Simple Real-Time Constant-Space String Matching

Dany Breslauer, Roberto Grossi and Filippo Mignosi

Real-time string matching

Real-time string matching

Real-time string matching

Pattern $X=X[1 . . m]$
Text $T \equiv T[1 . . n]$ streaming s.m., where x stored!

O(1) worst-case time to answer after reading the text symbol

Constant-space string matching

We propose a simple way to combine the two features

- Take a simple version of the constant-space CrochemorePerrin (CP) algorithm

We propose a simple way to combine the two features

- Take a simple version of the constant-space CrochemorePerrin (CP) algorithm
- Make CP also real-time by running two instances simultaneously

Some related work

- Galil '81: real-time string matching
- Galil, Seiferas '83: constant space
- Karp, Rabin '87: randomized constant space real-time
- Crochemore, Perrin '91: constant space
- Gasieniec, Plandowski, Rytter '95: constant space
- Gasienec, Kolpakov '04: real-time + sublinear space (extends GPR'95)
* * more papers [Crochemore, Rytter '91,'95] [Crochemore '92] [...]
- Porat, Porat '09: randomized streaming, O(log m) space, no real-time
- Breslauer, Galil '10: randomized real-time streaming, O(log m) space

Our result \dagger

- Real-time constant-space string matching
$O(1)$ words in addition to those for read-only X and T
$O(1)$ worst-case time to answer after each text symbol

Our result

- Real-time constant-space string matching
$O(1)$ words in addition to those for read-only X and T
$\mathrm{O}(1)$ worst-case time to answer after each text symbol

Not to be confused with

- Real-time streaming string matching
$\mathrm{O}(\log \mathrm{m})$ memory words (X and T cannot be kept)
$\mathrm{O}(1)$ worst-case time to answer after each text symbol

We propose a simple way to combine the two features

- Take a simple version of the constant-space CrochemorePerrin (CP) algorithm

Simple version of the Crochemore-Perrin (CP) algorithm
Consider a non-empty prefix-suffix factorization $X=u v$
The local period is the shortest z such that
z is suffix of u or vice versa and
z is a prefix of v or vice versa
$\mu(u, v) \equiv$ length $|z|$ of the local period

Simple version of the Crochemore-Perrin (CP) algorithm
Consider a non-empty prefix-suffix factorization $X=u v$
The local period is the shortest z such that
> z is suffix of u or vice versa and

z is a prefix of v or vice versa
$\mu(u, v) \equiv$ length $|z|$ of the local period
Example: $X=$ abaaaba

$$
X=u \quad v
$$

a baaaba ab aaaba
ba ba aaab aaab
a a

Simple version of the Crochemore-Perrin (CP) algorithm
Consider a non-empty prefix-suffix factorization $X=u v$
The local period is the shortest z such that
> z is suffix of u or vice versa and

z is a prefix of v or vice versa
$\mu(u, v) \equiv$ length $|z|$ of the local period
Example: $\mathrm{X}=$ abaaaba

a baaaba
ba ba

$$
X=u \quad v
$$

$a b$ aaaba
aaab aaab
z

$$
\begin{gathered}
a b a \text { aaba } \\
a \quad a
\end{gathered}
$$

Simple version of the Crochemore-Perrin (CP) algorithm
Consider a non-empty prefix-suffix factorization $X=u v$
The local period is the shortest z such that
> z is suffix of u or vice versa and

z is a prefix of v or vice versa
$\mu(u, v) \equiv$ length $|z|$ of the local period
Example: $\mathrm{X}=$ abaaaba

a baaaba
ba ba

$$
\begin{gathered}
X=u \\
a b a \\
a b a b a \\
a \quad a \\
z
\end{gathered}
$$

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization $X=u v$
The local period is the shortest z such that
z is suffix of u or vice versa and
z is a prefix of v or vice versa
$\mu(u, v) \equiv$ length of the local period

Critical factorization if $\mu(u, v)=\pi(X)$ [len. of the period of X]

Example:

```
x=u v
    a baaaba
        *
    ba ba
    -."
        Z
```

ab aaaba
aaab aaab
aba aaba
a a

Example:

	$X=u$	v
a baaaba	ab aaaba	aba aaba
ba ba	aaab aaab	a a
	z	

Example:

a baaaba

 ba ba
Example:

		$X=u$
a baaaba	ab aaaba	aba aba
ba ba	aaab aaab	a a
		z

Example:

$$
\begin{aligned}
& \begin{array}{c}
\text { a baaaba ab aaaba } \\
\text { ba ba }
\end{array} \quad \begin{array}{r}
\text { aba aaba } \\
\text { aab }
\end{array} \\
& \text { Critical Factorization Theorem (Cesari and Vincent): } \\
& \text { Among } \pi(X)-1 \text { consecutive factorizations: } \\
& \text { at least one is a critical factorization }
\end{aligned}
$$

Example:

a baaaba	ab aaaba	aba aaba
ba ba	aaab aaab	a a

Critical Factorization Theorem (Cesari and Vincent):
Among $\pi(X)-1$ consecutive factorizations:
at least one is a critical factorization

There always exists a critical factorization $X=u v$ such that $|u|<\pi(X)$

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern $X=u v$

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern $X=u v$

Forward scan: match v left-to-right with the current aligned portion of the text

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern $X=U v$

Forward scan: match v left-to-right with the current aligned portion of the text

Back fill: match u left-to-right with the current aligned portion of the text [originally right-to-left]

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern $X=u v$
Forward scan: match v left-to-right with the current aligned portion of the text

Back fill:match u left-to-right with the current aligned portion of the text [originally right-to-left]

How to wewdle mismatches?

We propose a simple way to combine the two features

- Take a simple version of the constant-space CrochemorePerrin (CP) algorithm
- Make CP also real-time by running two instances simultaneously

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill
$X=a b$ aaaba critical factorization
abaaaba
abaabaaabaa

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill

$X=a b$ aaaba critical factorization

abaaaba
abaabaaabaa

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill

$X=a b$ aaaba critical factorization

abaaaba
abaabaaabaa

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill
$X=a b$ aaaba critical factorization
z
abaaaba
abaab̈aaabaa
$|z|+1$
\leftrightarrow abaaaba
abaabaaabaa

$$
\text { shift by }|z|+1 \text { positions }
$$

(and charge the $O(|z|+1)$ cost to the symbols in z in real time)

By contradiction, suppose there is a valid shift that is shorter...
... recall that $|u|<\pi(X)$, the length of the period

By contradiction, suppose there is a valid shift that is shorter...
... recall that $|u|<\pi(X)$, the length of the period

u	\checkmark	
E'	E^{\prime}	
\longleftrightarrow	E'	
\| χ^{\prime} \|	u	V

$$
\left|z^{\prime}\right|<\pi(X)
$$

By contradiction, suppose there is a valid shift that is shorter... ... recall that $|u|<\pi(X)$, the length of the period

$$
\left|Z^{\prime}\right|<\pi(X)
$$

Contradiction: a local period at $u v$ that is shorter than $\pi(X)$!!

By contradiction, suppose there is a valid shift that is shorter... ... recall that $|u|<\pi(X)$, the length of the period

$$
\left|z^{\prime}\right|<\pi(X)
$$

Contradiction: a local period at $u v$ that is shorter than $\pi(X)$!!
It follows from the Crochemore-Perrin result [other case $\left|Z^{\prime}\right| \geqslant \pi(X)$ not displayed: periodicity rules out occurrences]

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill

Output an occurrence when the forward scan terminates (and interrupt the back fill if needed)

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill

Output an occurrence when the forward scan terminates (and interrupt the back fill if needed)

Let z be the matched prefix of v, where $X=u$ vis c.f.:

- if $z \neq v \Rightarrow$ shif \dagger by $|z|+1$ positions and reset $z=$ empty
- if $z=v \Rightarrow$ shift by $\pi(X)$ positions and update z

Basic Real-Time Algorithm

Interleave O (1) comparisons from the forward scan with O (1) comparisons from the back fill

Output an occurrence when the forward scan terminates (and interrupt the back fill if needed)

Let z be the matched prefix of v, where $X=u v$ is $c . f$.:

- if $z \neq v \Rightarrow$ shift by $|z|+1$ positions and reset $z=$ empty
- if $z=v \Rightarrow$ shift by $\pi(X)$ positions and update z

Total cost is $O(1)$ worst-case per symbol:
the algorithm is real-time

Q: What if $|u|>|v|$?

Q: What if $|u|>|v|$?
back fill
interrupted
here.!

"HOLE" NOT CHECKED

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton $X=u v$ w such that

$$
X=(u v) w \text { is a critical factorization with }|u v| \leq|w|
$$ OR

$X=(u v) w$ is a critical factorization, and $X^{\prime}=u\left(v v^{\prime}\right)$ is a critical factorization for a prefix X^{\prime} of X with $|u| \leq\left|v v^{\prime}\right|$

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton $X=u \vee$ w such that $X=(u v) w$ is a critical factorization with $|u v| \leq|w|$ OR
$X=(u v) w$ is a critical factorization, and $X^{\prime}=u\left(v v^{\prime}\right)$ is a critical factorization for a prefix X^{\prime} of X with $|u| \leq\left|v v^{\prime}\right|$

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton $\mathrm{X}=\mathrm{u} v \mathrm{w}$ such that $X=(u v) w$ is a critical factorization with $|u v| \leq|w|$ OR
$X=(u v) w$ is a critical factorization, and
$X^{\prime}=u\left(v v^{\prime}\right)$ is a critical factorization for a prefix X^{\prime} of X with $|u| \leq\left|v v^{\prime}\right|$

Real-Time Variation of CP

$X=(u v) w$ is a critical factorization, and

Recall we may leave a "hoेle" to the left of w : this hole has to be covered by X^{\prime}...

Real-Time Variation of CP

$X=(u v) w$ is a critical factorization, and $X^{\prime}=u\left(v v^{\prime}\right)$ is a critical factorization for a prefix X^{\prime} of X with $|u| \leq\left|v v^{\prime}\right|$

Note that X ' is entirely matched since $|u| \leq\left|v v^{\prime}\right|$

Real-Time Variation of the CP Algorithm

Interleave $O(1)$ steps of two instances of the Basic Real-Time Algorithms, one looking for X and the other for X^{\prime}, aligned with $|X|-\left|X^{\prime}\right|$ positions apart.

Real-Time Variation of the CP Algorithm

Interleave $O(1)$ steps of two instances of the Basic Real-Time Algorithms, one looking for X and the other for X^{\prime}, aligned with $|X|-\left|X^{\prime}\right|$ positions apart.

> Total cost is $O(1)$ worst-case per symbol: the algorithm is real-time and reports correctly all the occurrences

Simple pseudocode

Pattern preprocessing

GOAL:

Find the desired 3-way non-empty factorizaton $X=u v w$ and the length of the periods of X and X^{\prime}

Pattern preprocessing
GOAL:
Find the desired 3-way non-empty factorizaton $X=u \vee w$ and the length of the periods of X and X
We focus on this...

Some more definitions...
A factorization $u v$ is left-external if $|u| \leq \mu(u, v)$ for non-empty u, v

Define $L(X)=\{u v: X=u v$ is left-external $\}$
$L(X)$ non-empty because of the
Critical Factorization Theorem

Pattern preprocessing

Let $X=u_{1} w$ be the first critical factorization in $L(X)$
HINT: use CP preprocessing on the prefixes of X
Lemma: $u v \in L(X) \Rightarrow$ prefix $X^{\prime}=u^{\prime} v^{\prime}$ s.t. $\mu\left(u^{\prime}, v^{\prime}\right)=\mu(u, v)$

Pattern preprocessing

Let $X=u_{1} w$ be the first critical factorization in $L(X)$
HINT: use CP preprocessing on the prefixes of X
Lemma: $u v \in L(X) \Rightarrow$ prefix $X^{\prime}=u^{\prime} v^{\prime}$ s.t. $\mu\left(u^{\prime}, v^{\prime}\right)=\mu(u, v)$
Compute CP critical factorization for $u_{1}=u v$
where $|u| \leq \mu(u, v)$

Pattern preprocessing
Let $X=u_{1} w$ be the first critical factorization in $L(X)$
HINT: use CP preprocessing on the prefixes of X
Lemma: uv $\in L(X) \Rightarrow$ prefix $X^{\prime}=u^{\prime}$ v' st. $\mu\left(u^{\prime}, v^{\prime}\right)=\mu(u, v)$
Compute CP critical factorization for $u_{1}=u v$
where $|u| \leq \mu(u, v)$

Extend u_{1} by periodicity $\mu(u, v w)<|v w|$: set $X^{\prime}=u\left(v^{\prime}\right)$
where v ' prefix of w

Pattern preprocessing
Let $X=u_{1} w$ be the first critical factorization in $L(X)$
HINT: use CP preprocessing on the prefixes of X
Lemma: $u v \in L(X) \Rightarrow$ prefix $X^{\prime}=u^{\prime}$ v' s.t. $\mu\left(u^{\prime}, v^{\prime}\right)=\mu(u, v)$
Compute CP critical factorization for $u_{1}=u v$
where $|u| \leq \mu(u, v)$
Extend u_{1} by periodicity $\mu(u, v w)<|v w|$: set $X^{\prime}=u\left(v^{\prime}\right)$
where v ' prefix of w
It is $|u| \leq \mu(u, v) \leq \mu\left(u, v v^{\prime}\right)=\mu(u, v w) \leq\left|v v^{\prime}\right|$

Questions?

