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Abstract: The current work was performed to construct a novel electrochemical sensing system for
determination of sunset yellow via the modification of screen-printed graphite electrode modified
with hierarchical flower-like NiCo2O4 nanoplates (NiCo2O4/SPGE). The prepared material (hier-
archical flower-like NiCo2O4 nanoplates) was analyzed by diverse microscopic and spectroscopic
approaches for the crystallinity, composition, and morphology. Chronoamperometry, differential
pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for determina-
tion of the electrochemical behavior of sunset yellow. The as-fabricated sensor had appreciable
electro-catalytic performance and current sensitivity in detecting the sunset yellow. There were some
advantages for NiCo2O4/SPGE under the optimized circumstances of sunset yellow determination,
including a broad dynamic linear between 0.02 and 145.0 µM, high sensitivity of 0.67 µA/(µM.cm2),
and a narrow limit of detection of 0.008 µM. The practical applicability of the proposed sensor was
verified by determining the sunset yellow in real matrices, with satisfactory recoveries.

Keywords: sunset yellow; flower-like NiCo2O4 nanoplates; voltammetry; modified electrode

1. Introduction

Food additives applied in processed foodstuff can normally improve some features
such as flavor, appearance, color, taste, nutritive value, preservation, and texture [1]. Color
has always encouraged consumers to buy a food product, usually because of the mere fact
that it is visual at the first sight. A buyer can be affected negatively or positively by colors.
In the food industry, natural dyes in food products can be intensified or preserved using
food dyes. The pharmaceutical industry also exploits edible coloring to create a different
look in their products. The edible colors can be natural or synthetic. Natural dyes originate
from animal or plant sources, by extraction through physical techniques such as riboflavin.
The natural color of the edible products may be lost during various stages including heating,
processing, storage, and distribution. Synthetic dyes are composed of artificially synthe-
sized organic and inorganic compounds. Among these, a special place in food industry has
been established for the synthetic colorants as good alternatives to natural dyes because of
appreciable merits such as long-lasting stability, easy coloring, minimal microbiological
and chemical or physical contamination [2,3]. Azo dyes with a broad spectrum of colors
owing to a unique chemical structure account for about 65% of the commercial dye market
around the world [4,5]. Disodium 2-hydroxy-1-(4-sulphonatophenylazo) naphthalene-6-
sulphonate, or sunset yellow, as a widely used synthetic azo dye can be found in various
beverages, foods, medicines, colorings, and cosmetics, which is cost-effective with stable
structure and bright color [6–8]. The allowance limit of sunset yellow as food additive must
be <50 ppm [9]. Hence, doses exceeding this limit can be associated with complications
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such as kidney failures, attention deficit hyperactivity disorder (ADHD), hepatocellular
damage, cancers, and headache [10,11]. Accordingly, there have been various analytical ap-
proaches for sensing and quantifying the sunset yellow in food matrices, some of which are
coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance
liquid chromatography (HPLC) [12], reversed-phase ion pair high-performance liquid
chromatography [13], spectrophotometry [14], HPLC/mass spectrometry (HPLC–MS) [15],
ion-pair liquid chromatography with on-line photodiode-array and electrospray mass
spectrometry [16], capillary electrophoresis [17], and high-performance thin-layer chro-
matographic combined with image processing of scanned chromatograms [18]. However,
their use is often limited due to reasons such as being expensive, time-consuming, or
requiring tedious pretreatment.

Among these, electrochemical analysis has had special place in determining the
bioactive molecules, nutrients, drugs, contaminants, and food additives owing to cost-
effectiveness, facile use, rapidity, high sensitivity and selectivity [19–33], thereby making
them a good alternative to the above-mentioned techniques. There are several conventional
solids (such as glassy carbon, carbon paste, and gold) or disposable electrodes (such as
screen-printed electrodes or SPEs) to construct the electrochemical sensors. Special at-
tention in the field of electroanalytical research has recently been drawn to SPEs in the
manufacture of (bio) sensors. The SPEs are appropriate electrochemical transducers be-
cause of high sensitivity, ease of use, and cost-effective properties when comparing with
conventional diagnostics [34–38]. Such devices possess a miniaturized system consist-
ing of the working, auxiliary, and reference electrodes. Hence, there is a need for the
small volume of solution for electrochemical determination, which is indeed interesting
in terms of green chemistry [39,40]. Chemically modified electrodes (CMEs) are the result
of the intentional fixation of a modifying agent on the surface of electrode by various
physical and chemical methods [41,42]. Many studies have shown that improvements
in the sensitivity and selectivity of electrochemical sensors are achieved due to modifica-
tions of the electrode surface [43,44]. Nanomaterial-supported electrochemical sensing
systems have been considered by many researchers due to their capability for carrying out
the electrochemical analysis of diverse analytes [45]. The electrode surface modification
using diverse nanostructures can enhance the analyte-specific electrochemical reactivity
and sensitivity [46,47].

Nanomaterials and their applications in various fields have become a distinct and
active area of scientific and technological developments over the recent years [48–56]. In
this regard, the metal oxide nanoparticles are applied extensively in some fields such as
energy production, food technology and preservative, medicine, catalysis and electrocatal-
ysis because of intrinsic redox features and morphological and structural flexibility [57–61].
One of the best electrode modifiers is binary transition-metal oxide because of superior
resistance to deactivation, appreciable selectivity, and high catalytic performance [62,63];
for example, NiCo2O4 nanostructures are mixed-metal oxides successful for sensors owing
to electrochemical catalytic performance, high biocompatibility, commendable electronic
conductivity, non-toxicity, and low cost. NiCo2O4 has greater electronic conductivity
and electrochemical performance when comparing with cobalt and nickel oxides. The
synergic impact of nickel and cobalt elements in NiCo2O4 provides a richer diversity of
redox reactions when comparing with the monometallic NiO and Co3O4 [64–66]. Accord-
ingly, NiCo2O4 is considered as an electrochemical material but still suffers from some
problems with improvement in a small surface area, pore size, and intrinsically poor
electro-conductivity [67]. Such bottlenecks can be circumvented by using materials based
on two-dimensional or sheet-like morphology owing to the merits associated with large
pore size, high surface area, short paths, and fast reaction kinetics for redox process [68,69].
Thus, 2D or sheet-like NiCo2O4 can serve as an electrode material for the fabrication of
electrochemical sensors.

The current work was performed to fabricate hierarchical flower-like NiCo2O4 nanoplates
by a facile method and to characterize their structure and morphology by diverse techniques.
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Then, the as-produced nanoplates were used to modify the SPGE surface to construct a new
sunset yellow sensor (NiCo2O4/SPGE). The resulting modified electrode (NiCo2O4/SPGE)
had a great sensitivity towards the sunset yellow, possessing a narrow limit of detection
(LOD) and a broad linear range. The analytical performance and practical applicability of
proposed sensor was determined by sensing sunset yellow in real food specimens.

2. Experimental
2.1. Equipments

A Metrohm Autolab PGSTAT 320N Potentiostat/Galvanostat Analyzer (Herisau, Switzerland)
with GPES (General Purpose Electrochemical System-version 4.9) software was applied
for all electrochemical determinations at ambient temperature. Cyclic voltammetry (CV),
Chronoamperometry (CA), differential pulse voltammetry (DPV) and linear sweep voltam-
metry (LSV) were employed to characterize the electro-analytical performance of the
modified electrode toward sunset yellow. The electrochemical sensors were prepared by
DRP-110 SPEs (DropSens, Oviedo, Spain) including a silver pseudo-reference electrode,
graphite working electrode, and graphite auxiliary electrode. A Metrohm 713 pH-meter
with glass electrode (Metrohm AG, Herisau, Switzerland) was used to determine and adjust
the pH of the solution.

A Panalytical X’Pert Pro X-ray diffractometer (Almelo, The Netherlands) apply-
ing a Cu/Kα radiation (λ:1.54 Å) was used for X-ray diffraction (XRD) analysis and a
Bruker Tensor II spectrometer (Bruker, Karlsruhe, Germany) was employed to capture the
Fourier transform-infrared (FT-IR) spectra. A MIRA3 scanning electron microscope (Tescan,
Brno, Czech Republic) coupled with an X-ray spectroscopy (EDS) detector was utilized for
field emission-scanning electron microscopy (FE-SEM) images and elemental analysis.

2.2. Solvents and Chemicals

All solvents and chemicals applied in our protocol had analytical grade belonging to
Merck and Sigma-Aldrich. Phosphate buffer solution (PBS) was prepared by phosphoric
acid and adjusted by NaOH to the desired pH value.

2.3. Preparation of Hierarchical Flower-like NiCo2O4 Nanoplates

The protocol proposed by Chu et al., with slight modification, was followed to con-
struct hierarchical flower-like NiCo2O4 nanoplates [70]. Thus, Ni(NO3)26H2O (0.5 mmol,
0.145 gr), Co(NO3)26H2O (1 mmol, 0.291 gr), NH4F (3 mmol, 0.111 gr), and urea (7.5 mmol,
0.45 gr) were dispersed in deionized water (40 mL) while stirring for 40 min until reaching
a clear pink solution, followed by placing in a Teflon-lined stainless steel autoclave for three
hours at 120 ◦C. After cooling down to the laboratory temperature, the collected precipitate
was rinsed thoroughly with deionized water and oven-dried for 12 h at 65 ◦C. At last, the
obtained product was annealed at 350 ◦C for 150 min.

2.4. Preparation of the NiCo2O4/SPGE Sensor

A drop-casting technique was followed to fabricate the NiCo2O4/SPGE (Scheme 1).
Thus, a certain amount of as-prepared flower-like NiCo2O4 nanoplates (1 mg) was sub-
sequently dispersed in deionized water (1 mL) under 20-min ultra-sonication. Then, the
well-dispersed suspension (5 µL) was coated on the SPGE surface in a dropwise man-
ner and dried at the laboratory temperature. The electrochemical surface areas of the
NiCo2O4/SPGE and the SPGE were obtained by CV using 1 mM K3Fe(CN)6 at various scan
rates. The electro-active surface area of the modified electrode and un-modified electrode
were evaluated by using the Randles–Sevcik equation. The calculated electro-chemical
active surface area is 0.15 cm2, for the NiCo2O4/SPGE and 0.02 cm2 for the bare SPGE.
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Scheme 1. Schematic illustration of NiCo2O4/SPGE-based sunset yellow electrochemical detection.

2.5. Real Sample Preparation

Orange juice and apple juice were purchased from a local market. The fruit juice
samples were centrifuged for 40 min at 400 rpm and then filtered. The obtained juice was
diluted by PBS (pH = 7.0) and then used for real sample analysis. Moreover, the tap water
specimens were filtered prior to analysis using the standard addition method.

3. Results and Discussion
3.1. Characterization of Hierarchical Flower-like NiCo2O4 Nanoplates

The hierarchical flower-like NiCo2O4 nanoplates were explored for structure and
morphology using FE-SEM images (Figure 1). The self-assembly of 2D NiCo2O4 nanoplates
around a center resulted in the formation of hierarchical flower-like NiCo2O4 nanostruc-
tures. The FE-SEM image at high magnification shows the thickness of <60 nm for the
produced nanoplates.

Figure 2 shows the EDS analysis in determining the chemical composition of the
hierarchical flower-like NiCo2O4 nanoplates, the findings of which display Ni, Co, and O
elements present in the structure, with no impurity.

Figure 3 illustrates the XRD pattern to explore the crystal phase of hierarchical flower-
like NiCo2O4 nanoplates. The diffraction peaks at 2θ values (indexed to related plane) of
18.9◦ (111), 31.1◦ (220), 36.6◦ (311), 38.5◦ (222), 44.5◦ (400), 55.2◦ (422), 59.0◦ (511), 64.9◦ (440),
and 77.1◦ (533) corresponded to the JCPDS standard pattern of NiCo2O4 (No. 01-073-1702).
The distinct crystalline nature is evident based on the intense and sharp diffraction peaks.
The absence of extraneous peaks can confirm great purity of as-fabricated NiCo2O4.
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The production of NiCo2O4 was further confirmed via FT-IR spectrum (Figure 4).
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stretching and bending vibrations in the adsorbed H2O [71]. The peaks at 557 and 641 cm−1
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3.2. Electrochemical Characteristics of the Modified Electrode

The electrochemical properties of the modified electrodes were studied by CV in the
presence of [Fe(CN)6]3−/4− (Figure 5). Obviously, a pair of well-shaped and symmetrical
redox peaks occurred at all electrodes, demonstrating that the redox behavior of FeIII/FeII
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corresponded to a quasi-reversible process. At bare SPGE, a pair of relative weak redox
peaks (Ipa = 64 µA; Ipc = −64 µA) appeared at 0.35 and 0.115 V, respectively. After
modification of SPGE by NiCo2O4 nanoplates, the Ipa and Ipc increased to 209 and −209 µA
while the peak separation (∆Ep) decreased from 0.235 to 0.105 V.
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3.3. Influence of pH on Electrochemical Behavior of Sunset Yellow

The electrochemical response of sunset yellow in the 0.1 M PBS adjusted to variable
pH values (2.0 to 9.0) was explored to determine the influence of the electrolyte solution pH
(Figure 6). The results showed that the peak current of sunset yellow oxidation depended
on the pH value, so that it reached a maximum with increasing pH up to 7.0 and then
decreased with further pH values. Hence, the pH value of 7.0 was considered to be the
optimum for subsequent electrochemical determinations (Figure 6, inset). Since the equal
amount of proton and electron participates in the redox process, the electrochemical reaction
of sunset yellow is 1 electron and 1 proton process. Hence, the electrochemical mechanism
of sunset yellow on the NiCo2O4/SPGE can be inferred from Scheme 2.
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Scheme 2. The mechanism of the electrochemical reaction of sunset yellow on the NiCo2O4/SPGE.

3.4. Electrochemical Response of Sunset Yellow at Various Electrodes

The CVs were captured for the sunset yellow (100.0 µM) electrochemical reaction on
the bare SPGE and NiCo2O4-modified SPGE to explore the electrocatalytic performance of
the hierarchical flower-like NiCo2O4 nanoplates (Figure 7). Figure 7 illustrates the weak
oxidation peak on the bare SPGE (Ipa = 3.1 µA), whereas NiCo2O4-modified SPGE had a
significant improvement in the current (Ipa = 10.5 µA). This significant improvement in
the oxidation peak can appear because of the appreciable catalytic impact of hierarchical
flower-like NiCo2O4 nanoplates for the sunset yellow electrochemical reaction.
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3.5. Effect of Scan Rate

The LSVs were captured for the oxidation of sunset yellow (60.0 µM) on the NiCo2O4/SPGE
under variable scan rates (Figure 8). There was an apparent gradual elevation in the oxida-
tion peak when the scan rate ranged from 10 to 300 mV/s. As seen in Figure 8 (Inset), the
anodic peak current (Ipa) had a linear association with the square root of the scan rate (ν1/2).
The regression equation was obtained to be Ipa (µA) = 1.0663 ν1/2 (mV s−1)1/2–1.3594
(R2 = 0.9995), meaning a controlled diffusion process of the sunset yellow oxidation on
the NiCo2O4/SPGE (Figure 8, Inset A). In addition, the variation of the logarithm of the
current as a function of the variation in the logarithm of the scan rate showed a linear
behavior that showed the controlled diffusion process of the sunset yellow oxidation on
the NiCo2O4/SPGE (Figure 8, Inset B).

A Tafel plot (Figure 9 (Inset)) was achieved on the basis of data related to the ris-
ing domain of the current–voltage curve at a low scan rate (10 mV/s) for sunset yellow
(60.0 µM) to explore the rate-determining step. The linearity of E vs. log I plot clarifies the
involvement of electrode process kinetics. The slope from this plot could present the count
of transferred electrons during the rate-determining step. Based on Figure 9 (inset), the
Tafel slope was estimated to be 0.1309 V for the linear domain of the plot. The slope of the
Tafel plot was equal to 2.3RT/n(1−α)F, and the Tafel slope based on Figure 9 (inset) was
estimated to be 0.1309 V for the linear domain of the plot. The Tafel slope value reveals that
the rate-limiting step is the one-electron transfer process, considering a transfer coefficient
(α) of 0.55.
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3.6. Chronoamperometric Analysis

Chronoamperometry was used to explore the sunset yellow catalytic oxidation on
the NiCo2O4/SPGE surface. Chronoamperometric analysis was done for variable sunset
yellow contents on NiCo2O4/SPGE at the working electrode potential of 740 mV. The
chronoamperograms captured for variable sunset yellow contents on the NiCo2O4/SPGE
can be seen in Figure 10. Cottrell’s equation explains the current (I) for electrochemical
reaction of an electroactive material with a D value (diffusion coefficient) under a mass
transport-limited condition. Figure 10A shows a linear relationship of the I value with
t−12 for the oxidation of variable sunset yellow contents. The slopes from the obtained
straight lines were plotted against variable sunset yellow contents (Figure 10B). The plot-
ted slope and Cottrell equation (I = nFAD1/2Cbπ−1/2t−1/2) estimated the D value to be
9.2 × 10−5 cm2/s for sunset yellow. The mean D value in this work is comparable with the
results published in other papers [73,74].
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sunset yellow level.

3.7. DPV Analysis of Sunset Yellow

DPV analysis was done for variable sunset yellow contents to explore the linear
dynamic range, LOD, and sensitivity of the NiCo2O4/SPGE under optimized experimental
circumstances (Figure 11). As expected, the elevation in the sunset yellow level enhanced
the peak current. Figure 11 (Inset) shows a linear behavior of the oxidation peak currents
and variable sunset yellow contents (0.02 µM to 145.0 µM) with the linear regression
equation of Ipa (µA) = 0.1009Csunset yellow+0.4534 (R2 = 0.9999), and the sensitivity of
0.67 µA/(µM.cm2). In the equations of LOD = 3Sb/m and LOQ = 10Sb/m, the Sb stands
for the standard deviation of the response for blank solution, and m for the slope from
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the standard graph. The LOD and LOQ were estimated at 0.008 and 0.024 µM for sunset
yellow determination on NiCo2O4/SPGE.
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Table 1 compares the efficiency of the sunset yellow sensor prepared by the hierarchical
flower-like NiCo2O4 nanoplates-modified SPGE and other reported works [1,75–79].

Table 1. Comparison of the efficiency of the NiCo2O4/SPGE with other reported modified electrodes
for sunset yellow determination.

Electrochemical Sensor Method Linear Range/µM LOD/µM Ref.

Chitosan (CHIT)-graphene (Gr)/glassy carbon electrode (GCE) CV 0.2–100.0 0.066 [1]

Multi-walled carbon nanotubes (MWCNTs)/GCE DPV 0.55–7.0 0.12 [75]

Au nanoparticles (NPs)/carbon paste electrode (CPE) DPV 0.1–2.0 0.03 [76]

Reduced graphene oxide (rGO)-Ni-BTC metal–organic
framework (MOF)/Screen-printedcarbon electrode (SPCE) DPV 0.05–5.0 0.025 [77]

Ionic liquid (IL)-NiFe2O4-rGO/CPE DPV 0.05–30.0 and
30.0–500.0 0.03 [78]

Electrochemically reduced oxide (ErGO)/GCE DPV 0.05–1.0 0.0192 [79]

NiCo2O4/SPGE DPV 0.02–145.0 0.008 This Work

3.8. Repeatability, Reproducibility, and Stability

The NiCo2O4/SPGE was examined for repeatability through the measurement of
the response of 50.0 µM sunset yellow on the surface of the same electrode for 10 times.
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The relative standard deviation (RSD) of 3.4% for the current response of sunset yellow
demonstrates the good repeatability of the proposed electrode.

To test the reproducibility, five NiCo2O4/SPGEs produced by the same procedures
were applied to measure 50.0 µM sunset yellow under identical circumstances; the obtained
RSD of 5.9% meant commendable reproducibility (Figure 12).
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To test the NiCo2O4/SPGE stability, the current responses of 50.0 µM sunset yellow
were measured following 14-day storage of the sensor at ambient temperature. The de-
crease in the peak current of sunset yellow to 95.8% of its original response demonstrated
appreciable stability.

3.9. Interference Studies

The anti-interference of the NiCo2O4/SPGE was evaluated by measuring the DPV
responses of 50.0 µM sunset yellow with diverse interference matrices. The tolerance limit
was defined as the maximum concentration of the interfering substance that caused an
approximately ±5% relative error in the determination. It was found that 200-fold Ca2+,
NH4

+, Mn2+, Al3+, Fe3+, Zn2+, Br−, Mg2+, SO4
2−, and CO3

2− and 20-fold starch, sucrose,
uric acid, glucose, vitamin B6, vitamin B2, dopamine, citric acid, and ascorbic acid had no
effect on the determination of the sunset yellow. Hence, the proposed sensor has a good
selectivity for sunset yellow.

3.10. Analysis of Real Specimens

The practical applicability of NiCo2O4/SPGE was tested by sensing sunset yellow
in orange juice, apple juice, and tap water specimens using the DPV procedure and the
standard addition method. The results can be seen in Table 2. The recovery rate was
between 96.4% and 104.0%, and all RSD values were ≤3.5%. According to the experimental
results, the NiCo2O4/SPGE sensor possessed a high potential for practical applicability.
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Table 2. Voltammetric sensing of sunset yellow in real specimens using NiCo2O4/SPGE. All concen-
trations are in µM (n = 5).

Sample Spiked Found Recovery (%) R.S.D. (%)

Apple Juice

0 2.5 - 3.2
2.0 4.6 102.2 2.7
3.0 5.3 96.4 1.9
4.0 6.4 98.5 2.9
5.0 7.6 101.3 3.0

Orange juice

0 3.8 - 2.7
1.0 4.7 97.9 3.5
2.0 6.0 103.4 3.1
3.0 6.9 101.5 1.7
4.0 7.7 98.7 2.5

Tap Water

0 - - -
5.0 5.1 102.0 2.8
7.5 7.4 98.7 3.4
10.0 10.4 104.0 1.8
12.5 12.4 99.2 2.6

4. Conclusions

The current attempt was made to construct an effective electrochemical sensing system
for detection of sunset yellow via the modification of SPGE with hierarchical flower-like
NiCo2O4 nanoplates (NiCo2O4/SPGE sensor). The proposed sensor was constructed by a
facile and effective drop-casting protocol. Large surface area, high catalytic activity, and
great conductivity of flower-like NiCo2O4 nanoplates provided a good catalytic activity
for the NiCo2O4/SPGE towards the sunset yellow with increased peak current of oxida-
tion and reduced overpotential of oxidation. Electrochemical determinations presented
appreciable performance for the modified electrode in the sunset yellow detection at the
pH value of 7.0. The as-fabricated NiCo2O4/SPGE had outstanding analytical response
for the sunset yellow detection in a broad linearity range from 0.02 µM to 145.0 µM with
a commendable sensitivity of 0.67 µA/(µM.cm2) and the LOD as low as 0.008 µM. The
practical applicability of the proposed sensor was verified by determining sunset yellow
in real matrices, with satisfactory results. The proposed method could be applied to food
quality control, and presents a rapid, inexpensive, and environmental-friendly alternative
to separation methods.
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