
Simple Real-Time Constant-Space String Matching

Dany Breslauer, Roberto Grossi and Filippo Mignosi

Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

O(1) worst-case time to
answer after reading the
text symbol

Real-time string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

O(1) worst-case time to
answer after reading the
text symbolDifferent from real-time

streaming s.m., where X and T

cannot be entirely stored!

Constant-space string matching

Pattern X ≡ X[1..m]

Text T ≡ T[1..n]

O(1) working space
apart from that
required by X and T

O(log n) bits

We propose a simple way to combine the two features

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

We propose a simple way to combine the two features

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

· Make CP also real-time by running

two instances simultaneously

Some related work
Galil '81: real-time string matching

Galil, Seiferas '83: constant space

Karp, Rabin '87: randomized constant space real-time

Crochemore, Perrin '91: constant space

Gasieniec, Plandowski, Rytter '95: constant space

Gasienec, Kolpakov '04: real-time + sublinear space (extends GPR'95)

 more papers [Crochemore, Rytter '91,'95] [Crochemore '92] [...]

Porat, Porat '09: randomized streaming, O(log m) space, no real-time

Breslauer, Galil '10: randomized real-time streaming, O(log m) space

Our result

Real-time constant-space string matching
O(1) words in addition to those for read-only X and T
O(1) worst-case time to answer after each text symbol

Our result

Real-time constant-space string matching
O(1) words in addition to those for read-only X and T
O(1) worst-case time to answer after each text symbol

Real-time streaming string matching
O(log m) memory words (X and T cannot be kept)
O(1) worst-case time to answer after each text symbol

Not to be confused with

We propose a simple way to combine the two features

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

· Make CP also real-time by running

two instances simultaneously

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X = u v

The local period is the shortest z such that
 z is suffix of u or vice versa
 and
 z is a prefix of v or vice versa

μ(u,v) ≡ length |z| of the local period

z

u v

z

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X = u v

The local period is the shortest z such that
 z is suffix of u or vice versa
 and
 z is a prefix of v or vice versa

μ(u,v) ≡ length |z| of the local period

z

u v

z

a baaaba aba aabaab aaaba
aaab aaabba ba

Example: X = abaaaba

a a
z

X = u v

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X = u v

The local period is the shortest z such that
 z is suffix of u or vice versa
 and
 z is a prefix of v or vice versa

μ(u,v) ≡ length |z| of the local period

z

u v

z

a baaaba aba aabaab aaaba
aaab aaabba ba

Example: X = abaaaba

a a
z

X = u v

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X = u v

The local period is the shortest z such that
 z is suffix of u or vice versa
 and
 z is a prefix of v or vice versa

μ(u,v) ≡ length |z| of the local period

z

u v

z

a baaaba aba aabaab aaaba
aaab aaabba ba

Example: X = abaaaba

a a
z

X = u v

Simple version of the Crochemore-Perrin (CP) algorithm

Consider a non-empty prefix-suffix factorization X = u v

The local period is the shortest z such that
 z is suffix of u or vice versa
 and
 z is a prefix of v or vice versa

μ(u,v) ≡ length of the local period

Critical factorization ifμ(u,v) = π(X) [len. of the period of X]

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z

X = u v

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z

X = u v

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z

X = u v

abaa

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a
z

X = u v

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a

Critical Factorization Theorem (Cesari and Vincent):

Among π(X) - 1 consecutive factorizations:
at least one is a critical factorization

a baaaba aba aabaab aaaba
aaab aaabba ba

Example:

a a

Critical Factorization Theorem (Cesari and Vincent):

Among π(X) - 1 consecutive factorizations:
at least one is a critical factorization

There always exists a critical factorization
X = u v such that |u| < π(X)

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Forward scan: match v left-to-right with the
current aligned portion of the text

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Forward scan: match v left-to-right with the
current aligned portion of the text

Back fill: match u left-to-right with the current
aligned portion of the text [originally right-to-left]

Crochemore-Perrin (CP) Algorithm:

Take such a critical factorization of the pattern X = u v

Forward scan: match v left-to-right with the
current aligned portion of the text

Back fill: match u left-to-right with the current
aligned portion of the text [originally right-to-left]

We propose a simple way to combine the two features

· Take a simple version of the constant-space Crochemore-Perrin (CP) algorithm

· Make CP also real-time by running

two instances simultaneously

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba

abaabaaabaa

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

X = ab aaaba critical factorization

abaaaba abaaaba

abaabaaabaaabaabaaabaa

(and charge the O(|z|+1) cost to the symbols in z in real time)

By contradiction, suppose there is a valid shift that is shorter...

... recall that |u| < π(X), the length of the period
u v

u v

By contradiction, suppose there is a valid shift that is shorter...

... recall that |u| < π(X), the length of the period
u v

u v

π(X)

By contradiction, suppose there is a valid shift that is shorter...

... recall that |u| < π(X), the length of the period
u v

u v

π(X)

Contradiction: a local period at u v that is shorter than π(X)!!

By contradiction, suppose there is a valid shift that is shorter...

... recall that |u| < π(X), the length of the period
u v

u v

π(X)

Contradiction: a local period at u v that is shorter than π(X)!!

It follows from the Crochemore-Perrin result [other case
 not displayed: periodicity rules out occurrences]π(X)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Let z be the matched prefix of v, where X = u v is c.f.:

 if z ≠ v ⇒ shift by |z|+1 positions and reset z = empty
 if z = v ⇒ shift by π(X) positions and update z

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Basic Real-Time Algorithm

Interleave O(1) comparisons from the forward scan
with O(1) comparisons from the back fill

Let z be the matched prefix of v, where X = u v is c.f.:

 if z ≠ v ⇒ shift by |z|+1 positions and reset z = empty
 if z = v ⇒ shift by π(X) positions and update z

Output an occurrence when the forward scan
terminates (and interrupt the back fill if needed)

Total cost is O(1) worst-case per symbol:
the algorithm is real-time

Q: What if |u| > |v|?

Q: What if |u| > |v|?

u v

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton X = u v w such that

X = (uv) w is a critical factorization with |uv| ≤ |w|

OR

X = (uv) w is a critical factorization, and
X' = u (vv') is a critical factorization for a prefix X' of X
with |u| ≤ |vv'|

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton X = u v w such that

X = (uv) w is a critical factorization with |uv| ≤ |w|

OR

X = (uv) w is a critical factorization, and
X' = u (vv') is a critical factorization for a prefix X' of X
with |u| ≤ |vv'|

Real-Time Variation of CP

Consider a 3-way non-empty factorizaton X = u v w such that

X = (uv) w is a critical factorization with |uv| ≤ |w|

OR

X = (uv) w is a critical factorization, and
X' = u (vv') is a critical factorization for a prefix X' of X
with |u| ≤ |vv'|

Real-Time Variation of CP

X = (uv) w is a critical factorization, and

u v w

v'u v
X

Recall we may leave a "hole" to the left of w:
this hole has to be covered by X'...

Real-Time Variation of CP

X = (uv) w is a critical factorization, and
X' = u (vv') is a critical factorization for a prefix X' of X
with |u| ≤ |vv'|

u v w

v'u v

Note that X' is entirely matched since |u| ≤ |vv'|

X'

X

Real-Time Variation of the CP Algorithm

Interleave O(1) steps of two instances of the Basic
Real-Time Algorithms, one looking for X and the
other for X', aligned with |X|-|X'| positions apart.

Real-Time Variation of the CP Algorithm

Interleave O(1) steps of two instances of the Basic
Real-Time Algorithms, one looking for X and the
other for X', aligned with |X|-|X'| positions apart.

Simple pseudocode

Total cost is O(1) worst-case per symbol:
the algorithm is real-time and reports
correctly all the occurrences

GOAL:
Find the desired 3-way non-empty factorizaton X = u v w
and the length of the periods of X and X'

Pattern preprocessing

GOAL:
Find the desired 3-way non-empty factorizaton X = u v w
and the length of the periods of X and X'

Pattern preprocessing

Some more definitions...

A factorization u v is left-external if |u| ≤ μ(u,v) for non-empty u, v

Define L(X) = { u v : X = u v is left-external }

u v

L(X) non-empty because of the
Critical Factorization Theorem

Pattern preprocessing

Let X = u1 w be the first critical factorization in L(X)

HINT: use CP preprocessing on the prefixes of X
Lemma: u v ∈ L(X) ⇒ prefix X' = u' v' s.t. μ(u',v') = μ(u,v)

Pattern preprocessing

Let X = u1 w be the first critical factorization in L(X)

HINT: use CP preprocessing on the prefixes of X
Lemma: u v ∈ L(X) ⇒ prefix X' = u' v' s.t. μ(u',v') = μ(u,v)

Compute CP critical factorization for u1 = u v
 where |u| ≤ μ(u,v)

Pattern preprocessing

Let X = u1 w be the first critical factorization in L(X)

Extend u1 by periodicityμ(u,vw) < |vw|: set X' = u (vv')
 where v' prefix of w

HINT: use CP preprocessing on the prefixes of X
Lemma: u v ∈ L(X) ⇒ prefix X' = u' v' s.t. μ(u',v') = μ(u,v)

Compute CP critical factorization for u1 = u v
 where |u| ≤ μ(u,v)

Pattern preprocessing

Let X = u1 w be the first critical factorization in L(X)

It is |u| ≤ μ(u, v) ≤μ(u, vv') =μ(u, vw) ≤ |vv'|

Extend u1 by periodicityμ(u,vw) < |vw|: set X' = u (vv')
 where v' prefix of w

HINT: use CP preprocessing on the prefixes of X
Lemma: u v ∈ L(X) ⇒ prefix X' = u' v' s.t. μ(u',v') = μ(u,v)

Compute CP critical factorization for u1 = u v
 where |u| ≤ μ(u,v)

