
Simple Rational Guidance for Chopping Up Transactions

Dennis Shasha

Courant Institute, New York University

Eric Simon and Patrick Valcluriez

Projet Roclin, INRIA, Roccluencourt

shasha@cs. nyu.eclu, Eric. SimonQinria.fr, Patrich, ValduriezQinria.fr

ABS~RAC~

Chopping transactions into pieces is good for performance

but may lead to non-serializable executions. Many re-
search ers have reacted to this fact by either inventing new

concurrency control mechanisms, weakening serializability,

or both. We adopt a different approach.

We assume a user who

● has only the degree 2 and degree 3 consistency options

offered by the vast majority of conventions] database

systems; and

● knows the set of transactions that ma-v run during a

certain interval (users are likely to Jrave such kn o~vledge

for online or real-time transactional applications).

Given this information, our algorifhm finds the finest par-

fifioning of a set of transactions Tran.Set wifh the fo)lotving

property: if the partitioned transactions execute serializable,

then TranSet executes serializable. This permits users to

o b fain more concurrency while preserving correctness. R+

sides obtaining more inter- transact ion conco rrency, chop-

ping transactions in this wa.v can enhance in tra- transaction

parallelism.

The algorithm is inexpensive, running in O(n x (e + m))

time using a naive implementation where n is the number

of concurrent transactions in fhe interval, e is the number

of edges in the conflict graph among the transactions, and

m is the maximum number of accesses of any transaction.

This makes it feasible to add as a tuning knob to pracfical

S,VSterns. *

1supported by U.S. Office of Naval Research #~OOOl.l-91-J-
1172, U.S. National Science Foundation grants #IRI-8%olww
and #C~R-9103953. Work done while Sbasba was at INRIA.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, end notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republieh, requires a fee

and/or specific permission.

1992 ACM SIG MOD - 6/92/CA, USA
@ 1992 ACM 0-8979 J.522-4/92]OOOS/Q298, a.$~ .50

1 Motivation

The database research literature has many excellent

papers describing new concurrency control methods.

These methods aim to help database management

system designers to build better concurrency control

methods into their systems. However, the fact remains

that the vast majority of commercial database systems

use two phase locking to enforce the highest degree of

isolation (i.e. serializability) and less restrictive locking

methods to enforce lower degrees of isolation (e.g. two

phase locking for write locks, but immediate release of

read locks). So, it is of significant practical interest
to find ways to reduce concurrent contention given just

those mechanisms, as the first author discovered when

writing a book about, database tuning.

Performance consultants and tuning guides give a

simple way: “Shorten transactions or use less restrictive

locking methods whenever you can. Serializability is an

overly strict constraint. in any case. ”

Database administrators and users follow this advice.

The trouble is that problems can then crop up mysteri-

ously into applications previously thought to be correct.

Example 1- The Length of a Transaction

Suppose that an application program processes a
purchase by adding the value of the item to inventory

and subtracting the money paid from cash. The

application specification requires that cash never be

made negative, so the transaction will roll back (i.e.,

undo its effects) if subtracting the money from cash will

cause the cash balance to become negative.

To improve performance, the application designers

divide these two steps into two transactions.

1

2

The first transaction checks to see whether there is

enough cash to pay for the item. If so, the first
transaction adds the value of the item to inventory.

Otherwise, abort the purchase.

The second transaction subtracts the value of the

item from cash.

298

They find that the cash field occasionally became

negative. The following scenario shows why. There is

$100 in cash available when a first application program

begins to execute. The item to be purchased costs $75.

So, the first transaction commits. Then some ot]ler

execution of this application program causes $50 to be

removed from cash. When the first execution of the

program commits its second transaction, cash will be in

deficit by $25.

End of Example 1- The Length of a Transaction

So, dividing the application into two transactions can

result in an inconsistent database state. Once seen,
the problem is obvious, though no amount of sequential

testing would have revealed it. Most concurrent testing

would not have revealed it either, since the problem

occurs rarely.

The above example comes as no surprise to concur-

rency control aficionados. A little more surprising is

how slightly the example must be changed to make ev-

erything work well.

Example 2- Variant on the Length of a Transaction

Suppose that we rearrange the purchase application

to check the cash level and decrement it in the first

step if the decrement won’t make it go negative. In the

second step, we add the value of the item to inventory.

We make each step a transaction:

1

2.

The first transaction checks to see whether there is

enough cash to pay for the item. If so, the first

transaction decrements cash by the price of the item.

Otherwise, abort the purchase.

The second transaction adds the price of the item to

inventory.

Using this scheme, cash will never become negative

and any execution of purchase applications will appear

to execute as if each purchase transaction executed

serially.

End of Example 2

Our goal is to help practitioners shorten lock times
without sacrificing serializability. We will not propose a

new concurrency control algorithm, but will implicitly

assume that two phase locking is used.

Surprisingly, the results are quite strong and compare

favorably with some of the semantic concurrency control

methods proposed elsewhere. The algorithm is efficient.

Given conflict information the algorithm requires time

running in O(n x (e + m)) time using a naive inlplenlen-
tation where n is the number of concurrent transactions

in the interval, e is the number of edges in the conflict

graph among the transactions, and m is the maximum

number of accesses of any transaction.

2 Assumptions

To use this technique, the database user must have

certain knowledge.

● The database system user (here, that means an ad-

●

ministrator or a sophisticated application developer)

can characterize all the transactions that will run in

some interval.

The characterization may be parametrized. For

example, the user may know that some transac-
tions update account balances and branch balances,

whereas others check account balances. However,

the user may not know exactly which accounts or

branches will be updated.

The goal is to achieve the guarantees of full isolation

(degree 3 consistency) — without paying for it.

That is, the user would like either to use degree

2 consistency (i.e. write locks are acquired in a

two phased manner but read locks are released

immediately after use) or to chop transactions into

smaller pieces. The guarantee SI1OUIC1be that the

resulting execution be equivalent to one in which

each original transaction executes in isolation.

If a transaction makes one or more calls to rollback,

the user knows when these occur.

Suppose that the user chops up the code for a

transaction T into two pieces T1 and T2 where the

T1 part executes first. If the Tz part executes a

rollback statement in a given execution after T1

commits, then the modifications done by T1 will still

be reflected in the database. This is not equivalent

to an execution in which T executes a rollback

statement and undoes all its modifications. Thus,

the user should rearrange the code so rollbacks occur

early. We will formalize this intuition below with the

notion of rollback-safety.

If a failure occurs, it is possible to determine which

transactions completed before the failure and which

ones did not. This will permit the user or system to

reexecute those transactions.

Suppose there are n transactions T1, Tz, Tn that
can execute within some interval. Let us assume,

for now, that each such transaction results from a

distinct program. Chopping a transaction will then

consist of modifying the unique program that the

transaction executes. Because of the form of the

chopping algorithm, this assumption will turn out to

have no effect on the result.

A chopptng partitions each T~ into pieces ci, , Ci2, . . . C;&.

That, is, every database access performed by Ti is in ex-

actly one piece.

299

A chopping of a transaction T is said to be rollback-

safe if either T has no rollback statements or all the

rollback statements of T are in its first piece. The first

piece must have the property that all its statements

execute before any other statements of T. (As we will

see, this will prevent a transaction from half-committing

and then rolling back.)

A chopping is said to be rollback-safe if each of its

transactions is rollback-safe.

Two special cases of choppings are of particular

interest:

1.

2.

3.

4.

3

The transaction T is sequential and the pieces are

non-overlapping subsequences of that transaction.

For example, suppose T updates an account balance

and then updates a branch balance. Each update

might become a separate piece, acting as a separate

transaction.

The transaction T operates at degree 2 consistency

in which read locks are released as soon as reads

complete.

In this case, each read by itself constitutes a piece.2

All writes together form a piece (because the locks

for the writes are only released when T completes).

Execution Rules: (for the pieces of a chopping)

When pieces execute, they obey the dependency

order imposed by the transaction program text. 3

Each piece will acquire locks according to the two

phase locking algorithm and will release them when

it ends. It will also commit its changes when it ends.

If a piece is aborted due to a lock conflict, then it

will be resubmitted repeatedly until it commits.

If a piece is aborted due to a rollback statement,

then pieces for that transaction that have not begun

will not execute,

When is a Chopping Correct?

We will characterize the correctness of a chopping with

the aid of an undirected graph having two kinds of

edges:

‘2‘Technic~lY, this needs some qualification. Each read that

doesn’t follow a write on the same data item constitutes a piece.
The reason for the restriction is that if a write(x) precedes a
read(x), then the transact ion will cent inue to hold the lock on

x after the read completes.
3 For example, if the transaction updates account ~ first and

branch balance B second, then the piece that updates account X
should complete before the piece that updates branch balance B

begins.

1.

2.

C edges — C stands for conflict. Two pieces p and p’

from different original transactions conflict if there
is some data item z that both access and at least

one ~odifies.4 In this case, draw an edge between p

and p and label the edge C.

S edges — S stands for sibling. Two pieces p and p’

are s;blings if they come from the same transaction

T. In this case, draw an edge between p and p’ and

label the edge S.

We call the resulting graph the chopping graph. (Note

that no edge can have both an S and a C label.)

We say that a chopping graph has an SC-cycle if it

contains a simple cycle that includes at least one S edge

and at least one C edge.5

We say that a chopping of T1, Tz,.. ., Tn is correct if

any execution of the chopping that obeys the execution

rules is equivalent to some serial execution of the

original transactions.

“Equivalent” is in the sense of the textbook[l]. That

is, every read (resp. write) from every transaction

returns (resp. writes) the same value in the two

executions and the same transactions roll back. Now,
we can prove the following theorem.

Theorem 1: A chopping is correct if it is rollback-safe

and its chopping graph contains no SC-cycle.

PROOF.

The proof requires the properties of a serialization

graph. Formally, a serialization graph is a directed

graph whose nodes are transactions and whose directe~

edges represent ordered conflicts. That is, T + T

if T and T’ both access some data item Z, one of

them modifies z and T accessed z first. Following[l],

if the serialization graph resulting from an execution is

acyclic, then the execution is equivalent to a serial one.

Further the book proves the following fact.

Fact: (~) If all transactions use two phase locking, then

all those who commit produce an acyclic serialization

graph.

4 As has been observed repeatedly in the literature, this notion
of conflict is too strong. For example, if the only data item in
common between two transactions is one that is only incremented

and whose exact value is insignificant, then such a conflict might

be ignored. We assume the simpler read-write model only for the

purposes of exposition.

5Recafl that a simple cycle consists of

1.

2.

a sequence of nodes nl, n2, nk such that no node is

repeated and

a collection of associated edges: there is an edge between n,

and n,+] for 1 <= i < k and an edge between n,$ and nl; no
edge is included twice.

300

Call any execution of a chopping for which the

chopping graph contains no SC-cycles an SC-acyclic

execution of a chopping. We must show that:

1. any SC-acyclic execution yields an acyclic serializa-

tion graph on the given transactions T1, T2, Tn.

and hence is equivalent to a serial execution of com-

mitted transactions; and

2. the transactions that roll back in the SC-acyclic

execution would also roll back if properly placed

in the equivalent serial execution. We need this
to avoid the trivial result that the execution is

serializable by being equivalent to a null execution.

For point 1, we proceed by contradiction. Consider

an SC-acyclic execution of a chopping of T1, T2, Tn.

Suppose there were a cycle in the serialization graph

of T1, T2, ..., Tn resulting from this execution. That is
Ti-Tj -.. .- Ti. Identify the pieces of the chopping

associated with each transaction that are involved in

this cycle: p z p’ - . . . a p“. Both p and p“

belong to transaction fi. Pieces p and p“ cannot be

the same, since each piece uses two phase locking by
the execution rules and the serialization graph of a set

of committed tw-~phase Ioclied transactions is acyclic by

fact (t). Since p and p“ are different pieces in the same

transaction Ti, there is an S-edge between them in the

chopping graph. Every directed edge in the serialization

graph cycle corresponds to a C-edge in the chopping

graph since it reflects a conflict. So, the cycle in the

serialization graph implies the existence of an SC-cycle

in the chopping graph, a contradiction.

For point 2, notice that any transaction T whose

first piece p rolls back in the SC-acyclic execution will

have no effect on the database, since the chopping is

rollback-safe. We want to show that T would also

roll back if properly placed in the equivalent serial

execution. Suppose that p conflicts with and follows

pieces from the set of transactions WI, . . . Wk. Then

place T immediately after the last of those transactions

in the equivalent serial execution. In that case, the first

reads of T will be exactly those of the first reads of p.

Since p rolls back, so will T. ❑

Theorem 1 shows that the goal of any chopping of a

set of transactions should be to obtain a rollback-safe

chopping without an SC-cycle.

Chopping Graph Example 1

Suppose there are three transactions that can ab-

stractly be characterized as follows:

Tl: R(x) W(X) R(y) W(y)

T2: R(x) W(x)

T3: R(y) W(y)

Breaking up T1 into

Tll: R(x) U(X)

T12: It(y) W(y)

will result in a graph without an SC-cycle (see Figure

1).

s
Tll T12

c c

T2 T3

Figure 1:

Chopping Graph Example 2

With the same T2 and T3 aa above, breaking up TI 1

further into

Till: R(x)

T112: W(X)

will result in an SC-cycle (see Figure 2).

s

Till —T112 T12

\/
c c c

T2 T3

Figure 2:

Chopping Graph Example 3

Now, let us consider an example in which there are

three types of transactions:

● A transaction that updates a single depositor’s

account and the depositor’s corresponding branch
balance.

● A transaction that reads a depositor’s account

balance.

301

* A transaction that compares the sum of the depos-

itors’ account balances with the sum of the branch

balances.

For purposes of concreteness, consider the following

transactions. Suppose that depositor accounts Dll,

D12, and D13 all belong to branch B1; depositor

accounts D21 and D22 both belong to B2. Here are

the transactions.

TI

T2

T3

T4

T5

T6

(update account) :

(update account) :

(update account) :

(balance) : R(D12)

(balance): R(D21)

RW(DII) RW(BI)

RW(D13) RU(B1)

RW(D21) RW(B2)

(comparison): R(DII) R(D12) R(D13) R(BI)

R(D21) R(D22) R(B2)

Thus, T6isthe balance comparison transaction. Let

us see first whether T6

transactions.

T61: R(DI1) R(D12)

T62: R(D21) R(D22)

Tl T2

can be broken up into two

R(D13) R(BI)

R(B2)

T3

/

c Y
c T4 T5

c

161
s

T62

Figure 3:

The lack of an SC-cycle shows that this is possible (see
Figure 3). Note that this could be generalized to u

updates, bbalance transactions and 1 comparison. Each

balance transaction would conflict with some update

transaction. Each update transaction would conflict

with exactly one piece of the branch-by-branch chopping

of the comparison transaction. So, there would be no

cycles.

Chopping Graph Example5

Taking the transaction population from the previ-

ous example, let us now consider dividing T1 into two

transactions giving the following transaction popula-

tion. Please see Figure 4.

s
Tll T12 T2 T3

T4T6 “

Figure 4:

Tll: RW(DI1)

T12: RW(B1)

T2: RW(D13) RW(BI)

T3: RW(D21) RW(J32)

T4: R(D12)

T5: R(D21)

T6: R(Dii) R(D12) R(D13) R(B1) R(D21)

R(D22) R(B2)

This results in an SC-cycle.

Remark about Order-Preservation: The choppings weof-

fer are serializable, but not necessarily order-preserving

serializable. Consider the following example:

Tl: R(A) R(B)

T2: RW(A)

T3: RW(B)

The chopping graph remains acyclic ifwe chop up

T1 into the transaction R(A) and the transaction R(B).

This would allow the following execution:

R(A) RW(A) RW(B) R(B)

This is equivalent to

T3 T1 T2

so is serializable. It is not, however, order-preserving

serializable, because T2 executed before T3 yet appears

to execute after T3 in the only equivalent serial

schedule.

302

4 Finding the Finest Chopping

On the way to discovering an algorithm, we must answer

two particularly worrisome questions:

1. Can chopping a piece into smaller pieces break an

SC-cycle?

2. Can chopping one transaction prevent one from

chopping another?

Remarkably, the answer to both questions is negative.

Lemma 1: If a chopping is not correct, then any further

chopping of any of the transactions will not render it

correct.

PROOF.

Let p be a piece of a transaction T to be further chopped

and let the result of the chopping be called pieces(p). If

p is not in an SC-cycle, then chopping p will have no

effect on the cycle. If p is in an SC-cycle, then there are

three cases:

1.

2.

3.

If there are two C edges touching p from the cycle,

then each edge will touch exactly one piece in

pieces(p). Since all pieces in pieces(p) are connected

by S edges they all belong to an SC-cycle.

If there are one C edge and one S edge touching p,

then the C edge will be connected to one piece p’

of pieces(p). Since p and p’ are connected by an S

edge, they belong to an SC-cycle.

If there are two S edges touching p, then these edges
will touch each piece of pieces(p).

u

Lemma 2: Suppos~ that in some chopping chopI, two

pieces, say p a~d p , of transaction T are in an SC-cycle.

Then p and p will also be in an SC-cycle in chopping

chop? where chopz is identical to chopl with regard

to transaction T, but in which no other transaction is

chopped (i.e., all other t rausactions are represented by

a single piece).

PROOF.

Since p and p’ come from T there is an S-edge between

them in both chopI and chopz. Since they are in an

SC-cycle, there exists at least one piece p“ of some
transaction T’ in that cycle. Merging all pieces of T’

into a single piece (i.e., T’) can only shorten the length

of the cycle. The argument applies to every transaction

other than T having pieces in the cycle. ❑

Figure 5 illustrates this lemma. putting the three pieces

of T3 into one will not make the chopping of T1 OK,
Nor will chopping T3 further.

These two lemmas lead directly to a systematic

method for chopping transactions as finely as possible.

s
Tll T12

/

/
c

\

c

T31 T32 T33
s s

Figure 5:

Consider again the set of transactions that can run

in this interval {Tl, Tz, ..., T~ }. We will take each

transaction Ti in turn. We call {cl, CZ,. . . . c~} a private

chopping of Ti, denoted private(Ti), if

1, {Cl, q?,..., Ck} is a rollback-safe chopping of Ti; and

2. there is no SC-cycle in the graph whose nodes are

{Tl ,.. ., Ti_l, cl, cz$ck, T;+l T;+l ,. ... T.}.

That is, the graph of all other transactions plus the

chopping of Ti.

Theorem 2: The chopping consisting of {private(Tl),

private . . ., private(T”)} is rollback-safe and has no

SC-cycles.

PROOF.

● Rollback-safe: the chopping is rollback-safe because

all its constituents are rollback-safe.

● No SC-cycles: if there were an SC-cycle that

involved two pieces of private(Ti,) then Lemma 2

implies that the cycle is still present even if all other

transactions are not chopped. But that contradicts

the definition of private.

•1
Theorem 2 implies that if we can discover a fine-

granularity private(Ti) for each T,, then we can just

take their union. Formally, the finest chopping of Ti

(whose existence we will prove) is

a private chopping of Ti;

if piece P is a member of this private chopping, then. .
there is no other private chopping of Ti containing

PI and PZ where pl and PZ partition p and neither is
empty.

That is, we would have the following algorithm:

303

procedure chop (’7’1, T*)

for each Ti

Finei := finest chopping of Ti

end for;

the finest chopping is

{Finel, Finez, Fine~}

We now give an algorithm to find the finest private

chopping of T.

Algorithm FineChop:

initialization:

if there are rollback statements then

P1 := all database writes of T that may occur

before or concurrently with any rollback

statement in T

else

PI := set consisting of the first database access

end

P := {{z} [z is a database access not in PI};

P := Pu {pi};

merging pieces:

construct the connected components of the graph

induced by C edges on all transactions besides T

and on the pieces in P = {PI,p~}.

update P based on the following rule:

for each connected component, if P.1, p,?, p,~

are k pieces of P such that 1 < el < e2 < ...< ek < r,

then put all accesses of pel, pc?, pek hlto Pel

and then remove p,?,pek.

call the resulting partition FineChop(T)

Figure 6 shows an example of a fine-chopping of

transaction T5 given a certain set of conflicts. Since

there are no rollback statements, each piece starts off

being a single access. Assuming no rollback statements,

T5 can be “fine- chopped” into {{a}, {b, d, e, f}, {c}}. If

{6, d, e, ~} were subdivided further, there would be an

SC-cycle in the chopping graph.

Note on Efficiency: The expensive part of the algorithm

is finding the connected components of the graph

induced by C on all transactions besides T and the

pieces in P. We have assumed a naive implementation
in which the connected components are recomputed for

each transaction T at a cost of O(e + m.) time in the

worst case, where e is the number of C edges in the

transaction graph and m is the size of P. Since there are

n transactions, the total time is O(n(e + m)).

Note on Shared Code: Suppose that T, and Tj result from

the same program P. Since the chopping is implemented

by changing P, transactions T, and T, must be chopped

in the same way. This may seem surprising at first,

T4

c

T5 : \
a

T1 T3

l%\

c

c
c c

o
b c 11 e f

Figure 6:

but the above algorithm will give the result that

FineChop(Ti) = FineChop(Tj) even if they did not

share code. The reason is that the two transactions

are treated symmetrically by the algorithm. When

FineChop(Ti) runs, Tj is treated as unchopped and

similarly for Tj. ‘T’hus, shared code does not change

this result at all.

Theorem 3: FineChop(T) is the finest chopping of T.

PROOF.

We must prove two things: FineChop(T) is a private

chopping of T and it is the finest one.

o FineChop(T) is a private chopping of T:

●

1.

2.

Rollback-safety: by inspection of the algorithm.

The initialization step creates a rollback-safe

partition. The merging step can only cause pl

to become larger.

No SC-cycles: any such cycle would involve a path

through the conflict graph between two distinct

pieces from Fine Chop(T). The merging step

would have merged any two such pieces to a single

one.

No piece of FineChop(T) can be further chopped:

Suppose p is a piece in FineChop(T). Suppose

there were a private chopping TooFine of T that
partitions p into two non-empty subsets q and r.

Since p contains at least two accesses, the accesses

of q and r could come from two different sources.

1. Piece p is the first piece, i.e., pl, and g and r

each contain accesses of pl as constructed in the

initialization step. In that case, pl contains one or

more rollback statements. So, one of q or r may

commit before the other rolls back by construction

of PI. This would violate rollback safety.

304

2.

•1

The accesses in q and r result from the merging

step. In that case, there is a path consisting of

C-edges through theother transactions fromq to

r. This implies the existence of an SC-cycle for

chopping TooFine.

5 Applying these Results to Typical

Database Systems

For us, a typical database system will be one running

SQL. Our main problem is to figure out what conflicts

with what. Because of the existence of bind variables, it

will be unclear whether a transaction that updates the

account of customer :x will access the same record as a

transaction that reads the account of customer :y. So,

we will have to be conservative.

We can use the tricks of typical predicate locking

schemes as pioneered in System R and then elaborated

in [2, 3]. For example, if two statements on relation

account are both conjunctive (only AND’s in the

qualification) and one has the predicate

AND name LIKE ‘T!!’

whereas the other has the predicate

AND name LIKE ‘S!!’

they clearly will not conflict at the logical data item

level. (This is the only level that matters since that

is the only level that affects the return value to the

user.) Detecting the absence of conflicts between two

qualifications is the province of compiler writers. We

offer nothing new.

The only new idea we have to offer is that we can

make use of information in addition to simple conflict

information. For example, if there is an update on the

account table with

of the predicates is

AND acctnum =

then, if acctnum

a conjunctive qualification and one

:x

is a key, we know that the update

will access at most one record. This will mean that a

concurrent reader of the form

SELECT . . .

FROM account

WHERE . . .

will conflict with the update on at most one record,

a single data item, so can execute at level 2 isolation.

In fact, even if many updates of this form are

concurrent with the reader, the reader can be chopped

in this way.

We will label each transaction with the label with

values “l” or “many” for each relation that it accesses.

For example, the update above has the label “1,

account,” whereas the read access has the label “many,

account.” We will label the conflict edges similarly. So,

the conflict edge will have the label “l, account.” Of

course, there can be many labels on each conflict edge.

Now, we say that a transaction T that may contain

binding variables is bind-chop-safe if one of the following

two conditions holds:

1.

2.

Transaction T conflicts with a single other transac-

tion and their conflict edge has a single label deco-

rated with a 1. Or,

Transaction T may conflict with many other transac-

tions. However for any cycle c (consisting of conflict

edges only) that touches T, there must be a relation

R such that

every edge e in c has label (l,R) as its only label;

and

every transaction T’ other than T in c associates

1 with R (i.e. has label (l,R)), though T’ may

have other labels; T may have (many, R) ss part

of its label.

Figure 7) portrays transactions with their decorated

conflict edges. T1 can be executed at degree 2, yet will

appear to execute at degree 3.

mang, T
mang, S

l,R

/

T2

1,R
~ng, T

T3

“:6YT’

\

1,R

1/
1,R

1,W l,W :; ~ I,u
,

T7 mang, U
T!5

1,W
meng, Q

Figure 7:

Theorem 4: If transaction T is bind-chop-safe, then

can be chopped into a set of pieces such that

● each piece holds at least one database access;

● the first, piece holds all rollback statements; and

T

305

● no two pieces access the same data item.

(In particular, if T is a read-only query, then it can run

at degree 2 isolation.)

PROOF.

Suppose there were a cycle in the SC-graph as a result

of chopping T and some values of the bind variables.

Such a cycle must connect two pieces PI and p? of

the chopping by a path of conflicts through other

transactions. Any such path must correspond to a cycle

c consisting of edges labeled (1,R) and nodes labeled

(1 ,R) for some relation R. That implies that the conflict

carried by this path is on a single data item z. However

pl and p2 access different data items by construction.

This contradiction implies that no such cycle is possible.

•1

6 Related Work

There is a rich body of work in the literature on the

subject of chopping up transactions or changing con-

currency control mechanisms, some of which we review

here, although the work is not strictly comparable.

The reason is that this paper is aimed at database

users rather than database implementors. Database

users normally cannot change the concurrency control

algorithms of the underlying system, but must use

two phase locking and its variants. Even if users

could change the concurrency control algorithms, they

probably should avoid doing so as the bugs that might

result can easi[y corrupt a system.

The literature offers many good ideas however. Here

is a brief summary of some of the major contributions.

Farrag and 0zsu[4] consider the possibility of chop-

ping up transactions by using “semantic” knowledge

and a new locking mechanism. For example, consider a

hotel reservations system that supports a single transac-

tion Reserve. Reserve performs the following two steps:

1. Decrement the number of available rooms or roll

back if that number is alreacly O.

2. Find a free room ancl allocate it to a guest.

If reservation transactions are the only ones running.
then the authors assert that each reservation can be

broken up into two transactions, one for each step.

Hector Garcia-Molina[5] suggested using semantics by

partitioning transactions into classes. Transactions in

the same class can run concurrently, whereas transac-

tions in different classes must synchronize. He proposes

using semantic notions of consistency to allow more

concurrency than serializability would allow and using

counterstep transactions to undo the effect of transac-

tions that should not have committed.

Nancy Lynch[6] generalized Garcia-Molina’s model by

making the unit of recovery different from the unit of

locking (this is also possible with the checkout/checkin

model offered by some object-oriented database sys-

tems).

Rudolf Bayer[7] showed how to change the concur-

rency control and recovery subsystems to allow a single

batch transaction to run concurrently with many short

transactions.

Meichun Hsu and Arvola Chan[8] have examined

special concurrency control algorithms for situations in

which data is divided into raw data and derived data.

The idea is that the recency of the raw data is not

so important in many applications, so updates to that

data should be able to proceed without being blocked

by reads of that data.

Some commercial systems such as Oracle use this

scheme as well of allowing reads to view old data. That

facility would remove the necessity to use the algorithms

in this paper for read-only transactions.

Patrick O’Neil[9] takes advantage of the commutativ-

ity of increments to release locks early even in the case

of writes.

Ouri Wolfson [1 O] presents an algorithm for releas-

ing certain locks early without violating serializabil-

ity based on an earlier theoretical condition given by

Yannakakis[l 1]. He assumes that the user has complete

control over the acquisition and release of locks. The

setting here is a special case: the user can control only

how to chop up a transaction or whether to allow reads

to give up their locks immediately. As mentioned above,

we have restricted the user’s control in this way for the

simple pragmatic reason that systems restrict the user’s

control in the same way.

Bernstein, Shipman and Rothnie[12] introduced the

idea of conflict graphs in an experimental system

called SD D-1 in the late 1970’s. Their system divided

transactions into classes such that transactions within

a class executed serially whereas transactions between

classes coulcl execute without any synchronization.

Marco Casanova’s thesis[13] extended the SD D-1

work by representing each transaction by its flowchart

and by generalizing the notion of conflict. A cycle in

his graphs indicated the need for synchronization if it

included both conflict and flow edges.

Shasha and Snir[14] explored graphs that combine

conflict, program flow, and atomicity constraints in a

study of the correct execution of parallel shared memory

programs that, have critical sections. The graphs used

here are a special case of the ones used in that article.

7 Conclusion

We propose a simple, efficient algorithm to partition

transactions into the smallest pieces possible with the

306

following property:

● If the small pieces execute serializable, then the

transactions will appear toexecute serializable.

This permits database users to obtain more concur-

rency and intra-transaction parallelism without requir-

ing any changes to database system locking algorithms.

The only information required is some characterization

of the transactions that can execute during a certain in-

terval and the location of any rollback statements within

the transaction. We sketch the application of our algo-

rithm to SQL-based systems.

Several interesting problems remain open:

How would this approach work with the concurrency

control methods offered by some of the object-

oriented systems such as optimistic methods, sagas,

and the tree-locking approaches of the Kedem and

Silberschatz school?

Suppose that an administrator asks how best to

partition transaction populations into time windows,

so that the transactions in each window can be

chopped as much as possible. For example, a good

heuristic is to put global update transactions in a

partition by themselves while allowing point updates

to interact with global reads. What precise guidance

could theory offer?

What is a good architecture for incorporating chop-

ping among the tuning knobs for database manage-

ment system?

Acknowledgments

We would like to thank Gerhard Weikum for his astute

comments regarding order-preserving serializability ancl

intra-transaction parallelism, Victor Vianu for a bus

ricle discussion concerning transitive closure, Rick Hull

for a discussion about partitioned accesses. }Ve would

also like to thank Fabienne Cirio for applying her

artistry to make the figures of the manuscript.

References

[1]

[2]

[3]

Concurrency C’oI)lrol and Recovery tn Dutaha.se

Systems P. A. Bernstein, V. Hadzilacos, and N.

Goodman Adclison-Wesley. 1987.

“Interval Hierarchies and their Application to

Predicate Files” K. C. Wong and ilI. lZclelberg

ACM transactions on Database Systems, Septem-

ber 1977, vol. 2, no. 3, pp. 223-232

“A Predicate Oriented Locking Approach for
Integrated Information Systems,>’ P. Dadam, P.

Pistor, and H-J. Schek IFI.P Congress, Paris,

1983, published by North-Holland, 1983.

p]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

‘tUsing Semantic Knowledge of Transactions to

Increase Concurrency” Abdel Aziz Farrag and

M. Tamer Ozsu ACM transactions on Database

Systems, December 1989, vol. 14, no. 4, pp. 503-

525

“Using Semantic Knowledge for Transaction Pro-

cessing in a Distributed Database” Hector Garcia-

Molina ACM Transactions on Database System,

June. 1983, vol. 8, no. 2, pp. 186-213.

“Multi-level Atomicity — a new correctness cri-

terion for database concurrency control” Nancy

Lynch ACM Transactions on Database System,

Dec. 1983, vol. 8, no. 4, pp. 484-502.

“Consistency of Transactions and Random Batch”

R. Bayer ACM Transactions on Database Sys-

tems, December 1986, VO. 11, no. 4, pp. 397-404

“Partitioned Two-Pha,,e Locking” M. Hsu and A.

Chan ACM Transactions on Database Systems,

December 1986, VO. 11, no. 4, pp. 431-446

“The Escrow Transactional Mechanism” Patrick

O ‘Neil ACM Transactions on Database Systems,

December 1986, VO. 11, no. 4, pp. 405-430

“The Virtues of Locking by Symbolic Names”

Ouri Wolfson Journal of Algorithms 19878, pp.

536-556, 1987

“A Theory of Safe Locking Policies in Database

Systems,” Nlihalis Yannakakis JACM 29(3), pp.

718-740, (1982).

“Concurrency Control in a System for Distributed

Databases (SDD-1)“ P. A. Bernstein, D. W.

Shipman and J. B. Rot hnie ACM Transactions

on Database Systems, March 1980, vol. 5, no. 1,

pp. 18-51.

The Concurrency Control Problem for Database

Systems Marco Casanova Springer-Verlag Lecture

Notes in Computer Science no. 116, 1981

“Efficient and Correct Execution of Parallel Pro-

grams that, Share Memory” D. Shasha and M.

Snir AChl Transactions on Programming Lan-

guages and Systems, VO1. 10, 110. 2, pp. 282-312,

April, 1988

307

