
ETH Library

Simple robots with minimal
sensing
From local visibility to global geometry

Report

Author(s):
Suri, Subhash; Vicari, Elias; Widmayer, Peter

Publication date:
2007

Permanent link:
https://doi.org/10.3929/ethz-a-006785400

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 547

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006785400
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Simple Robots with Minimal Sensing:

From Local Visibility to Global Geometry

ETH Technical Report 547

Subhash Suri∗

Department of Computer Science

University of California

Santa Barbara, USA 95106

Elias Vicari

Institute of Theoretical Computer Science,

ETH Zurich,

8092 Zurich, Switzerland

Peter Widmayer

Institute of Theoretical Computer Science,

ETH Zurich,

8092 Zurich, Switzerland

February 8, 2007

Abstract

We consider problems of geometric exploration and

self-deployment for simple robots that can only sense

the combinatorial (non-metric) features of their sur-

roundings. Even with such a limited sensing, we show

that robots can achieve complex geometric reasoning

and perform many non-trivial tasks. Specifically, we

show that one robot equipped with a single pebble can

decide whether the workspace environment is a simply-

connected polygon or not; with sufficiently many peb-

bles, it can also count the number of holes in the en-

vironment. Highlighting the subtleties of our sens-

ing model, we show that a robot can decide whether

the environment is a convex polygon, yet it cannot re-

solve whether a particular vertex is convex. Finally,

we show that using such local and minimal sensing,

a robot can compute a proper triangulation of a poly-

gon, and that the triangulation algorithm can be imple-

mented collaboratively by a group of m such robots,

each with Θ(n/m) memory. As a corollary of the tri-

angulation algorithm, we derive a distributed analog of

the well-known Art Gallery Theorem [1]: a group of

⌊n/3⌋ (bounded memory) robots in our minimal sens-

∗Work done while the author was a visiting scholar at the Institute

of Theoretical Computer Science, ETH, Zurich.

ing model can self-deploy to achieve visibility coverage

of an n-vertex art gallery (polygon). This resolves an

open question raised recently in [4].

1 Introduction

The study of simple robot systems, with minimal sen-

sory input, is of fundamental interest in both theory and

practice. In theory, a minimalistic model provides a

clean conceptual framework for performance analysis

and lends insights into the inherent complexity of var-

ious tasks: the positive results identify the easy prob-

lems, while the negative results help isolate the difficult

problems that necessitate richer functionality and sens-

ing. Models with simple sensing are also robust against

noise and help simplify the information (belief) space of

the robot systems, whose complexity is often a source

of much difficulty in planning [7]. On the practical side

as well, robots with a simple sensing architecture have

many advantages: they are inexpensive, less suscepti-

ble to failure, robust against sensing uncertainty, and

useful in a broad set of applications. With the emer-

gence of wireless sensor networks [8], a group of sim-

ple micro-robots also offers an attractive and scalable

architecture for large-scale collaborative exploration of

1



unknown environments.

Motivated by these considerations, we investigate

several fundamental computational geometry problems

in the context of simple robots, with minimal sensing

ability. In particular, we assume that the robot is a

(moving) point, equipped with a simple camera that

allows the robot to sense just the combinatorial fea-

tures in its field—these features are unlabeled, however,

meaning that the sensor can detect a vertex of the poly-

gon, but all vertices look the same to it. The features are

represented as a binary vector, called the combinatorial

visibility vector and denoted cvv. This vector is defined

by the ordered list of vertices visible from the robot’s

current position, and the binary bits indicate whether

the consecutive vertices form an edge of the environ-

ment or join two non-neighbor vertices (i.e. hides a

portion of the polygon not seen from the current loca-

tion). Figure 1 shows an example of a combinatorial

visibility vector. The robot has no other sensing capa-

bility, and thus receives no information about distances,

angles, or world coordinates. The robot, however, does

possess “handedness,” meaning it can decide clockwise

or counterclockwise order. We assume idealized sens-

ing throughout, since our primary goal is to understand

theoretical limits of our model, and our algorithms are

deterministic and analyzed in the worst-case model.

We are interested in discovering what non-trivial or

complex tasks such a robot can accomplish. Since the

robot’s information is highly local, we are particularly

interested in tasks that are seemingly global. For in-

stance, can one or more robots decide whether a (un-

known) polygonal environment (the robots’ workspace)

is simply connected, or does it have holes? We show

that a single robot with a single pebble is able to de-

cide the simplicity of the workspace; equivalently, a

secondary passive robot can play the role of the peb-

ble. Generalizing this, we show that if the workspace

is a polygonal environment with k holes, then a single

robot with k + 1 pebbles can detect all the holes.

Interestingly, in our minimalistic model of sensing,

there are simple topological questions that seem unde-

cidable. For instance, while it is quite easy for a sin-

gle robot to decide whether the workspace is a convex

polygon, it is not possible to decide whether a particu-

lar vertex is convex or reflex! Similarly, a robot cannot

decide which is the outer boundary of the multiply con-

nected polygonal workspace, although it can discover

and count all the components in the environment.

Finally, we show that using such local and minimal

sensing, a robot can compute a proper triangulation of a

polygon. Furthermore, our triangulation algorithm can

be implemented distributively by a group of m robots,

each with Θ(n/m) memory. As a corollary of the trian-

gulation algorithm, we derive a distributed analog of the

well-known Art Gallery Theorem [1]: a group of ⌊n/3⌋
robots can self-deploy to guard a simple polygon. This

improves the recent result of [4], where they showed

that ⌊n/2⌋ distributed guards can achieve the coverage,

raising the tantalizing question whether distributed na-

ture of the problem is the source of the gap between

the centralized optimum of ⌊n/3⌋ and their bound. Our

result shows that even with minimal sensing and dis-

tributed robots, ⌊n/3⌋ guards suffice. Indeed, triangu-

lation is a fundamental data structure, used as a building

block of many geometric algorithms, and so we expect

that this basic result will find other applications as well.

1.1 Related Work

Combinatorial geometric reasoning is key to many mo-

tion planning and exploration tasks in robotics [6, 7].

Our work is similar in spirit to that of [10, 11], in

that we aim to explore the power and limitations of a

minimal model of robot systems. However, there are

key differences both in the abstraction—their sensing

model assumes that important features of the environ-

ment are uniquely labeled, allowing sensors to distin-

guish these landmarks; our sensing model is more basic

than this and works with unlabeled and indistinguish-

able features—and the nature of problems addressed—

the main focus of previous work [5, 9, 11] is navigation

and pursuit evasion, while we are concerned with geo-

metric and topological structure of the environment and

collaborative and distributed self-deployment, which do

not seem to have been addressed in the past.

2 A Minimal Sensing Model

We consider robot systems with a simple model of “vi-

sual” sensing. At any position p, the sensory input of

the robot is a combinatorial visibility vector cvv(p),
which is a vector of zeroes and ones. This vector is

defined by the vertices of the polygonal environment

that are visible from the point p, and the binary bits en-

code whether or not the consecutive vertices form an

edge of the polygon. In other words, the visibility vec-

tor tells the robot the number of vertices visible to it,

and a cyclic order of the edge types (boundary or di-

agonal) defined by consecutive vertices. Fig. 1 shows

2



an example, with the combinatorial visibility vector of

vertex p.

We emphasize that the visibility vector is different

from the visibility polygon—the former only uses the

vertices of the original polygon, and is typically a strict

subset of the visibility polygon. We believe that the vis-

ibility vector, despite being less informative than the

corresponding visibility polygon, is better suited for

our simple sensing model: in our coordinate-free, bi-

nary sensing model, there is no obvious way to repre-

sent or communicate entities other than polygon ver-

tices or edges. Even polygon vertices and edges have

no “names” or labels, and as such they can only be de-

scribed in relative terms: e.g., ith counterclockwise ver-

tex in the visibility vector of vertex q. In this regard,

our sensing model is more basic and weaker than the

minimalism assumed by [10, 11], who require presence

of labeled features and distinguishable landmarks in the

environment.

p a

c

b

d

ef

g
h

i

j

k

l

0

0

0
1

1

1

1

1

Figure 1: Illustration of the combinatorial visibility

vector. In counterclockwise order, the vertices visible

from p are p, a, j, l, c, d, h, i, and its visibility vector is

cvv(p) = (1, 0, 1, 0, 1, 0, 1, 1).

In terms of the robot’s motion abilities, we only as-

sume that (1) it can sense when it is on a boundary,

(2) it can move clockwise or counterclockwise along

a boundary, and (3) at a position p, it can choose to

move towards a vertex visible from position p. For the

workspace environment, we assume that it is a polygon

(simply or multiply-connected), with an unknown ge-

ometry and an unknown number of vertices.

3 Convexity of the Environment

We begin with a simple example highlighting the se-

vere limitations of our sensing model: a robot in our

model cannot decide whether a particular vertex of the

environment is convex or reflex. Consider two polygons

shown in Figure 2 (i) and (ii), where the combinatorial

visibility vectors of the corresponding vertices are iden-

tical in the two cases. For instance, cvv(a) = (1, 0, 1),
and cvv(b) = (1, 0, 1, 1, 1). The key observation is that

the two vertices, c and g, both have the same visibility

vectors, namely, cvv(c) = cvv(g) = (1, 0, 1, 1, 0, 1),
and yet one is convex and the other is reflex. Thus, an

algorithm cannot decide whether c is convex: indeed,

since the types of c and g are flipped in Figures (i) and

(ii), any algorithm that distinguishes between them will

be incorrect for at least one of these two cases. (Alter-

natively, one could also argue that in Fig. 2(i), h and d
have identical vectors, but have different types.)

0 0

a

b d

c

e

f

g

h

1

1 1

1

a

b d

c

e

f

g

h

Figure 2: An example showing that a robot in our model

cannot resolve whether a vertex is convex or not. The

sensing information (combinatorial visibility vectors)

for the corresponding vertices in the two polygons is

identical, yet c and g have different types (convex, re-

flex) in the two cases.

This may seem surprising in light of the fact that such

a robot can decide whether the entire polygon is con-

vex or not. Observe that a necessary condition for the

polygon to be convex is that the visibility vector of any

vertex v must be all 1’s—the presence of a 0 bit implies

that there exists a “pocket” in the polygon not seen by

v. If the visibility vectors of all vertices are all 1’s, then

the polygon is convex—this follows because every non-

convex polygon must contain a reflex vertex, and if r is

reflex vertex them the visibility vector of the (either)

neighbor of r cannot be all 1’s. Thus, an algorithm to

decide the convexity of a polygon P is the following.

Start at any vertex, say, v0, and consider the

visibility vector cvv(v0). If this vector is not

all 1’s, stop—the polygon is ostensibly non-

convex. Otherwise, compute the size of the

polygon, say, n by counting the number of

1’s in the vector. Repeat the convexity test

3



from each of the remaining n− 1 vertices, by

moving clockwise. If the visibility vectors of

all the vertices are all 1’s, then the polygon is

convex.

We, thus, have the following theorem.

Theorem 1 A single robot in our binary sensing model

can decide whether a given polygon (workspace) is con-

vex or not. However, it is not possible to decide if a

particular vertex is convex.

4 Topological Structure of the En-
vironment

Next, we consider another fundamental task related to

the geometry of the environment: is the workspace of

the robot simply-connected, or does it have holes? If the

polygon is multiply-connected, then how many holes

does it have? We first show that one robot, equipped

with a single pebble, can decide the simplicity ques-

tion. The pebble, of course, can be replaced by an-

other (passive) robot. Subsequently, we show that with

enough pebbles (or passive robots), the robot can also

identify and count the number of topological holes in

the workspace.

4.1 Is the polygon simply-connected?

In order to decide the topological simplicity of its envi-

ronment, the robot has to determine whether the 1 edges

in its combinatorial visibility vector belong to two (or

more) different component boundaries. As an example,

how does the robot decide when located at vertex p in

Figure 1, whether the edge (l, j) is part of a “hole” or

does the outer boundary connect to it in the back (near

vertex k, which is invisible to p)? We begin with a sim-

ple geometric fact that plays an important role in our

algorithm.

Lemma 1 Suppose P is a multiply-connected polygon,

and C is a cycle representing one of the components.

Then, there always exists a vertex u ∈ C that sees a

vertex v ∈ P \C. That is, there must be a vertex u ∈ C
whose visibility vector includes a vertex from a different

component of P .

Proof: The proof follows from the fact that any

polygonal domain admits a triangulation (using only

diagonals that connect vertices). Such a triangulation

is a connected graph, and so the boundary C of any

component includes at least one diagonal in the trian-

gulation that connects it to another component.

We utilize this lemma to decide simplicity of the

workspace as follows: the robot moves to a boundary,

and traverses it in cyclic order; at every vertex, it checks

each vertex of its visibility vector to see if it lie on the

same boundary or not. By the preceding lemma, if the

polygon has a hole, then one of these tests will nec-

essarily fail. The following pseudo-code describes our

algorithm. The step that checks whether a vertex v is on

the same boundary as vertex u is done through a func-

tion EXPLORE, which is described right after the main

algorithm.

SIMPLICITY (P )

1. Initially, the robot moves to an arbitrary vertex of

the boundary.

2. The robot marks that vertex with a pebble, and

walks along the boundary (finishing when it re-

turns to the pebble), say in counterclockwise order,

to determine the number of edges on this boundary.

Let this number be n0.

3. The robot now begins the main phase of the algo-

rithm. The vertex with the pebble currently on it

represents the vertex being scanned. Let u0 be the

initial vertex with the pebble. Repeat the following

steps n0 times.

(a) Let ui be the vertex with the pebble on it,

and let cvv(ui) be the visibility vector of ui.

Perform EXPLORE (ui, vj , n0), for each ver-

tex vj visible from ui. (The robot moves to

vertex vj , performs the EXPLORE operation,

and then returns to ui.)

(b) If any call to EXPLORE returns simple =
false, then terminate; the polygon is

multiply-connected. Otherwise, once all the

vertices visible from ui have been explored,

advance the pebble from ui to ui+1.

EXPLORE (u, v, n)

1. Move clockwise from v along the component

boundary containing v.

2. If a pebble is encountered within n steps, set

simple = true; and stop (the robot is back at ver-

tex ui).

4



3. Otherwise, set simple = false; retrace n steps

backwards (returning to vertex v), and move to the

vertex u (identified with a pebble).

For instance, in Figure 1, the call EXPLORE (p, a, 10)
returns true, while EXPLORE (p, j, 10) would return

false. We summarize this result in the following the-

orem.

Theorem 2 A single robot with a pebble can decide if

a polygonal environment is simply connected or not.

The processing time of the algorithm can be im-

proved in several ways, though that’s not our main in-

tent here. For instance, instead of checking all vertices

of the combinatorial visibility vector, it suffices to limit

the EXPLORE to only the endpoint of the 0-edges. We

next show how a robot can discover all the components

(holes) in its workspace environment.

4.2 Counting the number of holes

The algorithm is a recursive extension of the simplicity

algorithm: when the robot discovers a new hole, it re-

cursively scans its boundary to discover new holes. The

pebbles are used to mark the holes that have been al-

ready discovered. The key difference from the simplic-

ity algorithm is that the robot needs to maintain state

information to go back in the recursion. The following

pseudo-code describes the algorithm.

COMPONENTS (P )

1. The robot starts on the boundary of an arbitrary

component. It marks this component with one

pebble, computes its size (number of edges), by

walking around the boundary, using the pebble as

a marker. Let n0 be the size of the current compo-

nent.

2. For the component being scanned, the robot main-

tains the index (in counterclockwise order, from

the starting vertex) of the current vertex. Let ui be

the current vertex. For each vertex vj ∈ cvv(ui),
say, in counterclockwise order, the robot invokes

EXPLORE(ui, vj , n0).

3. If EXPLORE(ui, vj , n0) returns true, then scan of

the current component continues.

4. If EXPLORE(ui, vj , n0) returns false, then we have

discovered a new component.

(a) The robot then uses a new pebble to mark

this component; increments the component

counter; computes the size, n′, of the new

component, and sets n0 = max{n0, n
′},

as the maximum length of the walk in EX-

PLORE.

(b) The robot saves state for the old component

(containing the vertex ui), along with how to

return to ui from vj (using pebbles),1 and

then recursively works on the new compo-

nent.

Theorem 3 If the boundary of the polygonal environ-

ment consists of k components, then a robot with k peb-

bles can discover all the components.

In our algorithm, we assumed that the robot has O(k)
memory, where k is the number of components, to save

the state of the recursion. Alternatively, the same result

can be obtained with O(k) robots, each with constant

(word) memory.

4.3 Which is the outer boundary?

Finally, as another example of a simple task that is diffi-

cult in our minimal model, we argue that even though a

robot can discover all the components (holes) in the en-

vironment, it cannot decide which one is the outermost

boundary. Consider the centrally symmetric polygon

shown in Figure 3. We observe that every vertex in this

polygon has the same combinatorial visibility vectors,

namely, (1, 0, 1, 1, 0, 1), irrespective of whether it is on

the outer cycle or the inner cycle. Because the robot

cannot sense or measure angles or distances, its world

view looks the same whether it is on the outer cycle or

the inner one, implying that it cannot resolve between

those two boundaries.

In the next section, we show a single robot, using a

constant number of pebbles, is able to compute a proper

1Recall that the robot is able to identify vj from the visibility vec-

tor of ui, but not vice versa. In order to identify ui from vj , the robot

must place a “distinct” pebble at ui, move to vj , and then record the

index of ui in the cvv(vj ). This pebble must be distinct in the sense

that robot can distinguish it from any other pebbles that are marking

other components. One can achieve this in several way: by using two

pebbles, instead of one, if the robot is able to make this distinction; or

using a special pebble that is used for this signaling.

5



v

1

1
1

1

0

0

Figure 3: An example showing that a robot in our model

cannot resolve which is the outer boundary.

triangulation of a simple polygon. This result, in ad-

dition to providing a important data structure for geo-

metric reasoning and exploration, is also the basis for

solving the art gallery problem in our sensing model.

5 Polygon Triangulation

In this section, we describe our algorithm for triangulat-

ing a simple polygon, which is the key step in solving

the art gallery problem as well as a geometric structure

with broad applicability [2]. We describe our algorithm

for a single robot with a constant number of pebbles in

the minimal model, with the assumption that this robot

has Θ(n) memory to store the triangulation. Later we

show that the same result can be obtained by a collabo-

rative group of m robots, each with Θ(n/m) memory.

As a corollary of this distributed triangulation, we ob-

tain that a group of ⌊n/3⌋ robots, each with Θ(1) mem-

ory, can collectively build the triangulation and solve

the art gallery problem.

Our polygon triangulation algorithm is recursive in

nature, and works as follows. See Figure 4. The robot

places an initial pebble at a vertex, call it v0. The com-

binatorial visibility vector of v0, cvv(v0), consists of

a sequence of 0-edges intermixed with 1-edges. Each

0-edge is a diagonal that separates a “pocket” from v0,

and the pockets defined by different 0-edges are pair-

wise disjoint. The robot will recursively triangulate the

pockets formed by the 0-edges (say, by visiting them in

counterclockwise order), and then complete the triangu-

lation by drawing diagonals from v0 to all the vertices

in its visibility vector. Thus, in high-level pseudo-code,

the triangulation algorithm can be described as follows:

TRIANGULATION (P )

1. The robot begins at an arbitrary vertex v0. Let

e1, e2, . . . , ek denote the 0-edges in the combina-

torial visibility vector of v0 (in ccw order), and let

Pi denote the pocket of the polygon defined by the

edge ei.

2. The robot recursively computes the triangulation

of Pi, for i = 1, 2, . . . , k.

3. The robot finishes the triangulation by adding di-

agonals from v0 to all the vertices in its combi-

natorial visibility vector (endpoints of both 0 and

1-edges).

Turning this high level description into a correct algo-

rithm that fits in our minimal sensing model, however,

requires several careful steps. We use the illustration of

Figure 4 to explain the key steps of the algorithm.

v0

P1

P2

P3
vi

vi+1

Figure 4: The triangulation algorithm. Starting at v0,

the algorithm triangulates the pockets P1, P2, P3, in that

order, and finally completes the triangulation by draw-

ing edges from v0 to all vertices visible from it.

At the top level of the recursion, the base visibility

vector is defined for vertex v0. The robot consistently

scans the edges of a visibility vector in counterclock-

wise order. Let the first 0-edge in this visibility vector

be vivi+1, and let Pi denote the pocket (subpolygon)

defined by this edge. The vertices vi and vi+1 are iden-

tified by the robot as the ith and the (i + 1)st vertices in

cvv(v0). However, as the robot enters the pocket Pi for

recursive triangulation, it no longer “sees” the polygon

from v0, and needs a way to distinguish (identify) vi+1

from the “new base” vi. The robot does this through the

use of a pebble as follows.

Lemma 2 Using 2 pebbles, the robot can compute

the indices k and j such that the vertices v0, vi+1 ∈
cvv(v0) are the kth and jth vertex, respectively, in the

combinatorial visibility vector cvv(vi).

Proof: From v0, which is marked by the first pebble,

the robot heads straight towards vi+1, drops a second

pebble there, and returns to v0. It then, heads to vi,

6



and identifies v0 and vi+1 as the first2 counterclock-

wise vertex in cvv(vi) that has a pebble. The second

vertex marked with a pebble is v0. The robot stores

these indices k and j as the identity of v0 and vi+1

when based at vi, respectively. Having identified the

relevant nodes in the local visibility of vi, the robot

can then remove the pebble from vi+1. This ensures

that we only use at most two pebbles throughout the

algorithm.

Once the robot can identify vi+1 from its local view,

it knows the extent of the pocket Pi: the edge vivi+1

marks the end of the pocket and the recursive call to the

triangulation.

Secondly, by always visiting the pockets in a cyclic

order, the robot can consistently compute a “vertex la-

beling” that serves to identify and store the triangula-

tion globally. In particular, while at position v0, the

robot can see all the vertices in its visibility vector, that

“view” is entirely local—the jth ccw vertex in cvv(v0)
has no meaning to the robot when it is located at an-

other vertex vk. Thus, during the triangulation algo-

rithm, the robot computes a global labeling, which is a

cyclic ordering of the vertices in P , starting from the

base vertex v0. This labeling is computed easily as fol-

lows. The robot assigns the label 0 to the vertex v0; that

is, ℓ(v0) = 0. It then assigns increasing labels to all

the vertices in cvv(v0) until it comes to the first 0-edge,

say, ei = (vi, vi+1). As the robot recursively computes

the triangulation of Pi, it assigned labels in the pocket,

starting with ℓ(vi), and ending with the label ℓ(vi+1).
At this point, the robot continues the labeling in cvv(v0)
until the next 0-edge, and so on. In the end, the trian-

gulation is stored in the robot’s memory as a collection

of diagonals, where diagonal (i, j) means the presence

of a triangulation edge between the vertices are have in-

dices i and j in the ccw walk along the polygon starting

at v0.

So far we have described the triangulation algorithm

using a single robot with Θ(n) memory (necessary to

stored the triangulation). But it is easy to convert this

into a distributed implementation, using a group of m
robots, each with Θ(n/m) memory. In the distributed

model, we only assume that each robot has a unique ID

and that there is communication protocol that permits

leader election as well as communication between the

leader and any slave.

2When at vi, the robot uses the first edge incident to vi in the

pocket Pi as the beginning of its visibility vector.

Theorem 4 In our minimal sensing model, one robot

with two pebbles can compute a triangulation of a sim-

ple polygon. The algorithm is easily turned into a

distributed implementation using m robots, each with

Θ(n/m) memory.

6 The Art Gallery Problem

The well-known Art Gallery Theorem [1, 3] asserts that

every n-vertex polygon can be “guarded” by placing

⌊n/3⌋ guards at vertices of the polygon, and this bound

is the best possible in the worst-case. The classical set-

ting of the art gallery theorem assumes full knowledge

of the polygons, including vertex coordinates. In a re-

cent paper, [4] showed that, given an unknown polygon,

⌊n/2⌋ mobile guards, each with only local views, can

“self-deploy” at vertices to achieve the art gallery cover-

age. Their result raises the interesting question whether

this gap is inherently due to the lack of global geometry.

We show that this is not so, and in fact ⌊n/3⌋ guards in

our minimal sensing model can self-deploy to guard the

polygon. Unlike [4], our algorithm is based on triangu-

lation, mimicking the original proof of Fisk [3].

The proof of [3] uses the fact that a triangulation can

be 3-colored: three colors can be assigned to vertices

so that no diagonal has same color at both endpoints.

Then, placing the guards at the least frequent color ver-

tices solves the art gallery problem: there are n vertices,

so the least frequent color occurs at most ⌊n/3⌋ times,

and since each triangle must have all three colors, ev-

ery triangle is visible to some guard. Thus, to solve the

art gallery problem in our sensing model, we just need

to show that the triangulation computed in the previous

section can be 3-colored by our robots.

Lemma 3 In our minimal sensing model, a robot can

3-color the triangulation of a polygon.

Proof: See Figure 5 for illustration. The robot begins

by coloring the initial vertex v0, from which the tri-

angulation began, as 1. It then colors all the vertices

in cvv(v0) alternately as 2 and 3. Thus, each 0-edge

in the visibility vector of v0 is colored (2, 3). The

robot now revisits the pockets Pi in the same order

as in the triangulation step, and propagates the col-

oring. If the pocket Pi was triangulated by the robot

from the vertex vi, and the color of vi is 2 then the

diagonals incident to vi can be colored by alternating

between colors 3 and 1, and so on. It is easy to see

that this coloring succeeds.

7



1

2

2

2

2

2

2

3

3

3

3

1

1

1

1

1

2

Figure 5: 3-coloring the triangulation.

Once colors have been assigned, and recorded by the

robot, it can make one final tour of the polygon and de-

termine the least frequently used color. Placing guards

at those ⌊n/3⌋ vertices solves the art gallery problem.

The robots reach their guarding position i by walking

along the boundary for i − 1 steps.

We can implement this algorithm using a collabora-

tive group of m robots, each with Θ(n/m) memory,

using standard leader election protocols, so that at any

point one robot servers the role of our main robot in the

single-robot setting, while the remaining ones passively

follow and act as storage devices. Thus, these passive

robots can collaboratively store the Θ(n) information

recording the triangulation and the coloring.

Theorem 5 In our minimal sensing model, a single

robot with Θ(n) memory can solve the art gallery prob-

lem for an n-vertex polygon. Alternatively, a group of

⌊n/3⌋ robots, each with Θ(1) memory, can solve the art

gallery theorem and self-deploy to guard the polygon.

7 Conclusions

We considered a simple and minimalistic model of

visibility-based robot systems, and showed that despite

severe sensory limitations, these robots can accomplish

fairly complex tasks, and infer global attributes of their

workspace. At the same time, the impossibility of some

seemingly simple topological tasks also highlights the

limitations of our minimal model. In future work, it will

be interesting to explore which other global tasks are

possible in this model, and which ones are not. It will

also be interesting to study the power of additional sim-

ple primitives, such as local angle sensing, which cir-

cumvents the impossibility of deciding whether a ver-

tex is convex and whether a component is the outermost

boundary.

References

[1] V. Chvátal. A combinatorial theorem in plane ge-

ometry. Journal of Combinatorial Theory, 18:39–

41, 1975.

[2] M. de Berg, M. van Kreveld, M. Overmars, and

O. Schwarzkopf. Computational geometry: algo-

rithms and applications. Springer-Verlag, 1997.

[3] S. Fisk. A short proof of Chvátal’s watch-

man theorem. Journal of Combinatorial Theory,

24(B):374, 1978.

[4] A. Ganguli, J. Cortes, and F. Bullo. Distributed de-

ployment of asynchronous guards in art galleries.

In Proceedings of the American Control Confer-

ence, pages 1416–1421, June 2006.

[5] L. J. Guibas, J.-C. Latombe, S. M. LaValle,

D. Lin, and R. Motwani. Visibility-based pursuit-

evasion in a polygonal environment. IJCGA,

9(5):471–494, 1999.

[6] Jean-Claude Latombe. Robot Motion Plan-

ning. Kluwer Academic Publishers, Norwell, MA,

USA, 1991.

[7] S. M. LaValle. Planning Algorithms. Cambridge

University Press, Cambridge, U.K., 2006.

[8] G. J. Pottie and W. J. Kaiser. Wireless integrated

network sensors. Commun. ACM, 43(5):51–58,

2000.

[9] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-

based pursuit-evasion in an unknown planar envi-

ronment. International Journal of Robotics Re-

search, 23(1):3–26, 2004.

[10] B. Tovar, L. Freda, and S. M. LaValle. Using a

robot to learn geometric information from permu-

tations of landmarks. Contemporary Mathemat-

ics, to appear.

[11] A. Yershova, B. Tovar, R. Ghrist, and S. M.

LaValle. Bitbots: Simple robots solving complex

tasks. In AAAI National Conference on Artificial

Intelligence, 2005.

8


