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Abstract

We consider online planning in Markov decision processes (MDPs). In online planning,
the agent focuses on its current state only, deliberates about the set of possible policies from
that state onwards and, when interrupted, uses the outcome of that exploratory deliberation
to choose what action to perform next. Formally, the performance of algorithms for online
planning is assessed in terms of simple regret, the agent’s expected performance loss when
the chosen action, rather than an optimal one, is followed.

To date, state-of-the-art algorithms for online planning in general MDPs are either
best effort, or guarantee only polynomial-rate reduction of simple regret over time. Here
we introduce a new Monte-Carlo tree search algorithm, BRUE, that guarantees exponential-
rate and smooth reduction of simple regret. At a high level, BRUE is based on a simple
yet non-standard state-space sampling scheme, MCTS2e, in which different parts of each
sample are dedicated to different exploratory objectives. We further extend BRUE with
a variant of “learning by forgetting.” The resulting parametrized algorithm, BRUE(α),
exhibits even more attractive formal guarantees than BRUE. Our empirical evaluation
shows that both BRUE and its generalization, BRUE(α), are also very effective in practice
and compare favorably to the state-of-the-art.

1. Introduction

Markov decision processes (MDPs) offer a very general framework for sequential decision
making under uncertainty (Puterman, 1994). An MDP 〈S,A, Tr,R〉 is defined by a set
of possible agent states S, a set of agent actions A, a stochastic transition function Tr :
S×A×S → [0, 1] defined by a set of |S|×|A| conditional probability functions P(S |s, a), and
a reward function R : S × A × S → R. The current state of the agent is fully observable.
When the agent performs action a at state s, the state changes to s′ with probability
P(s′ |s, a), and the agent then collects a reward R(s, a, s′). In the finite horizon setting, the
reward is accumulated over some predefined number of steps H.

The objective of the agent is to act so to maximize its accumulated reward, and the
decision problem is always what action to perform next. For a state s, with h steps to go,
a (possibly stochastic) action policy π prescribes an action to be taken in this situation.
A policy is called optimal if, in expectation, following it guarantees maximization of the
accumulated reward. The key property of the MDP model is that, for any MDP, there is a
deterministic optimal policy π∗ : S × {1, . . . ,H} → A (Bellman, 1957).
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Efficiency of finding optimal policies for MDPs is the primary focus of the computa-
tional research around this model. When the state space of the MDP is too large for the
allowed planning time, reasoning about the MDP is narrowed to a state space region that
is considered most relevant to the specific decision problem currently faced by the agent.
In particular, algorithms for online reasoning about MDPs focus only on the current state
s0 of the agent, deliberate about the set of possible courses of action from s0 onwards, and,
when interrupted, use the outcome of that exploratory deliberation, or planning, to issue
an instant recommendation of an action to perform at s0. Once that action is applied in
the real environment, the planning process is repeated from the obtained state to select the
next action and so on.

Depending on the problem domain and the representation language, concise descriptions
of large-scale MDPs can be either declarative or generative (or mixed). With declarative rep-
resentations, both transition and reward functions are described explicitly, while with gen-
erative models, they are given by a “black box” simulator. While the palette of algorithms
for finding good actions in concisely represented MDPs is already rather wide (Boutilier,
Dean, & Hanks, 1999; Guestrin, Koller, Parr, & Venkataraman, 2003; Kolobov, Mausam,
& Weld, 2012; Busoniu & Munos, 2012; Bonet & Geffner, 2012; Keller & Helmert, 2013;
Mausam & Kolobov, 2012; Geffner & Bonet, 2013), most of these algorithms are applicable
only to declaratively represented MDPs. One of the earliest and best-known online plan-
ning algorithms developed for generative MDP models is the sparse sampling algorithm by
Kearns, Mansour, and Ng (2002). Sparse sampling offers a near-optimal action selection
in discounted MDPs by constructing a sampled lookahead tree in time exponential in the
discount factor and sub-optimality bound, but independent of the state space size. How-
ever, if terminated before an action has proven to be near-optimal, sparse sampling offers
no quality guarantees on its action selection.

In the last decade, Monte-Carlo tree search (MCTS) algorithms (Browne, Powley, White-
house, Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, & Colton, 2012) became
extremely popular in online planning for MDPs, as well as in online planning for many other
settings of sequential decision making, including those with partial state observability and
adversarial effects (Gelly & Silver, 2011; Sturtevant, 2008; Bjarnason, Fern, & Tadepalli,
2009; Balla & Fern, 2009; Eyerich, Keller, & Helmert, 2010; Browne et al., 2012). The
capability of dealing with generative problem representations was not the only feature of
MCTS that made these methods so popular. First, while MCTS algorithms can natively ex-
ploit problem-specific heuristic functions, their correctness is independent of the heuristic’s
properties, and they can as well be applied without any heuristic information whatsoever.
Second, numerous MCTS algorithms exhibit strong anytimeness: not only can a meaningful
action recommendation be provided at any interruption point instantly, in time O(1), but
the quality of the recommendation is also improved very smoothly, in time steps that are
independent of the size of the explored state space.

Formally, denoting by s〈h〉 the state s with h steps-to-go, the quality of the action a,
recommended for s0〈H〉, is assessed in terms of the choice-error probability, that is, the
probability that a is sub-optimal, and in terms of the (closely related) measure of simple
regret ∆[s〈h〉, a]. The latter captures the performance loss that results from taking a and
then following an optimal policy π∗ for the remaining h − 1 steps, instead of following π∗
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from the beginning (Bubeck & Munos, 2010).1 That is,

∆[s〈h〉, a] = Q(s〈h〉, π∗(s〈h〉))−Q(s〈h〉, a),

where

Q(s〈h〉, a) =

{
Es′ [R(s, a, s′) +Q (s′〈h−1〉, π∗(s′〈h−1〉))] , h > 0,

0, h = 0
.

Numerous MCTS algorithms, and in particular, the popular UCT (Kocsis & Szepesvári,
2006) algorithm and its variants (Coquelin & Munos, 2007; Tolpin & Shimony, 2012),
guarantee eventual convergence to the optimal choice of action, while providing smooth
reduction of the choice-error probability and simple regret over planning time. The relative
empirical attractiveness of the various MCTS planning algorithms depends on the specifics
of the problem at hand and usually cannot be predicted ahead of time. However, when it
comes to formal guarantees on the expected performance improvement over the planning
time, none of the online MCTS algorithms for MDPs breaks the barrier of the worst-case
polynomial-rate reduction of simple regret and choice-error probability over time.

This is precisely our contribution here. Our work has been motivated by a recently
growing understanding that the current MCTS algorithms for MDPs do not optimize the
reduction of simple regret directly, but only via optimizing what is called cumulative regret,
a performance measure suitable for the (very different) setting of “reinforcement learning
while acting” (Bubeck & Munos, 2010; Busoniu & Munos, 2012; Tolpin & Shimony, 2012;
Feldman & Domshlak, 2012).

• Departing from this high-level realization, we discuss certain pitfalls in simple regret
minimization via Monte-Carlo sampling, and identify two, somewhat competing, ex-
ploratory objectives that should be pursued by the sampling mechanism. We then
suggest a principle of “separation of concerns,” whereby different parts of each state-
space sample should be devoted to different exploration objectives.

• We introduce MCTS2e, a novel sampling scheme that specializes MCTS and imple-
ments that principle of “separation of concerns.” Our main result is in the introduction
and analysis of BRUE, a concrete instance of MCTS2e that guarantees smooth and
exponential-rate reduction of both the simple regret and the choice-error probability
over time, and this for general MDPs over finite state spaces. In fact, we show that
qualitatively similar guarantees are satisfied by a broad class of what we call purely
exploring MCTS2e algorithms, with BRUE being a simple yet efficient instance of this
class.

• Finally, we discuss and analyze the prospects of “learning by forgetting,” a princi-
ple according to which old samples are degraded as newer (and higher-quality) sam-
ples are gathered. Generalizing BRUE by extending it with this ingredient forms a

1. It may appear to the reader as more intuitive to consider the loss that results from applying the rec-
ommendations instead of π∗ at all the H steps, and not just at the first one. However, as Kearns et al.
(2002) show in their Lemma 5, the two measures are closely related, with this alternative measure being
directly from simple regret along the execution horizon.
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parametrized algorithm BRUE(α), with the parameter α controlling the level of “for-
getfulness.” We show that BRUE(α) exhibits even more attractive formal guarantees
than those exhibited by BRUE.

The rest of the paper is structured as follows. In Section 2.2 we provide background
on Monte-Carlo tree search, and in particular, on the UCT algorithm. Then, in Section 3,
we discuss simple regret minimization in MDPs via a multi-armed bandits perspective,
and in Section 4, we introduce the principle of “separation of concerns” and establish our
main algorithmic constructs along with the corresponding computational results. Section 5
is devoted to “learning with forgetting” in MCTS, and in particular, to the algorithm
BRUE(α). In Section 6 we discuss some findings of our empirical evaluation. The proofs
of the formal claims are relegated to Appendix B, the three subsections of which contain,
respectively, the proofs for the three key theorems. For completeness, Appendix A provides
some standard concentration inequalities that we use in the paper.

2. Background

Henceforth, A(s) ⊆ A denotes the actions applicable in state s, the operation of drawing a
sample from a distribution D over set ℵ is denoted by ∼ D[ℵ], U denotes uniform distribu-
tion, and JnK for n ∈ N denotes the set {1, . . . , n}. For a sequence of tuples ρ, ρ[i] denotes
the i-th tuple along ρ, and ρ[i].x denotes the value of the field x in that tuple. When con-
sidering an MDP 〈S,A, Tr,R〉, K denotes the state branching factor (maximal number of
actions per state), B denotes the action branching factor (maximal number of outcomes per
action), and ∆ = mina6=π∗(s0,H) ∆[s0〈H〉, a] denotes the minimal possible non-zero simple
regret at the root.

2.1 Sparse Sampling

One of the earliest and best-known online planning algorithms developed for generative
MDP models is the sparse sampling (SS) algorithm by Kearns et al. (2002). While SS has
been originally developed for infinite-horizon discounted MDPs, its reformulation for finite
horizon MDPs is straightforward as follows.

For each action a ∈ A(s0), SS estimates its value Q(s0〈H〉, a) by averaging C recur-
sive samples of a’s outcome states. The outcome states s′ are sampled from the genera-
tive model of the transition function Tr(s0, a), and the value of such a sample is set to
R(s0, a, s

′) + maxa′ Q(s′〈H − 1〉, a′), with the Q-values of the actions a′ ∈ A(s′) being esti-
mated recursively the same way, until hitting depth H. The number of outcome samples
C is set so to guarantee that the quality of the recommendation issued upon termination
of the algorithm meets a desired level of accuracy. Alternatively, given C, the same formal
analysis can be used to derive the corresponding accuracy guarantee. Equivalent bounds
on simple regret are as follows.

Proposition 2.1.1 Let SS be called on a state s0 of an MDP 〈S,A, Tr,R〉 with rewards in
[0, 1] and finite horizon H. Then, the simple regret of the action πSS(s0〈H〉), recommended
by SS with parameter C > 0, is bounded as

E∆[s0〈H〉, πSS(s0〈H〉)] ≤ H(K ·min(B,C))He−
∆2C
H4 .
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The proof of Proposition 2.1.1 is given in Appendix C, p. 200. The bound in Proposi-
tion 2.1.1 suggests that the formal guarantees of SS become meaningful only when

C >
H5 log(K ·min{B,C})

∆2
.

Assuming that B < C, this implies that the bound in Proposition 2.1.1 becomes non-trivial
only when the overall number of SS calls to the generative model is

O
(
∆−2H5 log(BK)(BK)H

)
. (1)

Notably, SS is not a strong anytime algorithm, but what is called a “contract” algorithm (Zil-
berstein, 1993): The termination of SS is parametrized by C, and interrupting SS before
its normal termination results in no meaningful action recommendation. However, knowing
the overall number of allowed calls to the generative model can in principle enable more
knowledgeable allocation of the deliberation efforts (Hay, Shimony, Tolpin, & Russell, 2012).
Hence, in general, deliverables of the contract algorithms are expected to be better than
deliverables of the, de facto similarly budgeted, strong anytime algorithms (Zilberstein,
1993). Therefore, the bound in (1) sets a good reference for understanding the significance
of formal guarantees provided by strong anytime algorithms for online MDP planning.

2.2 Monte-Carlo Tree Search and UCT

MCTS, a canonical scheme for Monte-Carlo tree search that gives rise to various specific
algorithms for online MDP planning, is depicted in Figure 1, on the left. MCTS explores
the state space in the radius of H steps from the initial state s0 by iteratively rolling out
state-space samples from s0. Each such rollout ρ comprises a sequence of simulated steps
〈s, a, s′, r〉 where s is a state, a is an action applicable in s, s′ is a state resulting from
applying a at s, and r is the corresponding immediate reward. In particular, ρ[0].s = s0

and ρ[t].s′ = ρ[t+1].s for all t.
Each generated rollout is used to update some variables of interest associated with the

states visited and actions applied therein. These variables typically include at least the
action value estimators Q̂(s〈h〉, a), as well as the counters n(s〈h〉, a) that keep the number
of times the corresponding estimators Q̂ (s〈h〉, a) have been updated. The rollout-oriented
exploration of MCTS allows information from states at deeper levels to be propagated to
the root s0〈H〉 in low-complexity iterations of O(H). This allows smooth improvement of
the intermediate quality of recommendation, which is probably one of the main reasons that
MCTS seems particularly appealing in the context of online planning.

Instances of MCTS vary mostly along the different implementation of the strategies

• StopRollout, specifying when to stop a rollout;

• RolloutAction, prescribing an action to apply in the current state of the rollout;
and

• Update, specifying how a rollout should expand the tree T and update the maintained
variables stored at the nodes of the constructed search tree.2

2. Due to the Markovian nature of MDPs, it is unreasonable to distinguish between nodes associated with
the same state at the same depth. Hence, the actual graph constructed by most instances of MCTS
forms a directed acyclic graph over nodes s〈h〉 ∈ S × {0, 1, . . . , H}.
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MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]

while time permits do
ρ← Rollout // generate rollout

Update(ρ)

return arg maxa Q̂(s0〈H〉, a)

procedure Rollout
ρ← 〈〉
s← s0

d← 0
while not StopRollout(ρ) do

h← H − d
a← RolloutAction(s〈h〉)
s′ ← RolloutOutcome(s〈h〉, a)
r ← R (s, a, s′)
ρ [t]← 〈s, a, r, s′〉
s← s′; d← d+ 1

return ρ

procedure Update(ρ)
r̄ ← 0
for d← |ρ|, . . . , 1 do

h← H − d
a← ρ[d].a
n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
r̄ ← r̄ + ρ [d] .r
MC-backup(s〈h〉, a, r̄)

procedure MC-backup(s〈h〉, a, r̄)
Q̂(s〈h〉, a)← n(s〈h〉,a)−1

n(s〈h〉,a)
Q̂(s〈h〉, a) + 1

n(s〈h〉,a)
r̄

procedure StopRollout(ρ)
d← |ρ|
return d = H or A(ρ[d].s′) = ∅

procedure RolloutAction(s〈h〉) // UCB

if ∃a : n (s〈h〉, a) = 0 then
return a

return argmaxa

[
Q̂(s〈h〉, a) + c

√
logn(s〈h〉)
n(s〈h〉,a)

]
procedure RolloutOutcome(s〈h〉, a)

return s′ ∼ P(S |s, a)

Figure 1: A template for MCTS algorithms (left) , and the UCT algorithm as a specific set
of sub-routines for MCTS (right).

Once interrupted, MCTS uses the information collected throughout the exploration to rec-
ommend an action to perform at state s0.

Numerous concrete instances of MCTS have been proposed, with the UCT algorithm
(Kocsis & Szepesvári, 2006) and its modifications (Coquelin & Munos, 2007; Tolpin &
Shimony, 2011) being the most popular such instances these days (Gelly & Silver, 2011;
Sturtevant, 2008; Bjarnason et al., 2009; Balla & Fern, 2009; Eyerich et al., 2010; Keller &
Eyerich, 2012). The specification of the UCT algorithm as an instance of MCTS is depicted
in Figure 1, on the right.

• Different versions of UCT use different rules to end a rollout. In the version depicted
here, rollouts end at terminal nodes, that is, either at depth H or at states with no
applicable actions.3

• The RolloutAction policy of UCT is based on the deterministic decision rule
UCB1 (Auer, Cesa-Bianchi, & Fischer, 2002), originally proposed for optimal balance
between exploration and exploitation for cumulative regret minimization in stochastic

3. In a more popular version of UCT, the search tree is grown incrementally, by ending the rollouts whenever
a new node is encountered. However, this point is extraneous for the exposition of this paper.
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multi-armed bandit (MAB) problems (Robbins, 1952). At node s〈h〉, the next-on-
the-sample action a is selected as follows: If all the actions applicable in s have been
sampled by now at s〈h〉, that is, if n(s〈h〉, a) > 0 for all a ∈ A(s), then the selected
action corresponds to

argmax
a

[
Q̂(s〈h〉, a) + c

√
log n(s〈h〉)
n(s〈h〉, a)

]
, (2)

where c > 0 is a fixed parameter that balances between the first, exploitation-oriented,
and the second, exploration-oriented, summands in Eq. 2. Otherwise, a is selected
uniformly at random from the still unexplored actions {a ∈ A(s) | n(s〈h〉, a) = 0}. In
both cases, the procedure sample-outcome of UCT then samples the next state on
the rollout according to the transition probability P(S |s, a).

• UCT updates all the value estimators Q̂(s〈h〉, a) of the (s〈h〉, a) pairs encountered
along the rollouts. The updates are done via the MC-backup procedure, which
averages the accumulated rewards of the rollouts from s〈h〉 to terminal states.

In terms of formal properties, UCT is an online algorithm that, from a certain point in
time, provides a smooth reduction of simple regret over time to zero, that is, a smooth con-
vergence to the optimal action choice at s0〈H〉 (Kocsis & Szepesvári, 2006). Two aspects of
convergence are of interest: (1) the length of the transition period during which no reduc-
tion of simple regret can be guaranteed at all, and (2) the reduction rate of simple regret
over time, after the transition period is over. Considering (1), Coquelin and Munos (2007)
showed that the number of samples after which the bounds of UCT on simple regret become
meaningful might be as high as hyper-exponential in H. Considering (2), Theorem 6 in the
work of Kocsis and Szepesvári (2006) claims a polynomial-rate reduction of the probability
of choosing a non-optimal action, which implies the same for the simple regret4.

Some attempts have recently been made to improve UCT, and online MCTS-based plan-
ning in general, in terms of these two aspects of convergence (Tolpin & Shimony, 2012; Hay
et al., 2012; Coquelin & Munos, 2007). While the reported empirical results were promis-
ing, none of these suggested MCTS instances breaks the UCT’s barrier of the worst-case
polynomial-rate reduction of simple regret over time. Hence, the question of whether an
online, smoothly converging MCTS algorithm can substantially outperform UCT in terms
of these two convergence parameters remained open. In what comes next, we answer this
question affirmatively.

3. Simple Regret Minimization in MDPs

At a high level, the key property of UCT is that its exploration of the search space is obtained
by considering a hierarchy of forecasters (s, h), each minimizing its own cumulative regret,
that is, the loss of the total reward incurred while exploring the environment (Auer et al.,
2002). In that respect, according to Theorem 6 in the work of Kocsis and Szepesvári (2006),
UCT asymptotically achieves the best possible (logarithmic) cumulative regret. However, as
recently pointed out in numerous works (Bubeck & Munos, 2010; Busoniu & Munos, 2012;

4. Notably, these claims are made under some nontrivial assumptions

171



Feldman & Domshlak

Tolpin & Shimony, 2012; Feldman & Domshlak, 2012), cumulative regret does not seem to
be the right objective for online MDP planning, and this is because the rewards “collected”
at the simulation phase are fictitious. Furthermore, the work of Bubeck, Munos, and Stoltz
(2011) on multi-armed bandits shows that minimizing both the cumulative and the simple
regret are somewhat competing objectives, in the sense that the minimal simple regret can
increase as the bound on the cumulative regret decreases.

This relationship between simple and cumulative regret minimization in MABs suggests
that focusing online MDP planning directly on simple regret minimization may lead to al-
gorithms that are, worst-case and/or empirically, substantially more effective than UCT. In
fact, in the context of MABs, Bubeck et al. (2011) already showed that a simple round-robin
sampling of MAB actions, followed by recommending the action with the highest empirical
mean, yields exponential-rate reduction of simple regret, while the UCB1 sampling strategy
that balances between exploration and exploitation yields only polynomial-rate reduction of
that measure. In that respect, the situation with MDPs is seemingly no different. In fact,
although designed for a slightly different setup, the sparse sampling algorithm provides an
evidence for the theoretical merits of being focused solely on exploration in online planning
for MDPs.

It appears, however, that the answer to the question of how one should “focus on ex-
ploration,” while preserving both onlineness and smoothness of convergence, is less straight-
forward in general MDPs than it is in the special case of MABs. Before we motivate and
discuss the various exploratory concerns in online Monte-Carlo planning for MDPs, and
what the separation of these concerns can possibly buy us, we begin with a MAB per-
spective on MDPs, which shows that smooth exponential-rate reduction of simple regret in
MDPs is indeed achievable, at least theoretically.

3.1 Multi-armed Bandit Perspective on MDPs

Let s0 be a state of an MDP 〈S,A, Tr,R〉 with rewards in [0, 1], and a finite horizon H.
In principle, such a general MDP can be viewed as a MAB, with each arm in the MAB
corresponding to a “flat” policy of acting for H steps starting from the current state s0.
A “flat” policy π is a minimal partial mapping from state/steps-to-go pairs to actions that
fully specifies an acting strategy in the MDP for H steps, starting at s0. Sampling such an
arm π is straightforward as π prescribes precisely which action should be applied at every
state that can possibly be encountered along the execution of π. The reward of such an
arm π is stochastic, with support [0, H], and expected value µπ. The number of arms in

this schematic MAB is K
∑H−1
i=0 Bi ≈ KBH . Now, consider a simple algorithm, NaiveUniform,

which systematically samples each “flat” policy in a loop, and uses the obtained reward to
update the empirical mean µ̂π of the corresponding policy arm π. If stopped at iteration
n, the algorithm recommends the policy arm πn with the best empirical value µ̂πn . By
iteration n of this algorithm, each arm will be sampled at least b n

KBH
c times. Therefore,

using Hoeffding’s tail inequality5, the probability that the chosen arm policy πn is sub-

5. For completeness, Hoeffding’s tail inequality is provided in Appendix A, pp. 188.

172



Simple Regret Optimization in Online Planning for MDPs

optimal in our MAB is upper-bounded by

∑

π 6=π∗
P {µ̂π > µ̂π∗} =

∑

π 6=π∗
P {µ̂π − µ̂π∗ − (−∆π) ≥ ∆π} ≤ KBHe−

b n

KB
H
c∆2

2H2 , (3)

where ∆π = µπ∗ − µπ and ∆ = minπ 6=π∗ ∆π. Denoting the simple regret of πn by rn , the
expected simple regret can therefore be bounded as

Ern ≤ HKBHe−
b n

KB
H
c∆2

2H2 . (4)

Note that NaiveUniform uses each rollout ρ = 〈s0〈H〉, a1, s1〈H−1〉, . . . , aH , sH〈0〉〉 to
update the estimation of only a single policy π. However, recalling that arms in our MAB
problem are actually compound policies, the same sample can in principle be used to update
the estimates of all policies π′ that are consistent with ρ in the sense that, for 0 ≤ i ≤ H−1,
π′(si〈H−i〉) is defined and π′(si〈H−i〉) = ai+1. The resulting algorithm, CraftyUniform,
generates samples by choosing the actions along the sample uniformly at random, and uses
the outcome of each sample to update all the policies consistent with it. Note that the
policy arms in CraftyUniform cannot be sampled systematically as in NaiveUniform because
the set of policies updated at each iteration is stochastic.

Since the sampling is uniform, the probability of any policy to be updated by a sample
issued at any iteration of CraftyUniform is 1

KH . Let Nπ ≤ n denote the number of sam-
ples consistent with the policy π among the first n samples issued by CraftyUniform. The
probability that πn, the best empirical arm after n iterations, is sub-optimal is bounded by∑

π 6=π∗ P {µ̂π > µ̂π∗} where

P {µ̂π > µ̂π∗} ≤ P
{
µ̂π − µπ ≥

∆π

2

}
+ P

{
µ̂π∗ − µπ∗ ≥

∆π

2

}
. (5)

Each of the two terms on the right-hand side can be bounded as:

P
{
µ̂π − µπ ≥

∆π

2

}
≤ P

{
Nπ ≤

n

2KH

}
+ P

{
Nπ >

n

2KH
, µ̂π − µπ ≥

∆π

2

}

(†)
≤ e

− n

8KH +

n∑

i= n

2KH
+1

P {Nπ = i}P
{
µ̂π − µπ ≥

∆π

2

∣∣∣∣ Nπ = i

}

≤ e−
n

8KH + P
{
µ̂π − µπ ≥

∆π

2

∣∣∣∣ Nπ =
n

2KH
+ 1

} n∑

i= n

2KH
+1

P {Nπ = i}

≤ e−
n

8KH + P
{
µ̂π,n − µπ ≥

∆π

2

∣∣∣∣ Nπ =
n

2KH
+ 1

}

(‡)
≤ e

− n

8KH + e
− n∆2

π
4KHH2

≤ 2e
− n∆2

π
8KHH2 ,

(6)
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where (†) and (‡) are by Hoeffding’s tail inequality. In turn, similarly to Eq. 4, the simple
regret for CraftyUniform is bounded by

Ern ≤ 4HKBHe
− n∆2

8KHH2 . (7)

Since H is a trivial upper-bound on Ern, the bound in Eq. 7 becomes effective only when

4KBHe
− n∆2

8KHH2 < 1, that is, for

n > (KB)H · 4
(
H

∆

)2

logK. (8)

Note that this “cold start” transition period is much shorter than that of UCT, which can
be hyper-exponential in H. At the same time, unlike in UCT, the rate of the simple regret
reduction here is exponential in the number of iterations. In terms of oracle calls, the length
of the transition period for CraftyUniform is

O
(

∆−2H3 log(K) (KB)H
)
.

Likewise, comparing to sparse sampling (Eq. 1), it appears that the transition period of
CraftyUniform has a smaller dependency on H (H3 vs. H5), and a smaller dependency on
B (log(K) vs. log(BK)).

In sum, CraftyUniform can be seen as a theoretical feasibility test for our agenda: The
algorithm uses Monte-Carlo sampling and averaging updates, it is strong anytime (action
recommendation can be issued instantly, at any time, and the expected quality of the
recommendation improves after every state-space sample), and simple regret decreases at
an exponential rate over time. Moreover, the transition period after which this reduction
rate is guaranteed is somewhat shorter than the (contracted) transition period of SS, and it
is much shorter than the transition period of UCT. In any case, however, the feasibility of
CraftyUniform is only conceptual: it requires explicit reasoning about KBH arms, and thus
it cannot be efficiently implemented.

4. Separation of Concerns in Online MDP Planning

We now show a practical algorithm that achieves smooth, exponential-rate reduction of
simple regret in online MDP planning. To do so, we first motivate and introduce a principle
of “separation of concerns,” whereby different parts of each state-space sample are devoted
to different aspects of problem exploration. We then introduce MCTS2e, a specialized
MCTS sampling scheme that implements that principle of “separation of concerns” via
a two-phase scheme for generating state-space samples. Using MCTS2e as our basis, we
describe a concrete algorithm, BRUE, that achieves exponential-rate, smooth reduction of
simple regret over time, and has a transition period comparable to these of the schematic
CraftyUniform and of the non-interruptible SS. In fact, we show that these formal guarantees
are satisfied by the entire class of what we call “purely exploring” MCTS2e algorithms, one
of which is BRUE.

If we tried to achieve smooth, exponential-rate convergence by merely replacing the
UCB1 policy of UCT with a “pure exploration” policy such as uniform action selection, then

174



Simple Regret Optimization in Online Planning for MDPs

we would have failed miserably. In fact, this naive attempt would result in an algorithm
that does not even converge to the optimal action. The reason for that lies in a fundamental
difference between MABs and MDPs: Unlike in MABs, direct sampling of the actual value
of the actions is impossible because doing so requires knowledge of the optimal policy at
subsequent states in the entire look-ahead space. This knowledge, however, is unavailable
at the beginning of deliberation. Hence, when sampling the futures, each non-root node
s〈h〉 should actually serve two objectives:

(1) estimating the actions at the ancestor(s) of s〈h〉 in T , and

(2) identifying the optimal action π∗(s〈h〉).

While both these objectives are exploratory, they are in opposition to some extent. To
meet the first objective, s〈h〉 should sample its optimal action π∗(s〈h〉) with a probability
approaching 1 as the number of samples grows. To meet the second objective, however, all
actions at s〈h〉 must be selected frequently. When the same protocol for selecting actions is
used, as in UCT, throughout the entire rollout, and the rewards collected along this rollout
are used for updating value estimations at multiple nodes, this protocol should commit to
addressing these two objectives simultaneously. For instance, the UCB1 protocol employed
by UCT at all nodes s〈h〉 chooses the action that seems most attractive in potential, where
this potential stems partially from the relatively high empirical value (complying with ob-
jective (1)), and partially from the less frequent sampling of that action (complying with
objective (2)).

However, while such an overloading of the action selection protocol is unavoidable in
the “learning while acting” setup of reinforcement learning, this is not the case in online
planning. In some sense, the two objectives depicted above resemble the two tasks faced by
MAB forecasters: objective (1) can be seen as a type of recommendation, whereas objective
(2) can be viewed as exploration. It therefore makes perfect sense to fulfill these two
objectives by different policies, much like exploration and recommendation are handled by
different policies in MAB online planning (Bubeck et al., 2011). More specifically, different
policies can be used to choose the method by which node/action pairs should be updated
and the method by which the values of these pairs should be estimated. In what follows,
we refer to this separation of exploratory objectives as “separation of concerns,” and next
we elaborate on the implementation of this concept in online planning for MDPs.

4.1 Two-Phase Sampling and BRUE

We now introduce a novel Monte-Carlo tree search scheme, MCTS2e, tailored towards em-
ploying the principle of “separation of concerns.” MCTS2e is depicted in Figure 2(a) as
a specification of MCTS’s Update procedure. The core difference between the MCTS2e
implementation of Update and that of UCT is in the samples used to update the value
estimators. As illustrated in Figure 3, the value estimators in UCT are updated with the
accumulated reward from the respective tail of the rollout, whereas in MCTS2e the estima-
tors are updated with the accumulated reward of new sub-rollouts, created by the Estimate
procedure.

The Estimate procedure is parametrized with two policies, namely

— EstAction, prescribing the action used for estimation, and
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procedure Update(ρ)
for d← |ρ|, . . . , 1 do

h← H − d
〈s, a, r, s′〉 ← ρ[d]
n(s〈h〉)← n(s〈h〉) + 1
n(s〈h〉, a)← n(s〈h〉, a) + 1
n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1
r̄ ← r + Estimate(s′〈h− 1〉)
MC-backup(s〈h〉, a, r̄)

procedure Estimate(s〈h〉)
r̄ ← 0
for d← 0, . . . , h− 1 do

a← EstAction(s〈h− d〉)
s′ ← EstOutcome(s〈h− d〉, a)
r̃d+1 ← R (s, a, s′)
r̄ ← r̄ + r̃d+1

s← s′

return r̄

procedure StopRollout(ρ)
d← |ρ|
return d = H or A(ρ[d].s′) = ∅

procedure RolloutAction(s〈h〉) // uniform

return a ∼ U [A(s)]

procedure RolloutOutcome(s〈h〉, a)
return s′ ∼ P(S |s, a)

procedure EstAction(s〈h〉) // best

return argmaxa∈A(s) Q̂(s〈h〉, a)

procedure EstOutcome(s〈h〉, a)
for s′ : n(s〈h〉, a, s′) > 0 do

P̂(S = s′ |s, a)← n(s〈h〉,a,s′)
n(s〈h〉,a)

return s′ ∼ P̂(S |s, a)

(a) (b)

Figure 2: (a) MCTS2e as MCTS with specific Update procedure, and (b) the BRUE algo-
rithm as a specific set of sub-routines for MCTS2e (right).

— EstOutcome, determining the next state to follow.

The policies RolloutAction and RolloutOutcome (used by the MCTS’s Rollout
procedure) determine what value estimators to update, while the policies EstAction and
EstOutcome are used to update these estimators.

This separation allows us to introduce BRUE, which is, in a way, the most “exploratory”
MCTS2e instance possible.6 The BRUE setting of MCTS2e is depicted in Figure 2(b).
Similarly to UCT, the rollouts generated in BRUE end at terminal nodes, and, throughout
the rollout, the next state is sampled according to Tr. However, unlike in UCT, the rollout
actions in BRUE are selected uniformly at random from all the applicable actions. In turn,
in the estimation sub-rollouts,

— the selected actions are the empirically best actions, that is, the actions that have the
highest value estimations, and

— the next states are sampled according to the empirical transition probabilities P̂(S =
s′ |s, a), that is, the number of times n(s〈h〉, a, s) state s′ was followed when applying

6. Short for Best Recommendation with Uniform Exploration; the name is carried on from our first
presentation of the algorithm, where “estimation” was referred to as “recommendation” (Feldman &
Domshlak, 2012).
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bQ (⇢[d].s, ⇢[d].a)bQ (⇢[d].s, ⇢[d].a)

MCTS2e UCT

H�1X

i=d

⇢[i].r
H�dX

i=1

r̃i

(a) (b)

Figure 3: Illustration of a value estimator update in MCTS2e (a) vs. UCT (b). Circles
represent decision nodes, solid lines represent the actions taken, squares represent
the chance nodes, and dashed arrows represent the outcomes that result in the
subsequent decision nodes.

action a in node s〈h〉, divided by the overall number of times n(s〈h〉, a) that action a
was applied in s〈h〉.7

We now proceed with a formal analysis of BRUE. In general, when considering an
instance of MCTS2e, by Tn we denote the search graph obtained after n iterations. For the
sake of simplicity, we assume uniqueness of the optimal policy π∗: at each state s and each
number h of steps-to-go, we assume a single optimal action, and denote it by π∗(s, h). For
all nodes s〈h〉 ∈ Tn, πB

n (s〈h〉) is a randomized strategy, uniformly choosing among actions
a maximizing Q̂(s〈h〉, a). In addition to the problem-specific state branching factor K, and
minimal non-zero simple regret at the root ∆ = mina6=π∗(s0,H) ∆[s0〈H〉, a], our bounds below
depend on the problem-specific action branching factor B, as well as on the horizon H. The
former two parameters are inherited from MAB, while the latter two connect between MAB
and general MDP.

Theorem 1 Let BRUE be called on a state s0 of an MDP 〈S,A, Tr,R〉 with rewards in
[0, 1], and finite horizon H. There exist pairs of parameters a,b > 0, dependent only on

7. Sampling according to P(S | s, a) as in RolloutOutcome is also a valid choice, although in terms of
formal guarantees, EstOutcome as in Figure 2 appears to be more attractive.
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{K,B,H,∆}, such that, after n > H iterations of BRUE, the simple regret is bounded as

E∆[s0〈H〉, πBn (s0〈H〉)] ≤ Ha · e−bn, (9)

and the choice-error probability is bounded as

P
{
πBn (s0〈H〉) 6= π∗(s0〈H〉)

}
≤ a · e−bn. (10)

In particular, Eq. 9 and 10 hold with a = 3K
(

1044B2K2

∆2

)H−1
(196BK)

1
2

(H−1)2
(H−1)!2 and

b = ∆2

9K2(196BK)H−1H2 .

The proof of Theorem 1 is given in Appendix B.1, p. 188. The length of the transition
period implied by Theorem 1 is given by

O

(
∆−2H5 log(

BK

∆
)(196BK)H

)
(11)

This transition period is rather comparable to that of sparse sampling except for the rather
large constant appearing in the basis of the exponent in Equations 9 and 10. Although this
constant imposes a significant increase of the transition period, few things should be noted
with regards to the bounds provided for BRUE. First and foremost, the parameter b in
Theorem 1 reflects the worst-case in terms of the transition function Tr, which corresponds
to a uniform distribution, that is, P(s′ | s, a) = 1

B for all states s and actions a ∈ A(s).
However, if the probability mass of the action transition functions each concentrates on a
small set of outcomes, then the convergence rate of BRUE is expected to be much better.
Proposition 4.1.1 formulates BRUE’s bounds with respect to a problem-dependent parameter
1 ≤ Pe ≤ B, which is related to the entropy of the transition function and is defined as

Pe = max
s,a
‖P(· |s, a)‖ 1

2
.

Proposition 4.1.1 Let BRUE be called on a state s0 of an MDP 〈S,A, Tr,R〉 with re-
wards in [0, 1], and finite horizon H ≥ 4. Then BRUE converges at an exponential rate

in the sense of Eq. 9 and 10 of Theorem 1 with a = 3K
(

172BK
∆2

)H−1
(H!)2 and b =

∆2

9KB4(1666K)H−1PH−5
e H2

.

The formal guarantees of BRUE can therefore be even better than these for SS. The proof for
Proposition 4.1.1 (given in Appendix B.2, p. 195) is obtained by a rather minor modification
of the proof for Theorem 1.

Relating to the tightness of the bounds, it should be noted that the size of the scalar
constants in the analysis of BRUE partially stems from our attempt to avoid cumbersome
expressions, and thus can be considerably reduced. Furthermore, in a particular point in
our analysis where we bound the error of action-value estimations at different points in
time, we believe that our bound gets particularly loose. We comment about this issue in
more detail within the proof of Theorem 1 (right after Proposition B.1.1, p. 190).

Having read this far, the reader may rightfully ask to what extent the guarantees pro-
vided by BRUE are unique among the instances of MCTS2e. In general, the formal properties
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of MCTS2e instances heavily depend on their specific sub-routines, and some of them will
not even guarantee convergence to the optimal action. However, BRUE is still very much
not unique in its deliverables. In particular, below we define a family of purely explor-
ing MCTS2e algorithms that all guarantee exponential-rate reduction of simple regret over
time.8

Definition 1 (Purely exploring MCTS2e) An instance A of MCTS2e is called purely
exploring if, for each node s〈h〉 reachable from s0, and each a ∈ A(s), there exist parameters
ξ, β, γ, dependent only on {K,B,H,∆}, such that

P {n(s〈h〉, a) ≤ ξn(s〈h〉)} ≤ βe−γn(s〈h〉),

and the estimation policy EstAction selects the empirically best arm.

Theorem 2 Let A be a purely exploring instance of MCTS2e. Then A converges at an
exponential rate in the sense of Eq. 9 and 10 of Theorem 1.

In Appendix B.3, p. 195 we show how a proof of Theorem 2 can be easily derived from
our proof of Theorem 1. Furthermore, the analysis provided in the proof for Theorem 1
can be used to extract the convergence parameters c, c′ for any purely exploring algorithm,
given its specific parameters ξ, β, γ.

5. Learning With Forgetting and BRUE(α)

In BRUE, as well as in other converging instances of both MCTS and MCTS2e, the evolution
of action value estimates at the internal nodes is based on biased samples that stem from
the selection of non-optimal actions at the descendant nodes. This bias tends to shrink as
more samples are accumulated at these descendants. Consequently, the estimates become
more accurate, the probability of selecting an optimal action increases accordingly, and the
bias of the ancestor nodes shrinks in turn.

An interesting question that arises in this context is whether samples obtained at dif-
ferent stages of the sampling process should be weighed differently. At a high level, our
intuition suggests that biased samples do provide us with some valuable information, es-
pecially when they are still all we have. At the same time, the value of this information
decreases as we obtain more accurate samples. Hence, in principle, putting more weight
on samples with smaller bias could increase the accuracy of our estimates. This led us to
consider BRUE(α), an algorithm that generalizes BRUE ≡ BRUE(1) by basing the estimates
only on the α fraction of most recent samples.

Technically, BRUE(α) differs from BRUE only in the implementation of the MC-backup
procedure as depicted in Figure 4. In addition to the variables maintained by BRUE,
each node/action pair (s〈h〉, a) in BRUE(α) is associated with a list L(s〈h〉, a) of rewards,
collected at each of the n(s〈h〉, a) samples that are responsible for the current estimate
Q̂(s〈h〉, a). When (s〈h〉, a) is updated by MC-backup, the value estimator Q̂(s〈h〉, a) is
assigned with the average of the most recent dα ·n(s〈h〉, a)e samples, where dxe denotes the

8. We, of course, make no claims that these guarantees are exclusive to the purely exploring instances of
MCTS2e, or even to MCTS2e instances in general.

179



Feldman & Domshlak

procedure MC-backup(s〈h〉, a, r̄)
nα ← dα · n(s〈h〉, a)e
n← n(s〈h〉, a)
L(s〈h〉, a)[n]← r̄
Q̂(s〈h〉, a)← 1

nα

∑n
i=n−nα L(s〈h〉, a)[i]

Figure 4: BRUE(α) modified MC-backup procedure

smallest integer that is greater than or equal to x. Theorem 3 below exhibits the benefits
of adopting α < 1 when it comes to convergence guarantees.

Theorem 3 Let BRUE(α) be called on a state s0 of an MDP 〈S,A, Tr,R〉 with rewards
in [0, 1] and finite horizon H. There exist pairs of parameters a,b > 0, dependent only
on {K,B,H,∆, α}, such that, after n > H iterations of BRUE (α), we have simple regret
bounded as

E∆[s, πBn (s0, H), H] ≤ Ha · e−bn, (12)

and choice-error probability bounded as

P
{
πBn (s0, H) 6= π∗(s0, H)

}
≤ a · e−bn. (13)

In particular, for a depth-dependent αh ≈ 1
(BK)h−1 , Eq. 12 and 13 hold with

a = 3K
(

12BK
∆2

)H−1
(H!)2 and b = ∆2

9K2(196BK)H−1H2 .

For the particular choice of αh in Theorem 3, the length of the transition period of
BRUE(α) in terms of number of calls to the generative model is

O

(
∆−2H4 log

(
BKH

∆

)
(196BK)H

)
.

While the bound for BRUE(α) seems somewhat better than that of BRUE, this improve-
ment should be attributed more to the looseness of the bound for BRUE and less to the
actual improvement in performance. The proof for Theorem 3 (given in Appendix B.4,
p. 196) does not offer a new technique to address the bound on the accuracy of action-value
estimations at different sampling times, but it reduces the bound by considering fewer sam-
ples. The selection of α in Theorem 3 stems from an attempt to balance as much as possible
between the two sources of inaccuracy appearing in Propositions B.4.1 and B.4.2 of the proof
for Theorem 3. The smaller α is, the lower is the sample inaccuracy that originates from
the inaccuracy of the estimates at the successor nodes. At the same time, however, the
inaccuracy that stems from basing the estimate on a fewer samples increases. Due to the
branching, nodes farther toward the horizon are sampled less frequently and thus are less
accurate. In the worst case, when the underlying graph Tn is a tree, a node is expected
to be sampled only a fraction 1

(BK)d
of the number of samples that were taken at its “d

steps higher” predecessor. This is precisely the reason for the selection of αh ≈ 1
(BK)h−1 in

Theorem 3.
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In practice, however, these worst-case considerations tend to underrate the value of
samples. Since Tn is typically not a tree, the ratio between the number of samples at
different depths tends to be higher than the aforementioned worst-case ratio. Therefore,
α should better be adapted according to the observed ratios rather than according to the
worst-case ones. Furthermore, since our objective behind estimating the action values is
to identify the optimal action, the bias of the samples may have far less influence on the
quality of the planning outcome than that dictated by the formal guarantees. For instance,
suppose that all action estimators at a particular node s〈h〉 have an equal bias. If this is
the case, then s〈h〉 may home in on its optimal action while Q̂(s〈h〉, a) estimates are still
biased, and that will suffice for s〈h〉 to fulfill its role in value-estimating sub-rollouts issued
by its ancestor(s). While this illustrative setup is clearly extreme, the point here is that
biased estimators can still distinguish the better actions from the worse ones, as long as the
biases across the actions are correlated.

6. Experimental Evaluation

We have evaluated BRUE empirically on the MDP Sailing domain (Péret & Garcia, 2004),
used in previous works for evaluating MCTS algorithms (Péret & Garcia, 2004; Kocsis &
Szepesvári, 2006; Tolpin & Shimony, 2012), as well as on an MDP version of random game
trees used in the original empirical evaluation of UCT (Kocsis & Szepesvári, 2006).

In the Sailing domain, a sailboat navigates to a destination on an 8-connected grid
representing a marine environment, under fluctuating wind conditions. The goal is to reach
the destination as quickly as possible, by choosing at each grid location a neighbor location
to move to. The duration of each such move depends on the direction of the move (ceteris
paribus, diagonal moves take

√
2 more time than straight moves), the direction of the wind

relative to the sailing direction (the sailboat cannot sail against the wind and moves fastest
with a tail wind), and the tack. The direction of the wind changes over time, but its strength
is assumed to be fixed. This sailing problem can be formulated as a goal-driven MDP over
finite state space and a finite set of actions, with each state capturing the position of the
sailboat, wind direction, and tack.

In a goal-driven MDP, the lengths of the paths to a terminal state are not necessarily
bounded, and thus it is not entirely clear to what depth BRUE should construct its tree. In
the Sailing domain, we set H to 4×n, where n is the grid-size of the problem instance, and
this because it is unlikely that the optimal path between any two locations on the grid will
be longer than a complete encircling of the area.

We compared BRUE with two MCTS-based algorithms: the UCT algorithm, and a recent
modification of UCT, obtained from UCT by replacing the UCB1 policy at the root node with
the uniform policy (Tolpin & Shimony, 2012). In what follows, we denote this modification
of UCT as uUCT. The motivation behind the design of uUCT was to improve the empirical
simple regret of UCT, and the results for uUCT reported by Tolpin and Shimony (2012)
(and confirmed by our experiments here) are impressive. We also display the results for
an additional MCTS2e-based algorithm, baptized here as BRucbE, which is very similar to
BRUE except that, for exploration, it uses the UCB1 policy instead of the uniform policy. In
other words, BRucbE can be seen as “UCT with separation of concerns”. All four algorithms
were implemented within a single software infrastructure. In line with the setup underlying
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Figure 5: Empirical performance of UCT, uUCT (denoted as UUCT, for short), BRUE, and
BRucbE in terms of the average error on the Sailing domain tasks on n× n grids
with n ∈ {5, 10, 20, 40}.

Theorem 6 of Kocsis and Szepesvári (2006), the exploration coefficient for UCT and uUCT
(parameter c in Eq. 2) was set to the difference between the largest possible and the smallest
possible values of the H-step rollouts from the root. In the Sailing domain, this corresponds
to the maximal move duration, 6, multiplied by the number of steps-to-go h.

Figure 5 shows the performance of the four algorithms in terms of the empirical simple
regret, that is, the average difference Q(s0, a)−V (s0) between the true values of the action
a chosen by the algorithm and that of the optimal action π∗(s0). Each algorithm was run
on 1000 randomly chosen initial states s0, with the target being fixed at one of the corners
of the grid. The performance was measured and depicted as a function of planning time.
For all the four algorithms, the planning time unit, or iteration, corresponds to H action
samples, that is, to the length of a single rollout.
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Figure 6: Empirical performance of UCT, uUCT, BRUE, and BRucbE in terms of the average
error on the MDP version of random game trees with branching factor B and tree
depth D.

Consistently with the results reported in the work of Tolpin and Shimony (2012), on the
smaller tasks, uUCT outperformed UCT by a very large margin, with the latter exhibiting
very little improvement over time even on the smallest, 5× 5, grid. The difference between
uUCT and UCT on the larger tasks was less notable. In turn, both BRUE and BRucbE
substantially outperformed UCT, with BRucbE being slightly better in smaller tasks, and
BRUE taking over in the larger instances, except for relatively short planning deadlines.
This shows that the value of MCTS2e’s “separation of concerns” lies not only in the ability
to employ a pure exploration policy, but also in the ability to base the estimations on the
empirically best values, regardless of the employed exploration policy.

Overall, these results on the Sailing domain clearly testify that BRUE is not only at-
tractive in terms of formal guarantees, but can also be very effective in practice. We have
also evaluated the four algorithms in a domain of random game trees whose goal is a simple
modeling of two-person zero-sum games such as Go, Amazons and Globber. In such games,
the winner is decided by a global evaluation of the end board, with the evaluation employing
this or another feature counting procedure; the rewards thus are associated only with the
terminal states. Following Kocsis and Szepesvári (2006), the rewards in our domain are
calculated by first assigning values to moves, and then summing up these values along the
paths to the terminal states. Note that the move values are used for the tree construction
only and are not made available to the players. The values are chosen uniformly from
[0, 127] for the moves of MAX, and from [−127, 0] for the moves of MIN. The players act
so to (depending on the role) maximize/minimize their individual payoff: the aim of MAX
is to reach terminal s with as high R(s) as possible, and the objective of MIN is similar,
mutatis mutandis. Our simple game tree model is similar in spirit to many other game tree
models used in previous work (Kocsis & Szepesvári, 2006; Smith & Nau, 1994), with two
exceptions. First, we measure the success/failure of the players via the actual payoffs they
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Figure 7: Empirical performance of BRUE and BRUE(α) in terms of the average error on
the MDP version of random game trees and the sailing domain.

receive, rather than on a ternary scale of win/lose/draw. Moreover, to comply with the
setting addressed in this work, we model the game as an MDP where only the moves asso-
ciated with the MAX player are considered as decision nodes, whereas the moves of MIN
are modeled as stochastic outcomes with the following distribution: The optimal minimax
move is chosen with probability p = 0.9, and the complementary probability 1−p is divided
uniformly between the rest of the moves.

Similarly to our setup for the Sailing domain, the exploration coefficient for UCT and
uUCT was set to the range of the game values, 127H, since rewards are bounded by the
interval

[
−127H2 , 127H2

]
. We ran experiments with two different settings of the branching

factor (B) and tree depth (D). As with the Sailing domain, we compared the empirical
simple regret obtained by UCT, uUCT, BRUE, and BRucbE over time. Figure 6 shows
the performance of the four algorithms for two game configurations, B = 6, D = 8 and
B = 2, D = 22, with each configuration being represented by 1000 game trees. The results
here appear encouraging as well, with BRUE and BRucbE overtaking UCT and uUCT, and
BRucbE even appearing slightly faster than BRUE in terms of convergence.

We also experimented with BRUE(α) in which, in line with our discussion right after
Theorem 3, the α parameter was dynamically adjusted as a function of the depth of the
estimated node/action pair. Specifically, we used α = nH

nh
, where nH denotes the average

number of samples of leaf nodes, and nh denotes the average number of samples of nodes
at the same depth of the value estimator under consideration. As we show in Figure 7,
we did not find any significant empirical benefit of BRUE(α) over BRUE (to match the
superior formal guarantees of the former), neither in the Sailing domain nor in the game
trees domain.

The last set of experiments complements on the theoretical comparison to the sparse
sampling (SS) algorithm. Specifically, we performed an empirical comparison between BRUE
and UCT with a variant of SS called forward-search sparse sampling (FSSS) (Walsh, Goschin,
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& Littman, 2010). Like SS, FSSS estimates the action values at any node using C samples.
However, instead of estimating the action values recursively for any encountered state,
FSSS uses MCTS-style rollouts to explore the state space, initializing the values of yet
unexplored actions with predefined lower and upper bounds. Ultimately, FSSS computes
precisely the same values as SS, thus returning the same recommendation. However, it
potentially benefits from a kind of pruning to reduce the amount of computation. Notably,
unlike SS, FSSS can output an action recommendation at any point of time based on the
maintained lower and upper bounds on the actions values. A typical approach is to select
the action with the maximum lower bound. However, similarly to SS, FSSS cannot provide
any non-trivial guarantees prior to its termination. We therefore choose to use the following
experimental setup. First, we run FSSS with some value of C. We then take the overall
number of action samples performed by FSSS until termination, and use it as a stopping
criteria for BRUE and UCT. Figures 8 and 9 depict the empirical simple regret obtained
by the three algorithms upon the termination in the Sailing and game tree domains. For
each planning task, we picked a few values of C that allowed FSSS to terminate within a
reasonable amount of time.9 In the Sailing domain, the lower and upper bounds in FSSS
were set to 0 and 6h, respectively, whereas in the game trees domain, we used a lower bound
−127H2 and an upper bound 127H2 .

As it appears, both BRUE and UCT outperform FSSS in most tasks, and notably, BRUE
outperforms FSSS in all tasks, and for every value of C. This is despite the purported
advantage of FSSS being aware of the termination point. Our explanation for this result
concerns two fundamental differences between MCTS-based algorithms and SS. First, recall
the formal discussion given after Theorem 1 around the entropy of the transition function.
Suppose that FSSS (or SS) estimates a certain action that has two outcomes, with one
outcome being more likely than the other. If both outcomes are caught by the C action
samples, the same efforts would be invested in estimating the values of these two states,
regardless of the fact that one outcome is more likely and thus has a larger contribution
to the value of the action. In contrast, both UCT and BRUE adapt to the structure of
the problem by skewing the rollouts towards states with higher probability, yielding better
results both theoretically and empirically.

Another potential advantage of MCTS algorithms over SS pertains to the allocation of
computational efforts to estimating the actions values at different depths. In FSSS (and SS),
all the estimations are based on the same number of samples C. In contrast, in both UCT
and BRUE, nodes closer to the root are sampled more frequently because of the branching
factor. To illustrate the potential benefit of focusing the efforts around the root, let us
consider the Sailing domain as an example. The position of the boat reached after taking
the optimal moves in the first few steps would probably be closer to the target compared to
the position reached after taking non-optimal moves in the fist steps. It is therefore likely
that following a random navigation policy from the position of the boat after the first few
steps, the target would be reached sooner on average in the former case than in the latter
case. In other words, the benefit of knowing the optimal policy at deeper states is smaller,
and putting more focus on estimating the actions at nodes closer to the root makes much

9. The time limit for FSSS was set to 24 hours. Notably, in our implementation of FSSS, we minimize the
number of action sample by sampling outcomes only for actions that are selected in the rollouts
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5× 5 10× 10

20× 20 40× 40

Figure 8: Empirical performance of FSSS, UCT, and BRUE in terms of the average error at
termination on the Sailing domain tasks on n × n grids with n ∈ {5, 10, 20, 40}.
For n = 5, the empirical simple regret of BRUE was 0. For n = 40, running FSSS
with C > 1 took more than 24 hours.
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B = 6/D = 8 B = 2/D = 20

Figure 9: Empirical performance of FSSS, UCT, and BRUE in terms of the average error at
termination on the MDP version of random game trees with branching factor B
and tree depth D.

sense. We believe that this property prevails in many practical cases, and in these cases
MCTS algorithms should be expected to be more efficient.

It is also interesting to see that, although UCT outperforms FSSS in most tasks, the
gap between them is decreasing with the size of the budget (C), and in the smaller tasks
(Sailing domain with grid 5×5 and 10×10), FSSS even outperforms UCT from some point.
We find this to be compliant with the theoretical merits of the pure-exploratory nature of
both SS and BRUE.

7. Summary

With the goal of improving the convergence guarantees of smooth Monte-Carlo tree search
algorithms for online planning in MDPs, we have introduced a principle of “separation of
concerns,” as well as a Monte-Carlo tree search scheme, MCTS2e, that allows operational-
izing this principle. We showed that a subclass of “purely exploring” instances of MCTS2e
guarantees smooth exponential-rate improvement of the performance measures of interest,
improving over polynomial-rate guarantees provided by the state-of-the-art algorithms. We
then examined, both formally and empirically, a purely exploring MCTS2e algorithm called
BRUE. Finally, we explored the prospects of time-dependent “forgetting” of samples within
Monte-Carlo search, and showed concrete merits of such sample ignorance on a parametric
BRUE(α) algorithm that generalizes BRUE with such “learning with forgetting.”

The results open numerous questions for further investigation. First, while BRUE is a
rather straightforward implementation of pure exploration with MCTS2e, it is not neces-
sarily the most efficient one. We believe that replacing the uniform exploration of BRUE
with a scheme that makes use of the knowledge acquired along the sampling to direct the
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exploration may result in an empirically more efficient instance of MCTS2e, and possibly
even improve on the formal guarantees of BRUE.

Another important point to consider is the speed of convergence to “good” actions, as
opposed to the speed of convergence to optimal actions. While BRUE is geared towards
identifying the optimal action, “good” is often the best one can hope for when dealing with
large MDPs. To identify the optimal solution, BRUE constructs a full-depth tree right from
the start. However, focusing on the nodes closer to the root node, e.g., by utilizing more
intelligent rules for rollout termination, may improve the quality of the recommendation if
the planning time is severely limited. We have recently reported on some successful steps
in this direction (Feldman & Domshlak, 2013), but these steps were far from closing this
interesting venue of research.

Finally, the core tree sampling scheme employed by BRUE is not the only plausible way
to implement the concept of “separation of concerns” discussed in this paper. For instance,
substituting the MC-backup procedure with value updates based on Bellman’s principle,
as, e.g., was done by Keller and Helmert (2013), also constitutes a form of “separation of
concerns.” It would be interesting to have an in-depth comparison of both the formal and
empirical properties of the different protocols.
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Appendix A. Auxiliary Propositions

In the analysis below, we make extensive use of the Hoeffding’s tail inequality for sums of
bounded independent random variables. In addition, we use the result of the mathematical
programming P1 below.

Hoeffding’s tail inequality. Let X1, . . . , Xn be independent bounded random variables
such that Xi falls in the interval [ai, bi] with probability 1, and let Sn =

∑n
i=1Xn.

Then, for any t > 0, we have

P {Sn − ESn ≥ t} ≤ e−2t2/
∑n
i=1(bi−ai)2

.

In particular, if all Xi are identically distributed within [0, 1] and EXi = µ, then

P {Sn − µn ≥ t} ≤ e−
2t2

n .

P1 For h ≥ 1, the solution of the mathematical program

maximize
p

B∑

i=1

pi
h
√
piB

subject to

B∑

i=1

pi = 1

0 ≤ pi ≤ 1
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has a value of 1. The result follows from the concavity of the objective function.

Appendix B. Proofs

This appendix is structured in four subsections, respectively dedicated to the proof of
Theorem 1, Proposition 4.1.1, and Theorems 2, and 3. For the sake of readability, in
places where we believe it does not create any confusion, the expressions of the form P(E |
X1 = x1, . . . , Xk = xk) ≤ f(x1, . . . , xk) where Xi are random variables are written simply
as P(E) ≤ f(X1, . . . , Xk).

B.1 Proof of Theorem 1

In what follows, by V π
p (s〈h〉) we denote the h-steps value function defined as

E

[
h−1∑

i=0

R (si, π (si〈h− i〉) , si+1)

∣∣∣∣∣ s0 = s

]
,

where the expectation is over the transition function Tr, i.e., over the set of conditional
probability distributions {P(S |s, a)}s,a. V ∗p (s〈h〉) denotes the value function of the optimal
policy π∗. The subscript p is omitted if p corresponds to the transition probabilities P of
the MDP in question.

Theorem 1 follows almost immediately from Lemma 4 below.

Lemma 4 For any node s〈h〉 we have

P
{
V ∗(s〈h〉)− V πB

P̂ (s〈h〉) ≥ δ
}
≤ ahe

−bhδ2n(s〈h〉)

P
{
V πB

P̂ (s〈h〉)− V ∗(s〈h〉) ≥ δ
}
≤ ahe

−bhδ2n(s〈h〉),

where

ah = 3K

(
116 · 9B2K2

δ2

)h−1

(196BK)
1
2

(h−1)2
(h− 1)!2

bh =
1

9K2(196BK)h−1h2
.
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Proof: The proof is by induction on h. Starting with h = 1, we have

P
{
V ∗(s〈1〉)− V πB

P̂ (s〈1〉) ≥ δ
}

≤ P
{
Q(s〈1〉, π∗(s〈1〉))−Q(s〈1〉, πB(s〈1〉)) ≥ 2δ

3

}

+ P

{∑

s′

(P(s′ |s, πB(s〈1〉))− P̂(s′ |s, πB(s〈1〉)))R(s, πB(s〈1〉), s′) > δ

3

}
by def. of Q

≤
∑

a6=π∗(s〈1〉)

P
{
Q̂(s〈1〉, a)−Q(s〈1〉, a) ≥ δ

3

}

+ P
{
Q(s〈1〉, π∗(s〈1〉))− Q̂(s〈1〉, π∗(s〈1〉)) ≥ δ

3

}

+
∑

a∈A(s)

P

{∑

s′

(P(s′ |s, a)− P̂(s′ |s, a))R(s, πB(s〈1〉), s′) > δ

3

}

≤
∑

a∈A(s)

P
{
n(s〈1〉, a) ≤ n(s〈1〉)

2K

}
+ 2Ke−

δ2n(s〈1〉)
9K by Hoeffding

≤ 3Ke−
δ2n(s〈1〉)

9K2 . by Hoeffding

Assuming now the claim holds for all h′ ≤ h, in proving the induction hypothesis for h+ 1,
we encounter the following deficiencies:

(F1) For h = 1, Q̂ is an unbiased estimator of Q, that is, EQ̂ = Q. In contrast, the
estimates inside the tree (at nodes with h > 1) are biased. This bias stems from Q̂
possibly being based on numerous sub-optimal choices in the sub-tree rooted in s〈h〉.

(F2) For h = 1, the summands accumulated by Q̂ are independent. This is not so for h > 1,
where the accumulated reward depends on the selection of actions in subsequent nodes,
which in turn depends on previous rewards.

Our way to circumvent these deficiencies is captured by a sequence of bounding B.1.1-
B.1.5 below. At a very high level, we deal with the bias of samples by using a straightforward
extension of Hoeffding inequality. In the analysis, the dependence between samples is
alleviated by conditioning the outcome of each sample on the state of the information
collected at the nodes below the sampled one. All the propositions below are made under
the assumption of the induction hypothesis.

Considering a node s〈h+ 1〉, we first show that all the value estimations Q̂(s〈h+1〉, a)
of actions a ∈ A(s) are sufficiently accurate. We show it only for a = π∗(s〈h+ 1〉), whereas
the bounds for all other actions can be derived in a similar way. For ease of presentation,
in what follows we use the abbreviations a∗ = π∗(s〈h+ 1〉), aB = πB(s〈h+1〉), and na∗ =
n(s〈h+ 1〉, π∗(s〈h+ 1〉)). We also use the following notation. For t ∈ {1, . . . , na∗}, let the
random variables Xt capture the accumulated reward samples averaged by Q̂(s〈h+1〉, a∗),
πB
t capture the policy induced by BRUE at sample t, and P̂t capture the transition proba-

bilities estimations at sample t. In Proposition B.1.2, we bound the error of Q̂(s〈h+1〉, a∗),
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given that the error of πB
t and P̂t at the descendants of s〈h+ 1〉 during all samples is suf-

ficiently small. In Proposition B.1.1 we bound the probability that the error of πB
t or P̂t

during any sample t is too large.

Proposition B.1.1 For δ > 0, let Eδ be the event in which, while sampling all Xt, t =
1, . . . , na∗, it holds that,

1.
∑

s′ P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)
≤ δt

2 , and

2.
∑

s′

(
P(s′ |s, a∗)− P̂t(s′ |s, a∗)

)
(R(s, a∗, s′) + V ∗(s′〈h− 1〉)) ≤ δt

2 ,

where

δt =

√√√√δ2na∗

9
+

4B log
(
na∗δ2bh

56B

)

bh

1√
t
.

Then,

P {¬Eδ} ≤
112B2ah
δ2bh

e−
bhδ

2na∗
36B . (14)

Proof: It follows from P1 that

P

{∑

s′

P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)
≥ δt

2

}

≤
∑

s′

P



V

∗(s′〈h〉)− V πB
t

P̂t
(s′〈h〉) ≥ δt

2

√
BP̂t(s′ |s, a∗)



 .

(15)

Indeed, if for all states s′ in the summation, it holds that V ∗(s′〈h〉) − V
πB
t

P̂t
(s′〈h〉) <

δt

2
√
BP̂t(s′|s,a∗)

, then, in particular,

∑

s′

P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)
<
∑

s′

P̂t(s′ |s, a∗)
δt

2

√
BP̂t(s′ |s, a∗)

=
δt
2

∑

s′

P̂t(s′ |s, a∗)√
BP̂t(s′ |s, a∗)

≤ δt
2
. by P1
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Given that, we have

P {¬Eδ} ≤
na∗∑

t=1

∑

s′

P



V

∗(s′〈h〉)− V πB
t (s′〈h〉) > δt

2

√
BP̂t(s′ |s, a∗)





+

na∗∑

t=1

P

{∑

s′

(
P(s′ |s, a∗)− P̂t(s′ |s, a∗)

) (
R(s, a∗, s′) + V ∗(s′〈h− 1〉)

)
>
δt
2

}

≤
na∗∑

t=1

Bahe
−bhδ

2
t t

4B by I.H.

+

na∗∑

t=1

e−
δ2t t

4h2 by Hoeffding

≤
na∗∑

t=1

2Bahe
−bhδ

2
t t

4B ≤
na∗∑

t=1

112B2

na∗δ2bh
ahe
−bhδ

2na∗
36B by definition of δt

=
112B2ah
δ2bh

e−
bhδ

2na∗
36B

Note that, while bounding the probability of the event ¬Eδ as in Eq. 14, we basically ignore
the dependency between the state of πB

t and P̂t during different sampling times, and use a
crude union bound. However, if πB

t and P̂t happen to be accurate at some sample t, the
probability that they will remain accurate at subsequent samples is higher. It is possible
that factoring this dependency into the bound in Proposition B.1.1 can further improve the
tightness of the bound.

Conditioned on the state of πB
t and P̂t during all samples t = 1, . . . , na∗ , and given that

they are sufficiently accurate as defined by the event Eδ above, Proposition B.1.2 bounds
the probability that the value estimator Q̂(s〈h+1〉, a∗) is inaccurate.

Proposition B.1.2 Under the definition of Eδ introduced in Proposition B.1.1, for all
δ > 0, it holds that, given {πBt }

na∗
t=1, {P̂t}na∗t=1, and the event Eδ,

(1) for all t, the random variables Xt are mutually independent,

(2) for t ≥ 1, E
[
Xt

∣∣∣ {πBt }, {P̂t}, Eδ
]
≥ Q(s〈h+1〉, a)− δt, and

(3) P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

∣∣∣ {πBt }, {P̂t}, Eδ
}
≤ e−

δ2na∗
8(h+1)2 .

Proof: The correctness of mutual independence (1) is direct from the definition of BRUE:
all the dependency between the samples in BRUE is induced by the state of the information
collected by the samples, and these are determined solely by πB and P̂. In turn, the proof
of (2) is obtained by the definition of Eδ as follows:

192



Simple Regret Optimization in Online Planning for MDPs

E
[
Xt

∣∣∣ {πB
t }, {P̂t}, Eδ

]
=
∑

s′

P̂t(s′ |s, a∗)R(s, a∗, s′) +
∑

s′

P̂t(s′ |s, a∗)V
πB
t

P̂t
(s′〈h〉)

= Q(s〈h+1〉, a∗)

−
∑

s′

(
P(s′ |s, a∗)− P̂t(s′ |s, a∗)

)
·
(
R(s, a∗, s′) + V ∗(s′〈h〉)

)

−
∑

s′

P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)

≥ Q(s〈h+1〉, a∗)− δt
2
− δt

2
by definition of Eδ

= Q(s〈h+1〉, a∗)− δt

Finally, the proof of (3) is obtained by noting that

1

na∗

na∗∑

t=1

δt =

√√√√δ2na∗

9
+

4B log
(
na∗δ2bh

56B

)

bh
· 1

na∗

na∗∑

t=1

1√
t

≤

√√√√δ2na∗

9
+

4B log
(
na∗δ2bh

56B

)

bh
· 2
√
na∗

≤
√

4δ2

9
+

4δ2

35
since

log x

x
≤ 2

5

≤ 3

4
δ

Therefore,

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

∣∣∣ {πB
t }, {P̂t}, Eδ

}

= P

{
E
[
Q̂(s〈h+1〉, a∗)

]
− Q̂(s〈h+1〉, a∗) ≥ δ − 1

na∗

na∗∑

t=1

δt

∣∣∣∣∣ {π
B
t }, {P̂t}, Eδ

}

≤ P
{
E
[
Q̂(s〈h+1〉, a∗)

]
− Q̂(s〈h+1〉, a∗) ≥ δ

4

∣∣∣∣ {πB
t }, {P̂t}, Eδ

}

≤ e−
·δ2na∗
8(h+1)2 ,

(16)

We can now bound the error of the value estimator Q̂(s〈h+1〉, a∗).

Proposition B.1.3 For all δ > 0, it holds that

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

}
≤ 113B2ah

δ2bh
e−

bhδ
2na∗

36B .
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Proof:

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

}

≤ P {¬Eδ}

+
∑

{πB
t ,P̂t}

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

∣∣∣ {πB
t }, {P̂t}, Eδ

}
P
{
{πB

t }, {P̂t}
∣∣∣ Eδ

}

≤ 113B2ah
δ2bh

e−
bhδ

2na∗
36B by Props. B.1.1 & B.1.2.

Proposition B.1.4 below employs the bounds on the accuracy of Q̂(s〈h+1〉, a) to bound
the simple regret of aB.

Proposition B.1.4

P
{
Q(s〈h+1〉, π∗(s〈h+1〉))−Q(s〈h+1〉, aB) ≥ δ

}
≤ 114B2ah

δ2bh
e−

bhδ
2n(s〈h+1〉)
144BK

Proof:

P
{
Q(s〈h+1〉, π∗(s〈h+1〉))−Q(s〈h+1〉, aB) ≥ δ

}

≤
∑

a6=π∗(s〈h+1〉)

P
{
Q̂(s〈h+1〉, a)−Q(s〈h+1〉, a) ≥ δ

2

}

+ P
{
Q(s〈h+1〉, π∗(s〈h+1〉))− Q̂(s〈h+1〉, π∗(s〈h+1〉)) ≥ δ

2

}

≤
∑

a∈A(s)

P
{
n(s〈h+ 1〉, a) ≤ n(s〈h+ 1〉)

2K

}
+

113B2Kah
δ2bh

e−
bhδ

2n(s〈h+1〉)
144BK by Prop. B.1.3

≤ 114B2Kah
δ2bh

e−
bhδ

2n(s〈h+1〉)
144BK by Hoeffding

The induction step is concluded by Proposition B.1.5.

Proposition B.1.5

P
{
V ∗(s〈h+1〉)− V πB

P̂ (s〈h+1〉) ≥ δ
}
≤ 116B2Kah

δ2bh
e−

bhδ
2n(s〈h+1〉)
196BK .

Proof: Since we have

V ∗(s〈h+1〉)− V πB

P̂ (s〈h+1〉)

= Q(s〈h+1〉, π∗(s〈h+1〉))−Q(s〈h+1〉, aB)

+
∑

s′

P̂(s′ |s, aB)
(
V ∗(s′〈h〉)− V πB

P̂ (s′〈h〉)
)

+
∑

s′

(
P(s′ |s, aB)− P̂(s′ |s, aB)

) (
R(s, aB, s′) + V ∗(s′〈h〉)

)
,
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it holds that

P
{
V ∗(s〈h+1〉)− V πB

P̂ (s〈h+1〉) ≥ δ
}

≤ P
{
Q(s〈h+1〉, π∗(s〈h+1〉))−Q(s〈h+1〉, aB) ≥ 6δ

7

}

+ P

{∑

s′

P̂(s′ |s, aB)
(
V ∗(s′〈h〉)− V πB

P̂ (s′〈h〉)
)
≥ δ

14

}

+ P

{∑

s′

(
P(s′ |s, aB)− P̂(s′ |s, aB)

) (
R(s, aB, s′) + V ∗(s′〈h〉)

)
>

δ

14

}

≤ 114B2Kah
δ2bh

e−
bhδ

2n(s〈h+1〉)
144BK by Prop. B.1.4

+
∑

a∈A(s)

P

{∑

s′

P̂(s′ |s, a)
(
V ∗(s′〈h〉)− V πB

P̂ (s′〈h〉)
)
≥ δ

14

}

+
∑

a∈A(s)

P

{∑

s′

(
P(s′ |s, a)− P̂(s′ |s, a)

) (
R(s, a, s′) + V ∗(s′〈h〉)

)
>

δ

14

}

≤ 114B2Kah
δ2bh

e−
bhδ

2n(s〈h+1〉)
196BK +BKahe

−bhδ
2n(s〈h+1〉)
196BK +Ke

−−δ
2n(s〈h+1〉)

196K(h+1)2

≤ 116B2Kah
δ2bh

e
−bhh

2δ2n(s〈h+1〉)
196BK(h+1)2 .

Proving the bound for P
{
V πB

P̂
(s〈h+1〉)− V ∗(s〈h+1〉) ≥ δ

}
is completely similar.

Finally, the proof of Theorem 1 is concluded by

P
{
πB
n (s0〈H〉) 6= π∗(s0〈H〉)

}

≤ P
{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ ∆

}

≤ 3K

(
116 · 9B2K2

∆2

)H−1

(196BK)
1
2

(H−1)2
(H − 1)!2e

− ∆2n

9K2(196BK)H−1H2

(17)

and by noting that the maximal loss from choosing a sub-optimal action at s0〈H〉 is H.

B.2 Proof of Proposition 4.1.1 (BRUE bounds with Pe)

Basically, the proof for Proposition 4.1.1 is identical to that of Theorem 1 for h < 4. For
h ≥ 4, we note that

P

{∑

s′

√
P̂t(s′ |s, a) > 3

√
Pe

}
≤
∑

s′

P
{
P̂t(s′ |s, a) > P(s′ |s, a) +

Pe
B2

}

≤ Be−
2t
B4 . by Hoeffding

(18)
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Indeed, if P̂t(s′ |s, a) ≤ P(s′ |s, a) + Pe
B2 for all s′, then

∑

s′

√
P̂t(s′ |s, a) ≤

∑

s′

√
P(s′ |s, a) +

Pe
B2

≤
∑

s′

[
√

2P(s′ |s, a) +

√
2
Pe
B2

]

≤ 2
√

2Pe ≤ 3
√
Pe

Therefore, the probability in Eq. 15 from Proposition B.1.1 can be bounded for h > 4 as

P

{∑

s′

P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)
≥ δt

2

}

≤
∑

s′

P



V

∗(s′〈h〉)− V πB
t

P̂t
(s′〈h〉) ≥ δt

6

√
PeP̂t(s′ |s, a∗)



+ P

{∑

s′

√
P̂t(s′ |s, a) > 3

√
Pe

}

≤ Bahe
−bhδ

2
t t

36Pe +Be−
2t
B4 by I.H. & Eq. 18

≤ 2Bahe
−bhδ

2
t t

36Pe .

Consequently, we have that

P {¬Eδ} ≤
158B2ah
δ2bh

e−
bhδ

2na∗
306Pe .

Plugging this bound for P {¬Eδ} in the chain of bounding in Propositions B.1.2-B.1.5,
we obtain the result.

B.3 Proof for Theorem 2

The proof of Theorem 2 follows from the proof of Theorem 1 and noting that

• the effect of the rollout-action policy on the convergence rate comes into play only

in the bounds on P
{
n(s〈h+1〉, a) < n(s〈h+1〉)

2K

}
, and

• the condition of Theorem 2 simply postulates such bounds so that the exponential-rate
convergence is guaranteed.

B.4 Proof for Theorem 3

In general, the proof of Theorem 3 follows the same lines as the proof of convergence rate for
BRUE in Theorem 1, with the role of each Proposition B.3.i here corresponding to the role
of Proposition B.1.i in the proof of Theorem 1. Essentially, the proof of Theorem 3 deviates
substantially from the proof of Theorem 1 only in the modification of Propositions B.1.1
and B.1.2 to partial averaging, captured by Propositions B.4.1 and B.4.2, respectively. The
bounds in the rest of the propositions are adjusted accordingly. We formulate the proof
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for arbitrary values of α, although we derive the bounds for a particular choice of depth-
dependent αh ≈ 1

(BK)h−1 . Similarly to Theorem 1, the proof for Theorem 3 is based on

Lemma 5 below.

Lemma 5 For any node s〈h〉 we have

P
{
V ∗(s〈h〉)− V πB

P̂ (s〈h〉) ≥ δ
}
≤ ahe

−bhδ2n(s〈h〉)

P
{
V πB

P̂ (s〈h〉)− V ∗(s〈h〉) ≥ δ
}
≤ ahe

−bhδ2n(s〈h〉),

where

ah = 3K

(
12BK

δ2

)h−1

(h!)2,

bh =
1

9K2(196BK)h−1h2
.

Proof: The proof is by induction on h. The base of the induction is identical to that in
Lemma 4, so we continue straight with the induction step. All the propositions below are
made under the assumption of the induction hypothesis. Considering a node s〈h+ 1〉, we
make use of the same notation used in the proof for Theorem 1, namely, a∗ = π∗(s〈h+ 1〉),
aB = πB(s〈h+1〉), na∗ = n(s〈h+ 1〉, π∗(s〈h+ 1〉)), and, for t ∈ {1, . . . , na∗}, the random
variables Xt capture the accumulated reward samples averaged by Q̂(s〈h+1〉, a∗), πB

t cap-
ture the policy induced by BRUE at sample t, and P̂t capture the transition probabilities esti-
mations at sample t. In addition, we also use the additional abbreviation nαa∗ = b(1−α)na∗c.

Proposition B.4.1 For δ > 0, let Eδ be the event in which, while sampling Xt, t =
nαa∗ , . . . , na∗, it holds that

1.
∑

s′ P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)
≤ δt

2 , and

2.
∑

s′

(
P(s′ |s, a∗)− P̂t(s′ |s, a∗)

)
(R(s, a∗, s′) + V ∗(s′〈h− 1〉)) ≤ δt

2 ,

where

δt =

√√√√δ2na∗

3
+

4B log
(
αh+1na∗δ2

8h2

)

bh

1√
t
.

Then,

P {¬Eδ} ≤
8Bh2

δ2
ahe
−bhδ

2na∗
12B .

Proof: It follows from P1 that

P

{∑

s′

P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)
≥ δt

2

}

≤
∑

s′

P



V

∗(s′〈h〉)− V πB
t

P̂t
(s′〈h〉) ≥ δt

2

√
BP̂t(s′ |s, a∗)
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Thus,

P {¬Eδ} ≤
na∗∑

t=nα
a∗

∑

s′

P



V

∗(s′〈h〉)− V πB
t (s′〈h〉) > δt

2

√
BP̂t(s′ |s, a∗)





+

na∗∑

t=nα
a∗

P

{∑

s′

(
P(s′ |s, a∗)− P̂t(s′ |s, a∗)

) (
R(s, a∗, s′) + V ∗(s′〈h− 1〉)

)
>
δt
2

}

≤
na∗∑

t=nα
a∗

Bahe
−bhδ

2
t t

4B by I.H.

+

na∗∑

t=nα
a∗

e−
δ2t t

4h2 by Hoeffding

≤
na∗∑

t=nα
a∗

2Bahe
−bhδ

2
t t

4B ≤
na∗∑

t=nα
a∗

8Bh2

αh+1na∗δ2
ahe
−bhδ

2na∗
12B by definition of δt

=
8Bh2

δ2
ahe
−bhδ

2na∗
12B

Prop. B.4.2 is modified accordingly.

Proposition B.4.2 Under the definition of Eδ introduced in Proposition B.4.1, for all
δ > 0, it holds that, given {πBt }

na∗
t=1, {P̂t}na∗t=1, and the event Eδ,

(1) for all t, the random variables Xt are mutually independent,

(2) for t ≥ nαa∗, E
[
Xt

∣∣∣ {πBt }, {P̂t}, Eδ
]
≥ Q(s〈h+1〉, a)− δt, and

(3) P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

∣∣∣ {πBt }, {P̂t}, Eδ
}
≤ e−

bhh
2δ2na∗

8B(h+1)2 .

Proof: The correctness of mutual independence (1) is direct from the definition of BRUE:
all the dependency between the samples in BRUE is induced by the state of the information
collected by the samples, and these are determined solely by πB and P̂. In turn, the proof
of (2) is obtained by the definition of Eδ as follows:
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E
[
Xt

∣∣∣ {πB
t }, {P̂t}, Eδ

]
=
∑

s′

P̂t(s′ |s, a∗)R(s, a∗, s′) +
∑

s′

P̂t(s′ |s, a∗)V
πB
t

P̂t
(s′〈h〉)

= Q(s〈h+1〉, a∗)

−
∑

s′

(
P(s′ |s, a∗)− P̂t(s′ |s, a∗)

)
·
(
R(s, a∗, s′) + V ∗(s′〈h〉)

)

−
∑

s′

P̂t(s′ |s, a∗)
(
V ∗(s′〈h〉)− V πB

t

P̂t
(s′〈h〉)

)

≥ Q(s〈h+1〉, a∗)− δt
2
− δt

2
by definition of Eδ

= Q(s〈h+1〉, a∗)− δt

Finally, the proof of (3) is obtained by noting that

1

αh+1na∗

na∗∑

t=nα
a∗

δt =

√√√√δ2na∗

3
+

4B log
(
αh+1na∗δ2

8h2

)

bh
· 1

αh+1na∗

na∗∑

t=nα
a∗

1√
t

≤

√√√√δ2na∗

3
+

4B log
(
αh+1na∗δ2

8h2

)

bh
· 2
√
na∗
· 1−

√
1− αh+1

αh+1

≤
√

4δ2

9
+

4δ2

35
since

log x

x
≤ 2

5
and αh+1 =

bhh
2

B

≤ 3

4
δ

Therefore,

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

∣∣∣ {πB
t }, {P̂t}, Eδ

}

= P



E

[
Q̂(s〈h+1〉, a∗)

]
− Q̂(s〈h+1〉, a∗) ≥ δ − 1

αh+1na∗

na∗∑

t=nα
a∗

δt

∣∣∣∣∣∣
{πB

t }, {P̂t}, Eδ





≤ P
{
E
[
Q̂(s〈h+1〉, a∗)

]
− Q̂(s〈h+1〉, a∗) ≥ δ

4

∣∣∣∣ {πB
t }, {P̂t}, Eδ

}

≤ e−
bhh

2δ2na∗
8B(h+1)2 .

(19)

Proposition B.4.3 For all δ > 0, it holds that

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

}
≤ 9Bh2

δ2
ahe
−bhh

2δ2na∗
12B(h+1)2 .
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Proof:

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

}

≤ P {¬Eδ}

+
∑

{πB
t ,P̂t}

P
{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

∣∣∣ {πB
t }, {P̂t}, Eδ

}
P
{
{πB

t }, {P̂t}
∣∣∣ Eδ

}

≤ 9Bh2

δ2
ahe
−bhh

2δ2na∗
12B(h+1)2 by Props. B.4.1 & B.4.2.

The remainder of the proof is identical to the proof of Theorem 1, whereas only the
bounds on the error of the estimators Q̂(s〈h+1〉, a) are aligned with Proposition B.4.3.

Proposition B.4.4

P
{
Q(s〈h+1〉, a∗)−Q(s〈h+1〉, aB) ≥ δ

}
≤ 10BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
96BK(h+1)2

Proof:

P
{
Q(s〈h+1〉, a∗)−Q(s〈h+1〉, aB) ≥ δ

}

≤
∑

a6=a∗
P
{
Q̂(s〈h+1〉, a)−Q(s〈h+1〉, a) ≥ δ

2

}
+ P

{
Q(s〈h+1〉, a∗)− Q̂(s〈h+1〉, a∗) ≥ δ

2

}

≤
∑

a∈A(s)

P
{
n(s〈h+ 1〉, a) ≤ n(s〈h+ 1〉)

2K

}
+

9BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
96BK(h+1)2 by Prop. B.4.3

≤ 10BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
96BK(h+1)2 . by Hoeffding

The induction step is concluded by Proposition B.4.5.

Proposition B.4.5

P
{
V ∗(s〈h+1〉)− V πB

P̂ (s〈h+1〉) ≥ δ
}
≤ 12BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
196BK(h+1)2 .

Proof: Since we have

V ∗(s〈h+1〉)− V πB

P̂ (s〈h+1〉)

= Q(s〈h+1〉, π∗(s〈h+1〉))−Q(s〈h+1〉, aB)

+
∑

s′

P̂(s′ |s, aB)
(
V ∗(s′〈h〉)− V πB

P̂ (s′〈h〉)
)

+
∑

s′

(
P(s′ |s, aB)− P̂(s′ |s, aB)

) (
R(s, aB, s′) + V ∗(s′〈h〉)

)
,
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it holds that

P
{
V ∗(s〈h+1〉)− V πB

P̂ (s〈h+1〉) ≥ δ
}

≤ P
{
Q(s〈h+1〉, π∗(s〈h+1〉))−Q(s〈h+1〉, aB) ≥ 6δ

7

}

+ P

{∑

s′

P̂(s′ |s, aB)
(
V ∗(s′〈h〉)− V πB

P̂ (s′〈h〉)
)
≥ δ

14

}

+ P

{∑

s′

(
P(s′ |s, aB)− P̂(s′ |s, aB)

) (
R(s, aB, s′) + V ∗(s′〈h〉)

)
>

δ

14

}

≤ 10BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
136BK(h+1)2 by Prop. B.4.4

+
∑

a∈A(s)

P

{∑

s′

P̂(s′ |s, a)
(
V ∗(s′〈h〉)− V πB

P̂ (s′〈h〉)
)
≥ δ

14

}

+
∑

a∈A(s)

P

{∑

s′

(
P(s′ |s, a)− P̂(s′ |s, a)

) (
R(s, a, s′) + V ∗(s′〈h〉)

)
>

δ

14

}

≤ 10BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
136BK(h+1)2 +BKahe

−bhδ
2n(s〈h+1〉)
196BK +Ke

−−δ
2n(s〈h+1〉)

196K(h+1)2

≤ 12BKh2

δ2
ahe
−bhh

2δ2n(s〈h+1〉)
196BK(h+1)2 .

Proving the bound for P
{
V πB

P̂
(s〈h+1〉)− V ∗(s〈h+1〉) ≥ δ

}
is completely similar.

Finally, the proof of Theorem 3 is concluded by

P
{
πB
n (s0〈H〉) 6= π∗(s0〈H〉)

}

≤ P
{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ ∆

}

≤ 3K

(
12BK

∆2

)H−1

(H!)2e
− ∆2n

9K2(196BK)H−1H2

(20)

and by noting that the maximal loss from choosing a sub-optimal action at s0〈H〉 is H.

Appendix C. Proof for Proposition 2.1.1 (SS bound)

Let Q̂(s〈h〉, a) be the average of C recursive samples of the value of action a in s〈h〉, and
let P̂(s′ | s, a) be the empirical transition probability based on these C samples. For any

node s〈h〉 and action a, with probability at least 1− e−
2δ2C
H2 , we have

∣∣∣∣∣
∑

s′

(
P(s′ |s, a)− P̂(s′ |s, a)

)
V ∗(s′〈h− 1〉)

∣∣∣∣∣ ≤ δ
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Since sparse sampling encounters at most (min(B,C) ·K)H nodes, we have that the prob-

ability of some bad estimate is bounded by (min(B,C) ·K)He−
2δ2C
H2 . Therefore, we have

Q(s〈h〉, a)− Q̂(s〈h〉, a)

≤
∑

s′

(
P(s′ |s, a)− P̂(s′ |s, a)

)
V ∗(s′〈h− 1〉)

+
∑

s′

P̂(s′ |s, a)

(
Q(s′〈h− 1〉, π∗(s′〈h− 1〉))−max

a′
Q̂(s′〈h− 1〉, a′)

)

≤ δ +
∑

s′

P̂(s′ |s, a)
(
Q(s′〈h− 1〉, π∗(s′〈h− 1〉))− Q̂(s′〈h− 1〉, π∗(s′〈h− 1〉))

)
,

(21)

and similarly,

Q̂(s〈h〉, a)−Q(s〈h〉, a)

≤
∑

s′

(
P̂(s′ |s, a)− P(s′ |s, a)

)
V ∗(s′〈h− 1〉)

+
∑

s′

P̂(s′ |s, a)

(
max
a′

Q̂(s′〈h− 1〉, a′)−Q(s′〈h− 1〉, π∗(s′〈h− 1〉))
)

≤ δ +
∑

s′

P̂(s′ |s, a) max
a′

{
Q̂(s′〈h− 1〉, a′)−Q(s′〈h− 1〉, a′)

}
.

(22)

Note that the two bounds in Equations 21,22 above result in the recursion αh = δ+αh−1 =
δh, where αh upper bounds the respective difference. This implies that, with probability at

most (min(B,C) ·K)He−
2δ2C
H2 ,

∣∣∣Q(s0〈H〉, a)− Q̂(s0〈H〉, a)
∣∣∣ > δH

By setting δ = ∆
2H , we obtain that the error probability is bounded by

(min(B,C) ·K)He−
∆2C
2H4

The proof concludes by noting that the maximal loss for choosing non-optimal action at
the root node s0〈H〉 is H.
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