B. S. Davie and Y. Rekhter, MPLS: Technology and Applications.
San Mateo, CA: Morgan Kaufmann, 2000.

[6] G. Ellinas and T. E. Stern, “Automatic protection switching for link
failures in optical networks with bi-directional links,” in Proc. IEEE
Globecom’96, pp. 152–156.

412 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 3, JUNE 2007

[7] W. D. Grover, “Case studies of survivable ring, mesh and mesh-arc
hybrid networks,” in Proc. IEEE Globecom’92, pp. 633–638.

[8] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed precon-
figuration: Ring-like speed with mesh-like capacity for self-planning
network reconfiguration,” in Proc. ICC, 1998, pp. 537–543.

[9] D. Haskin and R. Krishnan, “A method for setting an alternative label
switched path to handle fast reroute,” Internet Draft, draft-haskin-mpls-
fast-reroute-05.txt, 2000.

[10] M. Herzberg, S. J. Bye, and A. Utano, “The hop-limit approach for
spare-capacity assignment in survivable networks,” IEEE/ACM Trans.
Netw., vol. 3, no. 6, pp. 775–784, Dec. 1995.

[11] R. R. Iraschko, M. H. MacGregor, and W. D. Grover, “Optimal ca-
pacity placement for path restoration in STM or ATM mesh-survivable
networks,” IEEE/ACM Trans. Netw., vol. 6, no. 3, pp. 325–336, Jun.
1998.

[12] F. Jaeger, “A survey of the double cycle cover conjecture,” in Cycles
in Graphs, Annals of Discrete Mathematics 115. Amsterdam, The
Netherlands: North-Holland, 1985.

[13] S. Kini et al., “Shared backup label switched path restoration,” Internet
Draft, draft-kini-restoration-shared-backup-01.txt, 2001.

[14] M. S. Kodialam and T. V. Lakshman, “Dynamic routing of bandwidth
guaranteed tunnels with restoration,” in Proc. IEEE INFOCOM 2000,
pp. 902–911.

[15] M. S. Kodialam and T. V. Lakshman, “Dynamic routing of locally re-
storable bandwidth guaranteed tunnels using aggregated link usage in-
formation,” in Proc. IEEE INFOCOM 2001, pp. 376–385.

[16] M. Kodialam, T. V. Lakshman, and S. Sengupta, “A simple traffic inde-
pendent scheme for enabling restoration oblivious routing of resilient
connections,” in Proc. INFOCOM 2004, pp. 2329–2340.

[17] S. S. Lumetta and M. Medard, “Towards a deeper understanding of link
restoration algorithms for mesh networks,” in Proc. IEEE INFOCOM
2001, pp. 367–375.

[18] S. S. Lumetta, M. Medard, and T. Yung-Ching, “Capacity versus ro-
bustness: A tradeoff for link restoration in mesh networks,” J. Lightw.
Technol., vol. 18, no. 12, pp. 1765–1775, Dec. 2000.

[19] M. Medard, S. G. Finn, and R. A. Barry, “WDM loop-back recovery
in mesh networks,” in Proc. IEEE INFOCOM 1999, pp. 752–759.

[20] M. Medard, R. A. Barry, S. G. Finn, W. He, and S. Lumetta, “General-
ized loop-back recovery in optical mesh networks,” IEEE/ACM Trans.
Netw., vol. 10, no. 1, pp. 153–164, Feb. 2002.

[21] K. Murakami and H. S. Kim, “Optimal capacity and flow assignment
for self-healing ATM network based on line and end-to-end restora-
tion,” IEEE/ACM Trans. Netw., vol. 6, no. 2, pp. 207–221, Apr. 1998.

[22] P. Pan et al., “Fast reroute techniques in RSVP-TE,” Internet Draft,
draft-ietf-mpls-rsvp-lsp-fastreroute-02.txt, 2003.

[23] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable
WDM mesh networks,” J. Lightw. Technol., vol. 21, no. 4, pp.
870–883, Apr. 2003.

[24] D. A. Schupke, “The tradeoff between the number of deployed p-cycles
and the survivability to dual fiber duct failures,” in Proc. ICC, 2003, pp.
1428–1432.

[25] D. A. Schupke, A. Autenrieth, and T. Fischer, “Survivability of mul-
tiple fiber duct failures,” presented at the 3rd Int. Workshop on the De-
sign of Reliable Communication Networks (DRCN), Budapest, Hun-
gary, Oct. 2001.

[26] P. D. Seymour, “Sums of circuits,” in Graph Theory and Related
Topics, J. A. Bondy and U. R. S. Murty, Eds. San Diego, CA:
Academic Press, 1979, pp. 341–355.

[27] J. Shi and J. P. Fonseka, “Hierarchical self-healing rings,” IEEE/ACM
Trans. Netw., vol. 3, no. 12, pp. 690–697, Dec. 1995.

[28] C. Thomassen, “On the complexity of finding a minimum cycle cover
of a graph,” SIAM J. Comput., vol. 26, no. 3, pp. 675–677, Jun. 1997.

[29] J. P. Vasseur et al., “Traffic engineering fast reroute: Bypass tunnel path
computation for bandwidth protection,” Internet Draft, draft-vasseur-
mpls-backup-computation-02.txt, 2003.

[30] J. Zhang, K. Zhu, and B. Mukherjee, “A comprehensive study on
backup reprovisioning to remedy the effect of multiple-link failures in
WDM mesh networks,” in Proc. IEEE ICC, 2004, pp. 1765–1775.

Mansoor Alicherry received the B.Tech. degree
from Regional Engineering College, Calicut, India,
in 1997, and the M.E. degree from the Indian Insti-
tute of Science, Bangalore, India, in 2000, both in
computer science.

He is currently a Member of Technical Staff at the
Network Software Research Department, Bell Labo-
ratories, Lucent Technologies, Murray Hill, NJ. His
interests are primarily in network security and net-
work design algorithms.

Randeep Bhatia recieved the B.Tech. degree in computer science and engi-
neering from Indian Institute of Technology, Delhi, India, the M.S. degree in
mathematics and computer science from the University of Illinois at Chicago,
and the Ph.D. degree in computer science from the University of Maryland, Col-
lege Park.

He is with Bell Laboratories, Lucent Technologies, Murray Hill, NJ, working
on network design, traffic engineering, and scheduling algorithms. His current
research interests are in the area of QoS for emerging multimedia services in
next-generation data networks.

