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Abstract

We consider data in the form of pairwise comparisons of n items, with the goal of identifying
the top k items for some value of k < n, or alternatively, recovering a ranking of all the
items. We analyze the Borda counting algorithm that ranks the items in order of the
number of pairwise comparisons won, and show it has three attractive features: (a) it is
an optimal method achieving the information-theoretic limits up to constant factors; (b)
it is robust in that its optimality holds without imposing conditions on the underlying
matrix of pairwise-comparison probabilities, in contrast to some prior work that applies
only to the BTL parametric model; and (c) its computational efficiency leads to speed-ups
of several orders of magnitude. We address the problem of exact recovery, and for the top-k
recovery problem we also extend our results to obtain sharp guarantees for approximate
recovery under the Hamming distortion metric, and more generally, to any arbitrary error
requirement that satisfies a simple and natural monotonicity condition. In doing so, we
introduce a general framework that allows us to treat a variety of problems in the literature
in an unified manner.

Keywords: Pairwise comparisons, Ranking, Set recovery, Approximate recovery, Borda
count, Permutation-based models, Occam’s razor

1. Introduction

Ranking problems involve a collection of n items, and some unknown underlying total
ordering of these items. In many applications, one may observe noisy comparisons between
various pairs of items. Examples include matches between football teams in tournament
play; consumer’s preference ratings in marketing; and certain types of voting systems in
politics. Given a set of such noisy comparisons between items, it is often of interest to find
the true underlying ordering of all n items, or more generally, given some given positive
integer k ≤ n, to find the subset of k most highly rated items. These two problems are the
focus of this paper.

There is a substantial literature on the problem of finding approximate rankings based on
noisy pairwise comparisons. A number of papers (e.g., Kenyon-Mathieu and Schudy, 2007;
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Braverman and Mossel, 2008; Eriksson, 2013) consider models in which the probability
of a pairwise comparison agreeing with the underlying order is identical across all pairs.
These results break down when, for one or more pairs, the probability of agreeing with the
underlying ranking is close to or exactly equal to 1

2 . Another set of papers (Hunter, 2004;
Negahban et al., 2012; Hajek et al., 2014; Soufiani et al., 2014; Shah et al., 2016a) work
using parametric models of pairwise comparisons, and address the problem of recovering
the parameters associated to every individual item. A more recent line of work (Chatterjee,
2014; Shah et al., 2017a, 2016d) studies a more general class of models based on the notion
of strong stochastic transitivity (SST), and derives conditions on recovering the pairwise
comparison probabilities themselves. However, it remains unclear whether or not these
results can directly extend to tight bounds for the problem of recovery of the top k items.
Another line of work (Jagabathula and Shah, 2008; Mitliagkas et al., 2011; Ammar and Shah,
2012; Ding et al., 2015) focuses on mixture models, in which every pairwise comparison
is associated to a certain individual making the comparison, and it is assumed that the
preferences across individuals can be described by a low-dimensional model.

Most related to our work are the papers by Wauthier et al. (2013); Rajkumar and Agar-
wal (2014); Rajkumar et al. (2015), and Chen and Suh (2015), which we briefly discuss here
and in a more detailed manner in the sequel. Wauthier et al. (2013) analyze a weighted
counting algorithm to recover approximate rankings; their analysis applies to a specific
model in which the pairwise comparison between any pair of items remains faithful to their
relative positions in the true ranking with a probability common across all pairs. They
consider recovery of an approximate ranking under Kendall’s tau and maximum displace-
ment metrics, but do not provide results on exact recovery. As the analysis of this paper
shows, their bounds are quite loose: more precisely, their results are tight only when there
are a total of at least Θ(n2) comparisons. Two other papers (Rajkumar and Agarwal, 2014;
Rajkumar et al., 2015) consider ranking under several models and several metrics. In the
part that is common with our setting, they show that the counting algorithm is consistent
in terms of recovering the full ranking, which automatically implies consistency in exactly
recovering the top k items. They obtain upper bounds on the sample complexity in terms
of a separation threshold that is identical to a parameter ∆k defined subsequently in this
paper (see Section 3). However, as our analysis shows, their bounds are loose by at least an
order of magnitude. They also assume a certain high-SNR condition on the probabilities,
an assumption that is not imposed in our analysis.

Finally, in very recent work on this problem, Chen and Suh (2015) proposed an algorithm
called the Spectral MLE for exact recovery of the top k items. They showed that, if the
pairwise observations are assumed to drawn according to the Bradley-Terry-Luce (BTL)
parametric model (Bradley and Terry, 1952; Luce, 1959), the Spectral MLE algorithm
recovers the k items correctly with high probability under certain regularity conditions. In
addition, they also show, via matching lower bounds, that their regularity conditions are
tight up to constant factors. While these guarantees are attractive, it is natural to ask how
such an algorithm behaves when the data is not drawn from the BTL model. In real-world
instances of pairwise ranking data, it is often found that parametric models, such as the BTL
model and its variants, fail to provide accurate fits (for instance, see the papers Davidson
and Marschak, 1959; McLaughlin and Luce, 1965; Tversky, 1972; Ballinger and Wilcox,
1997 and references therein).
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With this context, the main contribution of this paper is to analyze a classical counting-
based method for ranking, often called the Borda count method (de Borda, 1781), and to
show that it is optimal and robust. Our analysis does not require that the data-generating
mechanism follow either the BTL or other parametric assumptions, nor other regularity
conditions such as stochastic transitivity. We show that the Borda counting algorithm has
the following properties:

• Simplicity: The algorithm is simple, as it just orders the items by the number of pairwise
comparisons won. As we will subsequently see, the execution time of this counting algo-
rithm is several orders of magnitude lower as compared to prior work on ranking from
noisy pairwise comparisons.

• Optimality: We derive conditions under which the counting algorithm achieves the stated
goals, and by means of matching information-theoretic lower bounds, show that these
conditions are tight.

• Robustness: The guarantees that we prove do not require any assumptions on the
pairwise-comparison probabilities, and the counting algorithm performs well for vari-
ous classes of data sets. In contrast, we find that the spectral MLE algorithm performs
poorly when the data is not drawn from the BTL model.

In doing so, we consider three different instantiations of the problem of set-based recovery:

(i) Recovering the top k items perfectly;

(ii) Recovering the top k items allowing for a certain Hamming error tolerance; and

(iii) A more general recovery problem for set families that satisfy a natural “set-monotonicity”
condition. In order to tackle this general problem, we introduce a general framework
that allows us to treat a variety of problems in the literature in an unified manner.

The remainder of this paper is organized as follows. We begin in Section 2 with back-
ground and a more precise formulation of the problem. Section 3 presents our main theoret-
ical results on top-k recovery under various requirements. Section 4 provides the results of
experiments on both simulated and real-world data sets. We provide all proofs in Section 5.
The paper concludes with a discussion in Section 6.

2. Background and problem formulation

In this section, we provide a more formal statement of the problem along with background
on various types of ranking models.

2.1 Problem statement

Given an integer n ≥ 2, we consider a collection of n items, indexed by the set [n] : = {1, . . . , n}.
For each pair i 6= j, we let Mij denote the probability that item i wins the comparison with
item j. We assume that each comparison necessarily results in one winner, meaning that

Mij +Mji = 1, and Mii =
1

2
, (1)
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where we set the diagonal as 1
2 for concreteness.

For any item i ∈ [n], we define an associated score τi as

τi(M) : =
1

n

n∑

j=1

Mij . (2)

In words, the score τi(M) of any item i ∈ [n] corresponds to the probability that item i
beats an item chosen uniformly at random from all n items. In the sequel, we will use the
shorthand τi for the score of any item i, and drop the dependence on M from the notation
wherever the value of M is clear from context.

Given a set of noisy pairwise comparisons, our goals are (a) to recover the k items with
the maximum values of their scores; and (b) to recover the full ordering of all the items as
defined by the score vector. The notion of ranking items via their scores (2) generalizes the
explicit rankings under popular models in the literature. Indeed, as we discuss shortly, most
models of pairwise comparisons considered in the literature either implicitly or explicitly
assume that the items are ranked according to their scores. Note that neither the scores
{τi}i∈[n] nor the matrix M : = {Mij}i,j∈[n] of probabilities are assumed to be known.

More concretely, we consider a random-design observation model defined as follows.
Each pair is associated with a random number of noisy comparisons, following a binomial
distribution with parameters (r, p), where r ≥ 1 is the number of trials and p ∈ (0, 1]
is the probability of making a comparison on any given trial. Thus, each pair (i, j) is
associated with a binomial random variable with parameters (r, p) that governs the number
of comparisons between the pair of items. We assume that the observation sequences for
different pairs are independent. Note that in the special case p = 1, this random binomial
model reduces to the case in which we observe exactly r observations of each pair; in the
special case r = 1, the set of pairs compared form an (n, p) Erdős-Rényi random graph.

In this paper, we begin in Section 3.1 by analyzing the problem of exact recovery. More
precisely, for a given matrix M of pairwise probabilities, suppose that we let S∗

k denote the
(unknown) set of k items with the largest values of their respective scores, assumed to be
unique for concreteness.

Given noisy observations specified by the pairwise probabilities M , our goal is to estab-
lish conditions under which there exists some algorithm Ŝk that identifies k items based on
the outcomes of various comparisons such that the probability PM (Ŝk = S∗

k) is very close
to one. In the case of recovering the full ranking, our goal is to identify conditions which
ensure that the probability PM

(
∩

k∈[n]
(Ŝk = S∗

k)
)
is close to one.

In Section 3.2, we consider the problem of recovering a set of k items that approximates
S∗
k with a minimal Hamming error. For any two subsets of the set [n], we define their

Hamming distance DH, also referred to as their Hamming error, to be the number of items
that belong to exactly one of the two sets—that is

DH(A,B) = card
(
{A ∪B}\{A ∩B}

)
. (3)

For a given user-defined tolerance parameter h ≥ 0, we derive conditions that ensure that
DH(Ŝk,S∗

k) ≤ 2h with high probability.
Finally, we generalize our results to the problem of satisfying any a general class of

requirements on set families. These requirement are specified in terms of which k-sized
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subsets of the items are allowed, and is required to satisfy only one natural condition, that
of set-monotonicity, meaning that replacing an item in an allowed set with a higher rank
item should also be allowed. See Section 3.3 for more details on this general framework.

2.2 A range of pairwise comparison models

Our work makes minimal assumptions on the the pairwise comparison probabilities. Our
model is based on a “permutation-based” approach, and is described below (see Shah et al.,
2017a, 2016d,c, 2017b for other uses of permutation-based models and Shah, 2017, Chapter
1 and Part 1 for a general treatment). In order to put our work in context of the literature,
we also briefly review some standard models used for pairwise comparison data – all of these
models form special cases of our general model.

Our model: We assume that any requirements or metrics for recovery of a partial or total
order of the items are governed by the scores of the items defined in equation (2). In other
words, any item i is considered as ranked higher than any item j when their scores satisfy
τi > τj . We make no other assumptions on the probabilities {Mij}i,j∈[n]. In what follows,
we show that several other popular classes of models arise as special cases of our model.

Parametric models: A broad class of parametric models, including the Bradley-Terry-
Luce (BTL) model (Bradley and Terry, 1952; Luce, 1959) as a special case, are based on
assuming the existence of “quality” parameter wi ∈ R for each item i ∈ [n], and requiring
that the probability of an item beating another is a specific function of the difference between
their values. In the BTL model, the probability Mij that i beats j is given by the logistic
model

Mij =
1

1 + e−(wi−wj)
. (4a)

More generally, parametric models assume that the pairwise comparison probabilities take
the form

Mij = F (wi − wj), (4b)

where F : R → [0, 1] is some strictly increasing cumulative distribution function. The
function F is typically assumed to be known. By construction, any parametric model has
the following property: if wi > wj for some pair of items (i, j), then we are also guaranteed
that Miℓ > Mjℓ for every item ℓ. As a consequence, we are guaranteed that τi > τj , which
implies that ordering of the items in terms of their quality vector w ∈ R

n is identical to
their ordering in terms of the score vector τ ∈ R

n. Consequently, if the data is actually
drawn from a parametric model, then recovering the top k items according to their scores
is the same as recovering the top k items according their respective quality parameters.

Strong Stochastic Transitivity (SST) class: The class of strong stochastic transitiv-
ity (SST) models is a superset of parametric models (Shah et al., 2017a). It does not assume
the existence of a quality vector, nor does it assume any specific form of the probabilities
as in equation (4a). Instead, the SST class is defined by assuming the existence of a total
ordering of the n items, and imposing the inequality constraints Miℓ ≥ Mjℓ for every pair
of items (i, j) in which i is ranked above j in the ordering, and every item ℓ. One can verify
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that an ordering by the scores {τi}i∈[n] of the items lead to an ordering of the items that is
consistent with that defined by the SST class.

Thus, we see that in a broad class of models for pairwise ranking, the total ordering
defined by the score vector (2) coincides with the underlying ordering used to define the
models. In this paper, we analyze the performance of a counting algorithm, essentially
without imposing any modeling conditions on the family of pairwise probabilities. The
next three sections establish theoretical guarantees on the recovery of the top k items under
various requirements.

2.3 Borda counting algorithm

The analysis of this paper focuses on a simple counting-based algorithm, often called the
Borda count method (de Borda, 1781). We employ this method here for the setting of
pairwise comparisons, noting that the Borda count method more generally also supports
comparisons between more than two items.

More precisely, for each distinct i, j ∈ [n] and every integer ℓ ∈ [r], let Y ℓ
ij ∈ {−1, 0,+1}

represent the outcome of the ℓth comparison between the pair i and j, defined as

Y ℓ
ij =





0 no comparison between (i, j) in trial ℓ

+1 if comparison is made and item i beats j

−1 if comparison is made and item j beats i.

(5)

Note that this definition ensures that Y ℓ
ij = −Y ℓ

ji. For each i ∈ [n], the quantity

Ni : =
∑

j∈[n]

∑

ℓ∈[r]
1{Y ℓ

ij = 1} (6)

corresponds to the number of pairwise comparisons won by item i. Here we use 1{·} to
denote the indicator function that takes the value 1 if its argument is true, and the value
0 otherwise. For each integer k, the vector {Ni}ni=1 of number of pairwise wins defines a
k-sized subset

S̃k =
{
i ∈ [n] | Ni is among the k highest number of pairwise wins

}
, (7)

corresponding to the set of k items with the largest values of Ni. In other words, the set S̃k

corresponds to the rank statistics of the top k-items in the pairwise win ordering. (If there
are any ties, we resolve them by choosing the indices with the smallest value of i.)

3. Main results

In this section, we present our main theoretical results on top-k recovery under the three
settings described earlier. Note that the three settings are ordered in terms of increasing
generality, with the advantage that the least general setting leads to the simplest form of
theoretical claim. We also discuss optimal exact recovery of the full ranking.
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3.1 Thresholds for exact recovery of the top k items

We begin with the goal of exactly recovering the k top-ranked items. As one might expect,
the difficulty of this problem turns out to depend on the degree of separation between the
top k items and the remaining items. More precisely, let us use (k) and (k + 1) to denote
the indices of the items that are ranked kth and (k + 1)th respectively. With this notation,
the k-separation threshold ∆k is given by

∆k(M) : = τ(k)(M)− τ(k+1)(M) =
1

n

n∑

i=1

M(k)i

︸ ︷︷ ︸
Term (i)

− 1

n

n∑

i=1

M(k+1)i

︸ ︷︷ ︸
Term (ii)

. (8)

In words, the quantity ∆k(M) is the difference between (i) the probability of item (k)
beating another item chosen uniformly at random, and (ii) the same probability for item
(k + 1).

As shown by the following theorem, success or failure in recovering the top k entries is
determined by the size of ∆k(M) relative to the number of items n, observation probability
p and number of repetitions r. In particular, consider the family of matrices

Fk(α;n, p, r) : =

{
M ∈ [0, 1]n×n | M +MT = 11T , and ∆k(M) ≥ α

√
log n

npr

}
. (9)

To simplify notation, we often adopt Fk(α) as a convenient shorthand for this set, where
its dependence on (n, p, r) should be understood implicitly.

With this notation, the achievable result in part (a) of the following theorem is based on
the estimator that returns the set S̃k of the the k items defined by the number of pairwise
comparisons won, as defined in equation (7). On the other hand, the lower bound in part
(b) applies to any estimator, meaning any measurable function of the observations.

Theorem 1 (a) Consider any n ≥ 2, r ≥ 1 and p ∈ (0, 1]. Then if α ≥ 8, the set S̃k of
top k items (7) given by the Borda counting algorithm satisfies

sup
M∈Fk(α)

PM

[
S̃k 6= S∗

k

]
≤ 1

n14
. (10a)

(b) Conversely, suppose that n ≥ 7 and p ≥ logn
2nr . Then for any α ≤ 1

7 , the error

probability of any estimator Ŝk is lower bounded as

sup
M∈Fk(α)

PM

[
Ŝk 6= S∗

k

]
≥ 1

7
. (10b)

Remarks: First, it is important to note that the negative result in part (b) holds even if
the supremum is further restricted to a particular parametric sub-class of Fk(α), such as the
pairwise comparison matrices generated by the BTL model, or by the SST model. The proof
for the lower bound constructs a packing set of possible pairwise comparison probabilities
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and then applies Fano’s inequality. The construction ensures that every element of the
packing set also lies in the parametric and SST models. The packing set is based on a
generalization of a construction introduced by Chen and Suh (2015) for the BTL model,
which we adapt to the general definition (8) of the separation threshold ∆k.

Second, we note that in the regime p < logn
2nr , standard results from random graph

theory (Erdős and Rényi, 1960) can be used to show that there are at least
√
n items (in

expectation) that are never compared to any other item. Of course, estimating the rank is
impossible in this pathological case, so we omit it from consideration.

Third, the two parts of the theorem in conjunction show that the counting algorithm is
essentially optimal. The only room for improvement is in the difference between inequality
α ≥ 8 in the achievable result, and α ≤ 1

7 in the lower bound.

Theorem 1 can also be used to derive guarantees for recovery of other functions of the
underlying ranking. Here we consider the problem of identifying the ranking of all n items,
which we denote by the permutation π∗. In this case, we require that each of the separations
{∆j}n−1

j=1 are suitably lower bounded: more precisely, we study models M that belong to

the intersection ∩n−1
j=1Fj(α).

Theorem 2 Consider any n ≥ 2, r ≥ 1 and p ∈ (0, 1]. Let π̃ be the permutation of the items
specified by the Borda counting algorithm in order of the number of pairwise comparisons
won. Then for any α ≥ 8, we have

sup
M∈∩n−1

j=1 Fj(α)

PM

[
π̃ 6= π∗] ≤ 1

n13
.

Conversely, if n ≥ 9, then the separation condition on {∆j}n−1
j=1 that defines the set ∩n−1

j=1Fj(α)
is unimprovable beyond constant factors.

The upper bound of Theorem 2 follows from the equivalence of the correct recovery of the
ranking with the recovery of the top k items for every value of k ∈ [n]. The proof of the
lower bound requires a markedly different set of arguments; the proof does not follow from
Theorem 1(b) since for any given value of k a condition of the form minj∈[n−1]∆j ≤ α in
general does not imply ∆k ≤ α which would otherwise be required to use Theorem 1(b).

Detailed comparison to related work: In the remainder of this subsection, we make
a detailed comparison to the related works (Wauthier et al., 2013; Rajkumar and Agarwal,
2014; Rajkumar et al., 2015; Chen and Suh, 2015) that were briefly discussed in Section 1.

Wauthier et al. (2013) analyze a weighted counting algorithm for approximate recovery
of rankings; they work under a model in which Mij = 1

2 + γ whenever item i is ranked
above item j in an assumed underlying ordering. Here the parameter γ ∈ (0, 12 ] is inde-
pendent of (i, j), and as a consequence, the best ranked item is assumed to be as likely to
beat the worst item as it is to beat the second ranked item, for instance. They analyze
approximate ranking under Kendall tau and maximum displacement metrics. In order to
have a displacement upper bounded by by some δ > 0, their bounds require the order of
n5

δ2γ2 pairwise comparisons. In comparison, our model is more general in that we do not
impose the γ-condition on the pairwise probabilities When specialized to the γ-model, the
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quantities {∆j}nj=1 in our analysis takes the form ∆j = 2γ
n , and Theorem 2 shows that

n logn
minj∈[n] ∆

2
j

= n3 logn
γ2 observations are sufficient to recover the exact total ordering. Thus, for

any constant δ, Theorem 2 guarantees exact recovery with a sample complexity that is a
multiplicative factor of order n2

logn smaller than that established by Wauthier et al. (2013).

The two papers by Rajkumar and Agarwal (2014) and Rajkumar et al. (2015) consider
ranking under several models and several metrics. For the subset of their models common
with our setting—namely, Bradley-Terry-Luce and the so-called low noise models—they
show that the counting algorithm is consistent in terms of recovering the full ranking or the
top subset of items. The guarantees are obtained under a low-noise assumption: namely,
that the probability of any item i beating j is at least 1

2+γ whenever item i is ranked higher
than item j in an assumed underlying ordering. Their guarantees are based on a sample size
of at least logn

γ2µ2 , where µ is a parameter lower bounded as µ ≥ 1
n2 . Once again, our setting

allows for the parameter γ to be arbitrarily close to zero, and furthermore as one can see
from the discussion above, our bounds are much stronger. Moreover, while Rajkumar et al.
focus on upper bounds alone, we also prove matching lower bounds on sample complexity
showing that our results are unimprovable beyond constant factors. It should be noted that
Rajkumar et al. also provide results for other types of ranking problems that lie outside
the problem class treated in the current paper.

Most recently, Chen and Suh (2015) consider a random-design setting and show that
if the pairwise observations are assumed to drawn according to the Bradley-Terry-Luce
(BTL) parametric model (4a), then their proposed Spectral MLE algorithm recovers the k
items correctly with high probability when a certain separation condition on the parame-
ters {wi}ni=1 of the BTL model is satisfied. Their random-design setting is similar to ours
except that they first choose a set of pairs of items with each pair chosen with probability
p, and then make r comparisons between the two items in every chosen pair. We believe
our random-design setting is more natural; the two are identical when r = 1. Chen and
Suh also show, via matching lower bounds, that the separation condition they derive for
the BTL model is tight up to constant factors. In real-world instances of pairwise ranking
data, it is often found that parametric models, such as the BTL model and its variants,
fail to provide accurate fits (Davidson and Marschak, 1959; McLaughlin and Luce, 1965;
Tversky, 1972; Ballinger and Wilcox, 1997). Our results make no such assumptions on the
noise, and furthermore, our notion of the ordering of the items in terms of their scores (2)
strictly generalizes the notion of the ordering with respect to the BTL parameters. In empir-
ical evaluations presented subsequently, we see that the counting algorithm is significantly
more robust to various kinds of noise, and takes several orders of magnitude lesser time to
compute.

Finally, in addition to the notion of exact recovery considered so far, in the next two
subsections we also derive tight guarantees for the Hamming error metric and more general
metrics inspired by the requirements of many relevant applications (Ilyas et al., 2008; Michel
et al., 2005; Babcock and Olston, 2003; Metwally et al., 2005; Kimelfeld and Sagiv, 2006;
Fagin et al., 2003).
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3.2 Approximate recovery under Hamming error

In the previous section, we analyzed performance in terms of exactly recovering the top-k
subset. Although exact recovery is suitable for some applications (e.g., a setting with high
stakes, in which any single error has a large price), there are other settings in which it may
be acceptable to return a subset that is “close” to the correct k-ranked subset. In this
section, we analyze this problem of approximate recovery when closeness is measured under
the Hamming error. More precisely, for a given threshold h ∈ [0, k), suppose that our goal
is to output a set k-sized set Ŝk such that its Hamming distance to the set S∗

k of the true
top k items, as defined in equation (3), is bounded as

DH(Ŝk,S∗
k) ≤ 2h. (11)

Our goal is to establish conditions under which it is possible (or impossible) to return an
estimate Ŝk satisfying the bound (11) with high probability.1

As before, we use (1), . . . , (n) to denote the permutation of the n items in decreasing
order of their scores. With this notation, the following quantity plays a central role in our
analysis:

∆k, h(M) : = τ(k−h)(M)− τ(k+h+1)(M). (12a)

The quantity ∆k, h measures the difference between the scores associated to the items which
are h positions on either side of our desired boundary between the kth and (k+ 1)th items.
Observe that ∆k, h is a generalization of the quantity ∆k defined previously in equation (8);
and the quantity ∆k corresponds to ∆k, h with h = 0. We then define a generalization of
the family Fk(α;n, p, r), namely

Fk,h(α;n, p, r) : =

{
M ∈ [0, 1]n×n | M +MT = 11T , and ∆k, h ≥ α

√
log n

npr

}
. (12b)

As before, we adopt the shorthand Fk,h(α), with the dependence on (n, p, r) being under-
stood implicitly.

Theorem 3 (a) Consider any n ≥ 2, r ≥ 1 and p ∈ (0, 1]. Then if α ≥ 8, the set S̃k of
top k items (7) given by the Borda counting algorithm satisfies

sup
M∈Fk,h(α)

PM

[
DH(S̃k,S∗

k) > 2h
]
≤ 1

n14
. (13a)

(b) Conversely, in the regime p ≥ logn
2nr and for given constants ν1, ν2 ∈ (0, 1), suppose

that 2h ≤ 1
1+ν2

min{n1−ν1 , k, n − k}. Then for any α ≤
√
ν1ν2
14 , any estimator Ŝk has

error at least

sup
M∈Fk,h(α)

PM

[
DH(Ŝk,S∗

k) > 2h
]
≥ 1

7
, (13b)

for all n larger than a constant c(ν1, ν2).

1. The requirement h < k is sensible because if h ≥ k, the problem is trivial: any two k-sized sets Ŝk and
S∗
k satisfy the bound DH(Ŝk,S

∗
k) ≤ 2k ≤ 2h.

10



Simple, Robust and Optimal Ranking

This result is similar to that of Theorem 1, except that the relaxation of the exact
recovery condition allows for a less constrained definition of the separation threshold ∆k, h.
As with Theorem 1, the lower bound in part (b) applies even if probability matrix M is
restricted to lie in a parametric model (such as the BTL model), or the more general SST
class. The counting algorithm is thus optimal for estimation under the relaxed Hamming
metric as well.

The proof of the upper bound involves a transformation of the Hamming error re-
quirement into one of exact recovery requirement, and then transforming the result of
Theorem 1(a) to that required here via certain algebraic arguments. The lower bound is
significantly more intricate: we carefully design a packing set using a coding-theoretic result
due to Levenshtein (1971), which we then employ in Fano’s inequality.

Finally, it is worth making a few comments about the constants appearing in these
claims. We can weaken the lower bound on ∆k required in Theorem 3(a) at the expense
of a lower probability of success; for instance, if we instead require that α ≥ 4, then
the probability of error is guaranteed to be at most n−2. Subsequently in the paper, we
provide the results of simulations with n = 500 items and α = 4. On the other hand, in
Theorem 3(b), if we impose the stronger upper bound α = O(1/

√
h log n), then we can

remove the condition h ≤ n1−ν1 .

3.3 An abstract form of k-set recovery

In earlier sections, we investigated recovery of the top k items either exactly or under a
Hamming error. Exact recovery may be quite strict for certain applications, whereas the
property of Hamming error allowing for a few of the top k items to be replaced by arbitrary
items may be undesirable. Indeed, many applications have requirements that go beyond
these metrics; for instance, see the papers Ilyas et al. (2008); Michel et al. (2005); Babcock
and Olston (2003); Metwally et al. (2005); Kimelfeld and Sagiv (2006); Fagin et al. (2003)
and references therein for some examples. In this section, we generalize the notion of exact
or Hamming-error recovery in order to accommodate a fairly general class of requirements.

Both the exact and approximate Hamming recovery settings require the estimator to
output a set of k items that are either exactly or approximately equal to the true set of top k
items. When is the estimate deemed successful? One way to think about the problem is as
follows. The specified requirement of exact or approximate Hamming recovery is associated
to a set of k-sized subsets of the n possible ranks. The estimator is deemed successful if the
true ranks of the chosen k items equals one of these subsets. In our notion of generalized
recovery, we refer to such sets as allowed sets. For example, in the case k = 3, we might say
that the set {1, 4, 10} is allowed, meaning that an output consisting of the items that are
ranked “first”, “fourth” and “tenth” in the ground truth is considered correct.

In more generality, let S denote a family of k-sized subsets of [n], which we refer to as
family of allowed sets. Notice that any allowed set is defined by the positions of the items in
the true ordering and not the items themselves.2 Once some true underlying ordering of the
n items is fixed, each element of the family S then specifies a set of the items themselves.
We use these two interpretations depending on the context — the definition in terms of

2. In case of two or more items with identical scores, the choice of any of these items is considered valid.
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positions to specify the requirements, and the definition in terms of the items to evaluate
an estimator for a given underlying probability matrix M .

We let S†
k denote a k-set estimate, meaning a function that given a set of observations

as input, returns a k-sized subset of [n] as output.

Definition 4 (S-respecting estimators) For any family S of allowed sets, a k-set esti-

mate S†
k respects its structure if the set of k positions of the items in S†

k belongs to the set
family S.

Our goal is to determine conditions on the set family S under which there exist estimators
S†
k that respect its structure. In order to illustrate this definition, let us return to the

examples treated thus far.

Example 1 (Exact and approximate Hamming recovery) The requirement of exact
recovery of the top k items has S consisting of exactly one set, the set of the top k positions
S = {[k]}. In the case of recovery with a Hamming error at most 2h, the set S of all
allowed sets consists all k-sized subsets of [n] that contain at least (k − h) positions in the
top k positions. For instance, in the case h = 1, k = 2 and n = 4, we have

S =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}

}
.

Apart from these two requirements, there are several other requirements for top-k recovery
popular in the literature (Carmel et al., 2001; Fagin et al., 2003; Babcock and Olston, 2003;
Michel et al., 2005; Metwally et al., 2005; Kimelfeld and Sagiv, 2006; Ilyas et al., 2008). Let
us illustrate them with another example:

Example 2 Let π∗ : [n] → [n] denote the true underlying ordering of the n items. The

following are four popular requirements on the set S†
k for top-k identification, with respect

to the true permutation π∗, for a pre-specified parameter ǫ ≥ 0.

(i) All items in the set S†
k must be contained contained within the top (1 + ǫ)k entries:

max
i∈S†

k

π∗(i) ≤ (1 + ǫ)k. (14a)

(ii) The rank of any item in the set S†
k must lie within a multiplicative factor (1 + ǫ) of

the rank of any item not in the set S†
k:

max
i∈S†

k

π∗(i) ≤ (1 + ǫ) min
j∈[n]\S†

k

π(j). (14b)

(iii) The rank of any item in the set S†
k must lie within an additive factor ǫ of the rank of

any item not in the set S†
k:

max
i∈S†

k

π∗(i) ≤ min
j∈[n]\S†

k

π∗(j) + ǫ. (14c)

12
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(iv) The sum of the ranks of the items in the set S†
k must be contained within a factor

(1 + ǫ) of the sums of ranks of the top k entries:

∑

i∈S†
k

π∗(i) ≤ (1 + ǫ)
1

2
k(k + 1). (14d)

Note that each of these requirements reduces to the exact recovery requirement when ǫ = 0.
Moreover, each of these requirements can be rephrased in terms of families of allowed sets.
For instance, if we focus on requirement (i), then any k-sized subset of the top (1 + ǫ)k
positions is an allowed set.

In this paper, we derive conditions that govern k-set recovery for allowed set systems
that satisfy a natural “monotonicity” condition. Informally, the monotonicity condition
requires that the set of k items resulting from replacing an item in an allowed set with a
higher ranked item must also be an allowed set. More precisely, for any set {t1, . . . , tk} ⊆ [n],
let Λ({t1, . . . , tk}) ⊆ 2[n] be the set defined by all of its monotone transformations—that is

Λ({t1, . . . , tk}) : =
{
{t′1, . . . , t′k} ⊆ [n] | t′j ≤ tj for every j ∈ [k]

}
.

Using this notation, we have the following:

Definition 5 (Monotonic set systems) The set S of allowed sets is a monotonic set
system if

Λ(T ) ⊆ S for every T ∈ S. (15)

One can verify that condition (15) is satisfied by the settings of exact and Hamming-error
recovery, as discussed in Example 1. The condition is also satisfied by all four requirements
discussed in Example 2.

Our next result establishes conditions under which one can (or cannot) produce an
estimator that respects an allowed set requirement. In order to state the result, we recall
the score τi(M) : = 1

n

∑n
j=1Mij , as previously defined in equation (2) for each i ∈ [n]. For

notational convenience, we also define τi(M) : = −∞ for every i > n and every M . Consider
any monotonic family of allowed sets S, and for some integer β ≥ 1, let T 1, . . . , T β ∈ S

such that S = ∪
b∈[β]

Λ(T b). For every b ∈ [β], let tb1 < · · · < tbk denote the entries of T b. We

then define the critical threshold based on the scores:

∆S(M) : = max
b∈[β]

min
j∈[k]

(τ(j)(M)− τ(k+tbj−j+1)(M)). (16)

The term ∆S is a further generalization of the quantities ∆k and ∆k, h defined in earlier
sections. For example, for the exact recovery setting we have β = 1 and T 1 = {1, . . . , k},
and after some algebraic simplifications of (16), we obtain that the critical threshold ∆S

reduces exactly to the threshold ∆k defined earlier in (8). As a second example, the setting
allowing a Hamming error at most 2h can be described with the choice β = 1 and T 1 =
{h + 1, . . . , k, n − h + 1, . . . , n}. Some algebraic simplifications of (16) reduce ∆S to the
threshold ∆k, h defined in (12a). As an example with β > 1, consider requirement (ii)
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in Example 2. For simplicity of exposition, assume that ǫ > 1
k−1 and n ≥ 2k(1 + ǫ).

For this requirement, we have β = (k − ⌈ k
1+ǫ⌉), and for every b ∈ {⌈ k

1+ǫ⌉ + 1, . . . , k}, we
have T b−⌈ k

1+ǫ
⌉ = {1, . . . , b − 1, ⌈(1 + ǫ)b − (k − b)⌉, . . . , ⌈(1 + ǫ)b⌉}. Then some algebraic

simplifications of equation (16) yield that the critical threshold for this requirement is given
by ∆S(M) = maxb∈{⌈ k

1+ǫ
⌉+1,...,k}min{τ(b−1)(M)− τ(k+1)(M), τ(k)(M)− τ(⌈(1+ǫ)b⌉+1)(M)}.

With the definition of the critical threshold ∆S in place, we now define a generalization
FS(·) of the families Fk(·) and Fk,h(·) as

FS(α;n, p, r) : =

{
M ∈ [0, 1]n×n | M +MT = 11T and ∆S(M) ≥ α

√
log n

npr

}
. (17)

As before, we use the shorthand FS(α), with the dependence on (n, p, r) being understood
implicitly.

Theorem 6 Consider any allowed set requirement specified by a monotonic set class S.

(a) For any α ≥ 8, the set S̃k of top k items (7) given by the Borda counting algorithm
satisfies

sup
M∈FS(α)

PM

[
S̃k /∈ S

]
≤ 1

n13
.

(b) Conversely, in the regime p ≥ logn
2nr , and for given constants µ1 ∈ (0, 1), µ2 ∈ (34 , 1],

suppose that maxb∈[β] t
b
⌈µ2k⌉ ≤ n

2 and 8(1 − µ2)k ≤ n1−µ1. Then for any α smaller

than a constant cu(µ1, µ2) > 0, any estimator Ŝk has error at least

sup
M∈FS(α)

PM

[
S̃k /∈ S

]
≥ 1

15
, (18)

for all n larger than a constant c0(µ1, µ2).

A few remarks on the bounds are in order. For the lower bound, first, it continues to
hold even if the probability matrix M is restricted to follow a parametric model such as BTL
or restricted to lie in the SST class. Second, in terms of the threshold for α, the lower bound

holds with cu(µ1, µ2) =
1
15

√
µ1min

{
1

4(1−µ2)−1 ,
1
2

}
. Third, it is worth noting that one must

necessarily impose some conditions for the lower bound, along the lines of those required in
Theorem 6(b) for the allowed sets to be “interesting” enough. As a concrete illustration of
the necessity of this condition, consider the requirement defined by the parameters b = 1,
k = 1 and S = Λ({n − √

n}). For µ1 = µ2 = 9
10 , this requirement satisfies the condition

8(1 − µ2)k ≤ n1−µ1 but violates the condition t⌈µ2k⌉ ≤ n
2 . Now, a selection of k = 1 item

made uniformly at random (independent of the data) satisfies this allowed set requirement
with probability 1 − 1√

n
. Given the success of such a random selection algorithm in this

parameter regime, we see that the lower bounds therefore cannot be universal, but must
require some conditions on the allowed sets.
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Spectral MLE Counting

Figure 1. Simulation results comparing Spectral MLE and the counting algorithm in terms
of error rates for exact recovery of the top k items, and computation time. (a) Histogram of
fraction of instances where the algorithm failed to recover the k items correctly, with each
bar being the average value across 50 trials. The counting algorithm has 0% error across
all problems, while the spectral MLE is accurate for parametric models (BTL, Thurstone),
but not very accurate for other models. (b) Histogram plots of the maximum computation
time taken by the counting algorithm and the minimum computation time taken by Spectral
MLE across all trials. Even though this maximum-to-minimum comparison is unfair to the
counting algorithm, it involves five or more orders of magnitude less computation.

4. Simulations and experiments

In this section, we empirically evaluate the performance of the counting algorithm and
compare it with the Spectral MLE algorithm via simulations on synthetic data, as well as
experiments using datasets from the Amazon Mechanical Turk crowdsourcing platform.

4.1 Simulated data

We begin with simulations using synthetically generated data with n = 500 items and ob-
servation probability p = 1, and with pairwise comparison models ranging over six possible
types. Panel (a) in Figure 1 provides a histogram plot of the associated error rates (with a
bar for each one of these six models) in recovering the k = n/4 = 125 items for the counting
algorithm versus the Spectral MLE algorithm. Each bar corresponds to the average over
50 trials. Panel (b) compares the CPU times of the two algorithms. The value of α (and in
turn, the value of r) in the first five models is as derived in Section 3.1. In more detail, the
six model types are given by:

(I) Bradley-Terry-Luce (BTL) model: Recall that the theoretical guarantees for the Spectral
MLE algorithm (Chen and Suh, 2015) are applicable to data that is generated from the
BTL model (4a), and as guaranteed, the Spectral MLE algorithm gives a 100% accuracy
under this model. The counting algorithm also obtains a 100% accuracy, but importantly,
the counting algorithm requires a computational time that is five orders of magnitude
lower than that of Spectral MLE.
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(II) Thurstone model: The Thurstone model (Thurstone, 1927) is another parametric model,
with the function F in equation (4b) set as the cumulative distribution function of the
standard Gaussian distribution. Both Spectral MLE and the counting algorithm gave
100% accuracy under this model.

(III) BTL model with one (non-transitive) outlier: This model is identical to BTL, with one
modification. Comparisons among (n− 1) of the items follow the BTL model as before,
but the remaining item always beats the first n

4 items and always loses to each of the other
items. We see that the counting algorithm continues to achieve an accuracy of 100% as
guaranteed by Theorem 1. The departure from the BTL model however prevents the
Spectral MLE algorithm from identifying the top k items.

(IV) Strong stochastic transitivity (SST) model: We simulate the “independent diagonals”
construction of Shah et al. (2017a) in the SST class. Spectral MLE is often unsuccessful
in recovering the top k items, while the counting algorithm always succeeds.

(V) Mixture of BTL models: Consider two sets of people with opposing preferences. The
first set of people have a certain ordering of the items in their mind and their preferences
follow a BTL model under this ordering. The second set of people have the opposite
ordering, and their preferences also follow a BTL model under this opposite ordering.
The overall preference probabilities is a mixture between these two sets of people. In
the simulations, we observe that the counting algorithm is always successful while the
Spectral MLE method often fails.

(VI) BTL with violation of separation condition: We simulate the BTL model, but with
a choice of parameter r small enough that the value of α is about one-tenth of its
recommended value in Section 3.1. We observe that the counting algorithm continues
to incur a lower error than the Spectral MLE algorithm, thereby demonstrating its
robustness.

To summarize, the performance of the two algorithms can be contrasted in the following
way. When our stated lower bounds on α are satisfied, then consistent with our theoreti-
cal claims, the Borda counting algorithm succeeds irrespective of the form of the pairwise
probability distributions. The Spectral MLE algorithm performs well when the pairwise
comparison probabilities are faithful to parametric models, but is often unsuccessful other-
wise. Even when the condition on α is violated, the performance of the counting algorithm
remains superior to that of the Spectral MLE.3 In terms of computational complexity, for
every instance we simulated, the counting algorithm took several orders of magnitude less
time as compared to Spectral MLE.

Simulations with adversarial, imbalanced choice of pairs: The theoretical results in the
earlier sections addressed a random design setting where the pairs to be compared are chosen
at random in a homogeneous manner. While such a random design setting is widespread
in various applications such as crowdsourcing and others, and is also the focus of a bulk
of past literature on related topics, it is also of interest to understand situations where the

3. Note that part (b) of Theorem 1 is a minimax converse meaning that it appeals to the worst case scenario.
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comparisons may be imbalanced. With this goal, we new present simulations that contrast
the behavior of the counting algorithm in a random-design setting with an adversarial-design
setting.

In this set of simulations, we consider the problem of recovering the top item (that is,
k = 1). Moreover, we adopt a parametric model in which every item i ∈ [n] is assumed to
be governed by a parameter w∗

i ∈ [0, 1], and the probability of any item i beating item j is

set as Mij =
1+w∗

i −w∗
j

2 . As before, the number of times any pair of items (i, j) is compared
is drawn as a binomial distribution with parameters r and p. In the standard random-
design setting studied throughout the remainder of this paper, the choice of the number of
comparisons is unrelated to the choice of the parameters w∗. However in the adversarial
setting, we make w∗ adversarially misaligned to the number of comparisons between various
pairs. In particular, the parameters associated to the items are chosen as follows for the
random and the adversarial settings:

1. Random: w∗
1 = 1 and w∗

2 = 0.9 are the top two items. For every i ∈ {3, . . . , n}, we
draw w∗

i uniformly at random from the set {0.1, 0.7}.

2. Adversarial: w∗
1 = 1 and w∗

2 = 0.9 are the top two items. For every i ∈ {3, . . . , n}, we
set w∗

i = 0.7 if item i is compared more often to item 1 than to item 2, set w∗
i = 0.1

if item i is compared more often to item 2 than to item 1, and draw w∗
i uniformly at

random from the set {0.1, 0.7} otherwise.

The results of applying the counting algorithm are shown in Figure 2. From these simu-
lations we observe that the simple counting algorithm is indeed sensitive to the imbalanced
choice of pairs to be compared (that is, when the top item is compared more often to higher
ranked items and the second item is compared more often to lower ranked items). De-
signing algorithms for ranking from pairwise comparisons that can optimally handle such
imbalanced, adversarial-design settings is left as a problem for future work.

4.2 Experiments on data from Amazon Mechanical Turk

In this section, we describe experiments on real world datasets collected from the Amazon
Mechanical Turk (mturk.com) commercial crowdsourcing platform.

Figure 2. Performance of the counting algorithm for top k = 1 recovery when the pairs
to be compared are chosen randomly and when they are chosen adversarially to create an
imbalanced setting.
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Figure 3. An illustration of the cell counting experiment (panel a) and results comparing
Spectral MLE and the counting algorithm in terms of accuracy and computation time (panels
b–h).

4.2.1 Experiment on counting cells

We begin with an experiment on counting (biological) cells in images.

Data. We employed a dataset of 23 images, each comprising several (biological) cells. The
images of the cells and the ground truth counts of the numbers of cells in each image were
obtained from the dataset collected by Carpenter et al. (2006).

On the Amazon Mechanical Turk crowdsourcing platform, we recruited a total of 64
workers and showed multiple pairs of such images to each worker – see Figure 3(a) for an
illustrative example. For each pair of images, the worker was asked to select the image
that the worker considered to have fewer cells. For each worker, the pairs were chosen by
permuting the 23 images uniformly at random and asking for a comparison between the
first and second images, between the third and fourth images and so on, for a total of 11
pairs of images per worker. In the raw data, 9.8% of the responses provided by the workers
were erroneous. In the raw data we also observed that unsurprisingly, the number of errors
increase as the actual cell counts in the pair of images come closer. The interface seen by
the workers as well as the raw data obtained from Amazon Mechanical Turk is available on
the website of the first author.

The goal of any algorithm is to take this set of noisy pairwise comparisons from the
workers and estimate the images with the fewest cells. Such estimates are useful to detect
various conditions, for instance, a low count of red blood cells in images of human cells
indicates anemia. To this end, we executed the Spectral MLE algorithm (Chen and Suh,
2015) and the Borda counting algorithm on the set of pairwise comparisons obtained from
the workers.
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Results. We compared the performance of the two algorithms on a variety of metrics. In
what follows, we subsample the responses with p = 0.5, that is, for each response for each
question, we keep the response independently with probability 0.5 and discard it otherwise.
We execute the two algorithms on this subsampled data. We repeat this process for 100
trials and plot the mean of the metric under consideration along with error bars representing
the standard error of the mean.

We first consider recovering the set of top k = n
2 items. The natural metric of error here is

the Hamming error, that is, the number of images that are misclassified. For this objective,
while Spectral MLE does quite well, counting incurs a significantly lower Hamming error
– see Figure 3(b). As one may expect, the count estimator also requires a much lower
computation time – see Figure 3(c) for a comparison. In Figures 3(d) to (h), we see that
counting also performs quite well for other exact or approximate requirements of top k or
ranking recovery.

4.2.2 Data from earlier experiments on Amazon Mechanical Turk

We now describe three additional experiments using data collected from Amazon Mechanical
Turk in our past work Shah et al. (2016a).

Data. In order to evaluate the accuracy of the algorithms under consideration, we require
datasets consisting of pairwise comparisons in which the questions can be associated with
an objective and verifiable ground truth. To this end, we used the “cardinal versus ordinal”
dataset from our past work Shah et al. (2016a); three of the experiments performed in
that paper are suitable for the evaluations here—namely, ones in which each question has a
ground truth, and the pairs of items are chosen uniformly at random. The three experiments
tested the workers’ general knowledge, audio, and visual understanding, and the respective
tasks involved: (i) identifying the pair of cities with a greater geographical distance, (ii)
identifying the higher frequency key of a piano, and (iii) identifying spelling mistakes in
a paragraph of text. The number of items n in the three experiments were 16, 10 and 8
respectively. The total number of pairwise comparisons were 408, 265 and 184 respectively.
The fraction of pairwise comparisons whose outcomes were incorrect (as compared to the
ground truth) in the raw data are 17%, 20% and 40% respectively.

Results. We compared the performance of the counting algorithm with that of the Spec-
tral MLE algorithm. For each value of a “subsampling probability” q ∈ {0.1, 0.2, . . . , 1.0},
we subsampled a fraction q of the data and executed both algorithms on this subsampled
data. We evaluated the performance of the algorithms on their ability to recover the top
k = ⌈n4 ⌉ items under the Hamming error metric.

Figure 4 shows the results of the experiments. Each point in the plots is an average
across 100 trials. Observe that the counting algorithm consistently outperforms Spectral
MLE. (We think that the erratic fluctuations in the spelling mistakes data are a consequence
of a high noise and a relatively small problem size.) Moreover, the Spectral MLE algorithm
required about 5 orders of magnitude more computation time (not shown in the figure) as
compared to counting. Thus the counting algorithm performs well on simulated as well as
real data. It outperforms Spectral MLE not only when the number of items is large (as in
the simulations) but also when the problem sizes are small as seen in these experiments.
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Figure 4. Evaluation of Spectral MLE and the counting algorithm on three datasets (from
left to right: Distances, Audio, Spelling mistakes) from Amazon Mechanical Turk in terms
of the error rates for top k-subset recovery. The three panels plot the Hamming error when
recovering the top k items in the three datasets when a qth fraction of the total data is used,
for various values of subsampling probability q ∈ (0, 1].

5. Proofs

We now turn to the proofs of our main results. We continue to use the notation [i] to denote
the set {1, . . . , i} for any integer i ≥ 1. We ignore floor and ceiling conditions unless critical
to the proof. All logarithms are taken to the base e.

Our lower bounds are based on a standard form of Fano’s inequality (Cover and Thomas,
2012; Tsybakov, 2008) for lower bounding the probability of error in an L-ary hypothesis
testing problem. We state a version here for future reference. For some integer L ≥ 2, fix
some collection of distributions {P1, . . . ,PL}. Suppose that we observe a random variable
Y that is obtained by first sampling an index A uniformly at random from [L] = {1, . . . , L},
and then drawing Y ∼ P

A. (As a result, the variable Y is marginally distributed according to
the mixture distribution P = 1

L

∑L
a=1 P

a.) Given the observation Y , our goal is to “decode”
the value of A, corresponding to the index of the underlying mixture component. Using
Y to denote the sample space associated with the observation Y , Fano’s inequality asserts
that any test function φ : Y → [L] for this problem has error probability lower bounded as

P[φ(Y ) 6= A] ≥ 1− I(Y ;A) + log 2

logL
,

where I(Y ;A) denotes the mutual information between Y and A. A standard convexity
argument for the mutual information yields the weaker bound

P[φ(Y ) 6= A] ≥ 1−
max
a,b∈[L]

DKL(P
a‖Pb) + log 2

logL
, (19)

We make use of this weakened form of Fano’s inequality in several proofs.

5.1 Proof of Theorem 1

We begin with the proof of Theorem 1, dividing our argument into two parts.
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5.1.1 Proof of part (a)

For any pair of items (i, j), let us encode the outcomes of the r trials by an i.i.d. sequence

V
(ℓ)
ij = [X

(ℓ)
ij X

(ℓ)
ji ]

T of random vectors, indexed by ℓ ∈ [r]. Each random vector follows
the distribution

P
[
x
(ℓ)
ij , x

(ℓ)
ji

]
=





1− p if (x
(ℓ)
ij , x

(ℓ)
ji ) = (0, 0)

pMij if (x
(ℓ)
ij , x

(ℓ)
ji ) = (1, 0)

p(1−Mij) if (x
(ℓ)
ij , x

(ℓ)
ji ) = (0, 1)

0 otherwise.

With this encoding, the variable Wa : =
∑

ℓ∈[r]
∑

z∈[n]\{a}X
(r)
aj encodes the number of wins

for item a.
Consider any item a ∈ S∗

k which ranks among the top k in the true underlying ordering,
and any item b ∈ [n]\S∗

k which ranks outside the top k. We claim that with high probability,
item a will win more pairwise comparisons than item b. More precisely, let Eba denote the
event that item b wins at least as many pairwise comparisons than a. We claim that

P(Eba)
(i)

≤ exp

(
−

1
2(rpn∆k)

2

rpn(2−∆k) +
2
3rpn∆k

)
(ii)

≤ 1

n16
. (20)

Given this bound, the probability that the counting algorithm will rank item b above a is
no more than n−16. Applying the union bound over all pairs of items a ∈ S∗

k and b ∈ [n]\S∗
k

yields P
[
S̃k 6= S∗

k

]
≤ n−14 as claimed.

We note that inequality (ii) in equation (20) follows from inequality (i) combined with
the condition on ∆k that arises by setting α ≥ 8 as assumed in the hypothesis of the
theorem. Thus, it remains to prove inequality (i) in equation (20). By definition of Eba, we
have

P(Eba) = P

(∑

ℓ∈[r]

∑

z∈[n]\{b}
X

(ℓ)
bz

︸ ︷︷ ︸
Wb

−
∑

ℓ∈[r]

∑

z∈[n]\{a}
X(ℓ)

az

︸ ︷︷ ︸
Wa

≥ 0
)
. (21)

It is convenient to recenter the random variables. For every ℓ ∈ [r] and z ∈ [n]\{a, b}, define
the zero-mean random variables

X
(ℓ)
az = X(ℓ)

az − E[X(ℓ)
az ] = X(ℓ)

az − pMaz and X
(ℓ)
bz = X

(ℓ)
bz − E[X

(ℓ)
bz ] = X

(ℓ)
bz − pMbz.

Also, let

X
(ℓ)
ab = (X

(ℓ)
ab −X

(ℓ)
ba )− E[X

(ℓ)
ab −X

(ℓ)
ba ] = (X

(ℓ)
ab −X

(ℓ)
ba )− (pMab − pMba).

We then have

P(Eba) = P

(
∑

ℓ∈[r]

( ∑

z∈[n]\{a,b}
X

(ℓ)
bz −

∑

z∈[n]\{a,b}
X

(ℓ)
az −X

(ℓ)
ab

)
≥ rp

∑

z∈[n]

(
Maz −Mbz

))
.
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Since a ∈ S∗
k and b ∈ [n]\S∗

k , from the definition of ∆k, we have n∆k ≤
∑

z∈[n]
(Maz −Mbz),

and consequently

P (Eba) ≤ P


∑

ℓ∈[r]

( ∑

z∈[n]\{a,b}
X

(ℓ)
bz −

∑

z∈[n]\{a,b}
X

(ℓ)
az −X

(ℓ)
ab

)
≥ rpn∆k


 . (22)

By construction, all the random variables in the above inequality are zero-mean, mutu-
ally independent, and bounded in absolute value by 2. These properties alone would allow
us to obtain a tail bound by Hoeffding’s inequality; however, in order to obtain the stated re-
sult (20), we need the more refined result afforded by Bernstein’s inequality (e.g., Boucheron
et al., 2013). In order to derive a bound of Bernstein type, the only remaining step is to
bound the second moments of the random variables at hand. Some straightforward calcu-
lations yield

E[(−X
(ℓ)
az )

2] ≤ pMaz, E[(X
(ℓ)
bz )

2] ≤ pMbz, and E[(X
(ℓ)
ab )

2] ≤ pMab + pMba.

It follows that

∑

z∈[n]\{a,b}
E[(−X

(ℓ)
az )

2]+
∑

z∈[n]\{a,b}
E[(X

(ℓ)
bz )

2] + E[(X
(ℓ)
ab )

2]

≤ p


 ∑

z∈[n]\{a,b}
(Maz +Mbz) +Mab +Mba




(iii)

≤ p


2

∑

z∈[n]
Maz − n∆k




(iv)
< pn(2−∆k),

where the inequality (iii) follows from the definition of ∆k, and step (iv) follows because
Maz ≤ 1 for every z and Maa = 1

2 . Applying the Bernstein inequality now yields the stated
bound (20)(i).

5.1.2 Proof of part (b)

We prove the claim by constructing a packing set that satisfies our general requirements
as well as also lies within the SST model and all parametric models, and subsequently
using the packing set in an application of Fano’s inequality. We then carefully bound the
Kullback-Leibler divergence between the probability distributions on the outcomes induced
by any pair of elements in the packing set in order to obtain a tractable bound.

In more detail, the symmetry of the problem allows us to assume, without loss of gen-
erality, that k ≤ n

2 . We first construct an ensemble of n − k + 1 different problems, and
considering the problem of distinguishing between them. For each a ∈ {k, . . . , n}, let us
define the k-sized subset S∗[a] : = {1, . . . , k−1}∪{a}, and the associated matrix of pairwise
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probabilities

Ma
ij : =





1
2 if i, j ∈ S∗[a], or i, j /∈ S∗[a]
1
2 + δ if i ∈ S∗[a] and j /∈ S∗[a]
1
2 − δ if i /∈ S∗[a] and j ∈ S∗[a],

where δ ∈ (0, 12) is a parameter to be chosen. We use Pa to denote probabilities taken under
pairwise comparisons drawn according to the model Ma.

One can verify that the construction above falls in the intersection of parametric models
and the SST model. In the parametric case, this construction amounts to having the
parameters associated to every item in S∗

k to have the same value, and those associated to
every item in [n]\S∗

k to have the same value. Also observe that for every such distribution
P
a, the associated k-separation threshold is ∆k = δ.
Any given set of observations can be described by the collection of random variables

Y = {Y (ℓ)
ij , j > i ∈ [n], ℓ ∈ [r]}. When the true underlying model is Pa, the random variable

Y
(ℓ)
ij follows the distribution

Y
(ℓ)
ij =





0 with probability 1− p

i with probability pMa
ij

j with probability p(1−Ma
ij).

The random variables {Y (ℓ)
ij }i,j∈[n],i<j,ℓ∈[r] are mutually independent, and the distribution

P
a is a product distribution across pairs {i > j} and repetitions ℓ ∈ [r].
Let A ∈ {k, . . . , n} follow a uniform distribution over the index set, and suppose that

given A = a, our observations Y has components drawn according to the model Pa. Conse-
quently, the marginal distribution of Y is the mixture distribution 1

n−k+1

∑n
a=k P

a over all
(n − k + 1) models. Based on observing Y , our goal is to recover the correct index A = a
of the underlying model, which is equivalent to recovering the planted subset S∗[a]. We
use the Fano bound (19) to lower bound the error bound associated with any test for this
problem. In order to apply Fano’s inequality, the following result provides control over the
Kullback-Leibler divergence between any pair of probabilities involved.

Lemma 7 For any distinct pair a, b ∈ {k, . . . , n}, we have

DKL(P
a‖Pb) ≤ 2npr

1
4δ2

− 1
. (23)

See the end of this section for the proof of this claim.
Given this bound on the Kullback-Leibler divergence, Fano’s inequality (19) implies that

any estimator φ of A has error probability lower bounded as

P[φ(Y ) 6= A] ≥ 1−
2npr
1

4δ2
−1

+ log 2

log(n− k + 1)
≥ 1

7
.

Here the final inequality holds whenever δ ≤ 1
7

√
logn
npr , p ≥ logn

2nr , n ≥ 7 and k ≤ n
2 . The

condition p ≥ logn
2nr also ensures that δ < 1

2 thereby ensuring that our construction is valid.
It only remains to prove Lemma 7.
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5.1.3 Proof of Lemma 7

Since the distributions P
a and P

b are formed by components that are independent across
edges i > j and repetitions ℓ ∈ [r], we have

DKL(P
a‖Pb) =

∑

ℓ∈[r]

∑

1≤i<j≤n

DKL(P
a(X

(ℓ)
ij )‖Pb(X

(ℓ)
ij )) = r

∑

1≤i<j≤n

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )),

where the second equality follows since the r trials are all independent and identically
distributed.

We now evaluate each individual term in right hand side of the above equation. Consider
any i, j ∈ [n]. We divide our analysis into three disjoint cases:

Case I: Suppose that i, j ∈ [n]\{a, b}. The distribution of X
(1)
ij is identical across the

distributions Pa and P
b. As a result, we find that

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )) = 0.

Case II: Suppose that i = a, j ∈ [n]\{a, b} or i = b, j ∈ [n]\{a, b}. We then have

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )) ≤ p

δ2

(12 − δ)(12 + δ)
.

Case III: Suppose that i = a, j = b. We then have

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )) ≤ p

(2δ)2

(12 − δ)(12 + δ)
.

Combining the bounds from all three cases, we find that the KL divergence is upper bounded
as

1

r
DKL(P

a‖Pb) ≤ 2(n− 2)p
δ2

(12 − δ)(12 + δ)
+ p

(2δ)2

(12 − δ)(12 + δ)
.

Some simple algebraic manipulations yield the claimed result.

5.2 Proof of Theorem 2

We now turn to the proof of Theorem 2. Beginning with the claim of sufficiency, it is easy to
see that the ranking is correctly recovered whenever the top k items are correctly recovered
for every value of k ∈ [n]. Consequently, one can apply the union bound to (10a) over all
values of k ∈ [n] and this gives the desired upper bound.

Now turning to the claim of necessity, we first introduce some notation to aid in sub-
sequent discussion. Defining the parameter ∆0 : = minj∈[n−1](τ(j) − τ(j+1)), we have shown
that the lower bound

∆0 ≥ 8

√
log n

npr
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is sufficient to guarantee exact recovery of the full ranking. Further, one must also have

∆0 ≤
1

n− 1

n−1∑

j=1

(τ(j) − τ(j+1)) =
1

n− 1
(τ(1) − τ(n)) ≤

1

n− 1
.

Here we show that this pair of requirements is jointly tight up to constant factors,

meaning that for any value of ∆0 satisfying ∆0 ≤ 1
9

√
logn
npr and ∆0 ≤ 1

9
1

n−1 , there are

instances where recovery of the underlying ranking fails with probability at least 1
70 for any

estimator.

Consider the following ensemble of (n − 1) different problems, indexed by a ∈ [n − 1].
For every value of a ∈ [n− 1], define a permutation πa of the n items as

πa(i) =





i+ 1 if i = a

i− 1 if i = a+ 1

i otherwise.

In words, the permutation πa equals the identity permutation except for the swapping of
items a and (a + 1). Define an associated matrix of pairwise-comparison probabilities Ma

as

Ma
ij =

1

2
− (πa(i)− πa(j))∆0,

and Ma
ji = 1−Ma

ij . Let P
a denote the probabilities taken under pairwise comparisons drawn

according to the model Ma. The condition ∆0 ≤ 1
9

1
n−1 ensures that this construction is a

valid probability distribution. One can then compute that under distribution P
a, the score

τai of any item i equals

τai =
1

2
−
(
πa(i)− n+ 1

2

)
∆0.

One can also verify that for any a ∈ [n− 1], and any i ∈ [n− 1], we have

τaπa(i) − τaπa(i+1) = ∆0,

where we have used the fact that πa(πa(i)) = i. The requirement imposed by the hypothesis
is thus satisfied.

We now use Fano’s inequality (19) obtain the claimed lower bound. In order to apply
this result, we first obtain an upper bound on the Kullback-Leibler divergence between
the probability distributions of the observed data under any pair of problems constructed
above.

Lemma 8 For any distinct pair a, b ∈ [n− 1], we have

DKL(P
a‖Pb) ≤ 50npr∆2

0.
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See the end of this section for the proof of this claim.
Given this bound on the Kullback-Leibler divergence, the Fano bound (19) implies that

any method φ for identifying the true ranking has error probability

P[φ(Y ) 6= A] ≥ 1− 50npr∆2
0 + log 2

log(n− 1)
≥ 1

70
,

where the final inequality holds whenever ∆0 ≤ 1
9

√
logn
npr and n ≥ 9.

The only remaining detail is the proof of Lemma 8.

5.2.1 Proof of Lemma 8

Since the distributions P
a and P

b are formed by components that are independent across
edges i > j and repetitions ℓ ∈ [r], we have

DKL(P
a‖Pb) =

∑

ℓ∈[r]

∑

1≤i<j≤n

DKL(P
a(X

(ℓ)
ij )‖Pb(X

(ℓ)
ij )) = r

∑

1≤i<j≤n

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )),

where the second equality follows since the r trials are all independent and identically
distributed.

We now evaluate each individual term in right hand side of the above equation. Consider
any i, j ∈ [n]. We divide our analysis into three disjoint cases:

Case I: Suppose that i, j ∈ [n]\{a, a+1, b, b+1}. The distribution of X
(1)
ij is identical across

the distributions Pa and P
b. As a result, we find that

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )) = 0.

Case II: Alternatively, suppose i ∈ {a, a + 1, b, b + 1} and j ∈ [n]\{a, a + 1, b, b + 1} or if
j ∈ {a, a+ 1, b, b+ 1} and i ∈ [n]\{a, a+ 1, b, b+ 1}. Then we have

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )) ≤ 5p∆2

0,

where we have used the fact that P
a(X

(1)
ij ) and P

b(X
(1)
ij ) both take values in [ 7

18 ,
11
18 ] since

∆0 ≤ 1
9

1
n−1 .

Case III: Otherwise, suppose that both i, j ∈ {a, a+ 1, b, b+ 1}. Then we have

DKL(P
a(X

(1)
ij )‖Pb(X

(1)
ij )) ≤ 20p∆2

0.

Combining the bounds from the three cases, we find that the KL divergence is upper
bounded as

1

r
DKL(P

a‖Pb) ≤ 40(n− 4)p∆2
0 + 240p∆2

0 ≤ 50np∆2
0,

where we have used the assumption n ≥ 9 to obtain the final inequality.
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5.3 Proof of Theorem 3

We now turn to the proof of Theorem 3, beginning with part (a).

5.3.1 Proof of part (a)

Without loss of generality, we can assume that the true underlying ranking is the identity
ranking, that is, item i is ranked at position i for every i ∈ [n]. Given the the lower
bound α ≥ 8 is satisfied, Theorem 1 ensures that with probability at least 1 − n−16, the
counting estimator S̃k ranks every item in {1, . . . , k − h} higher than every item in the set
{k + h+ 1, . . . , n}. Thus, we are guaranteed that either S̃k ⊆ [k + h] and/or [k − h] ⊆ S̃k.
One can verify either case leads to |S̃k ∩ [k]| ≥ k − h, thereby proving the claimed result.

5.3.2 Proof of part (b)

At a higher level, the crux of this proof is the construction of a packing set of pairwise
comparison probability matrices, where every element of the set is also guaranteed to lie
in the parametric classes and the SST class. The packing set is constructed via a careful
application of a coding theoretic result due to Levenshtein (1971), such that the pairwise
Kullback-Leibler divergence is small but the pairwise Hamming error is large enough, and
that the packing set is also large enough. An application of Fano’s inequality and some
algebra yields the claimed result.

In more detail, we assume without loss of generality that k ≤ n
2 . (Otherwise, one can

equivalently study the problem of recovering the last k items.) Since the case h = 0 is
already covered by Theorem 1(b), we may also assume that h ≥ 1.

The proof involves construction of L ≥ 1 sets of probability matrices {Ma}a∈[L] of the
pairwise comparisons with the following two properties:

(i) For every a ∈ [L], let Sa
k ⊆ [n] denote the set of the top k items under the ath set of

distributions. Then for every k-sized set S ∈ [n],

L∑

a=1

1{DH(S, S
a
k) ≤ 2h} ≤ 1.

(ii) If the underlying distribution a is chosen uniformly at random from this set of L
distributions, then any estimator that attempts to identify the underlying distribution
a ∈ [L] errs with probability at least 1

7 .

Now consider any estimator Ŝk for identifying the top k items S∗
k . Given property (i),

whenever the estimator is successful under the Hamming error requirement DH(Ŝk,S∗
k) ≤

2h, it must be able to uniquely identify the index a ∈ [L] of the underlying distribution of
pairwise comparison probabilities. However, property (ii) mandates that any estimator for
identifying the underlying distribution errs with a probability at least 1

7 . Assuming that
such sets of probability distributions satisfying these two properties exist, putting these
results together yields the claimed result.
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We now proceed to construct probability distributions satisfying the two aforementioned
properties. Consider any positive number ∆0 satisfying the upper bound

∆0 ≤
1

14

√
ν1ν2 log n

npr
. (24)

The L matrices {Ma}a∈[L] of probability distributions we construct differ only in a permu-
tation of their rows and columns, and modulo this permutation, have identical values. In
other words, these L distributions differ only in the identities of the n items and the values
of the pairwise-comparison probabilities Ma

(i)(j) among the ordered sequence of the n items

are identical across all distributions a ∈ [L].
For any ordering (1), . . . , (n) of the n items, for every a ∈ [L], set

Ma
(i)(j) =





1
2 +∆0 if i ∈ [k] and j /∈ [k]
1
2 −∆0 if i /∈ [k] and j ∈ [k]
1
2 otherwise.

(25)

Note that the upper bound (24) on ∆0, coupled with the assumption p ≥
√

logn
2nr , ensures

that ∆0 <
1
3 and hence that our definition (25) leads to a valid set of probabilities. Given this

construction, the scores of the n items are τ(1) = · · · = τ(k) = τ(k+1)+∆0 = · · · = τ(n)+∆0.

The bound (24) ensures that the condition α ≤
√
ν1ν2
14 required by the hypothesis of the

theorem is satisfied.
It remains to specify the ordering of the n items in each set of probability distributions.

This specification relies on the following lemma, that in turn uses a coding-theoretic result
due to Levenshtein (1971). It applies in the regime 2h ≤ 1

1+ν2
min{n1−ν1 , k, n − k} for

some constants ν1 ∈ (0, 1) and ν2 ∈ (0, 1), and when n is larger than a (ν1, ν2)-dependent
constant. For any pair of binary vectors b, b′ of the same length, we define the Hamming
error as DH(b, b

′) =
∑

i 1{bi 6= b′i}. We also let 0 denote the all-zero vector.

Lemma 9 Under the previously given conditions, there exists a subset {b1, . . . , bL} ⊆ {0, 1}n/2
with cardinality L ≥ e

9
10

ν1ν2h logn, such that

DH(b
j ,0) = 2(1 + ν2)h, and DH(b

j , bℓ) > 4h for all j 6= ℓ ∈ [L].

We prove this lemma at the end of this section. Given this lemma, we now complete the
proof of the theorem. Map the n

2 items {n
2 + 1, . . . , n} to the n

2 bits in each of the strings

given by Lemma 9. For each ℓ ∈ [e
9
10

ν1ν2h logn], let Bℓ denote the 2(1 + ν2)h-sized subset
of {n

2 + 1, . . . , n} corresponding to the 2(1 + ν2)h positions equaling 1 in the ℓth string.
Also define sets Aℓ = {1, . . . , k − 2(1 + ν2)h} and Cℓ = [n]\(Aℓ ∪ Bℓ). We note that this
construction is valid since 2h ≤ 1

1+ν2
k.

We now construct L = e
9
10

ν1ν2h logn sets of pairwise comparison probability distributions
M1, . . . ,ML and show that these sets satisfy the two required properties. As mentioned
earlier, each matrix of comparison-probabilities M ℓ takes values as given in (25), but dif-
fers in the underlying ordering of the n items. In particular, associate the set ℓ ∈ [L] of
distributions to any ordering of the n items that ranks every item in Aℓ higher than every
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item in Bℓ, and every item in Bℓ in turn higher than every item in Cℓ. Then for any ℓ, the
set of top k items is given by Aℓ ∪Bℓ. From the guarantees provided by Lemma 9, for any
distinct ℓ,m ∈ [L], we have DH(Aℓ∪Bℓ, Am∪Bm) ≥ 4h+1. This construction consequently
satisfies the first required property.

We now show that the construction also satisfies the second property: namely, it is
difficult to identify the true index. We do so using Fano’s inequality (19), for which we
denote the probability distribution of the observations due to any matrix M ℓ, ℓ ∈ [L], as
P
ℓ.
We first derive an upper bound on the Kullback-Leibler divergence between any two

distributions P
ℓ and P

m of the observations. Observe that [M ℓ]ij 6= [Mm]ij only if i ∈
Bℓ ∪ Bm or j ∈ Bℓ ∪ Bm. In this case, we have DKL([M

ℓ]ij‖[Mm]ij) ≤ 4∆2
0

1
4
−∆2

0

. Since both

sets Bℓ and Bm have a cardinality of 2(1 + ν2)h, aggregating over all possible observations
across all pairs, we obtain that

DKL(P
ℓ‖Pm) ≤ 4(1 + ν2)hnpr

4∆2
0

1
4 −∆2

0

. (26)

In the regime p ≥ logn
2nr and ∆0 ≤ 1

14

√
ν1ν2 logn

npr , we have ∆0 ≤ 1
14

√
2
. Substituting the

inequality ∆0 ≤ 1
14

√
ν1 logn
npr in the numerator and 1

4 −∆2
0 ≥ 1

4 −
(

1
14

√
2

)2
in the denominator

of the right hand side of the bound (26), we find that

DKL(P
ℓ‖Pm) ≤ 3

4
ν1ν2h log n.

Now suppose that we draw Y from some distribution chosen uniformly at random from
{P1, . . . ,PL}. Applying Fano’s inequality (19) ensures that any test φ for estimating the
index A of the chosen distribution must have error probability lower bounded as

P
[
φ(Y ) 6= A] ≥

(
1−

3
4ν1ν2h log n+ log 2

9
10 ν1ν2h log n

)
≥ 1

7
.

Here the final inequality holds as long as n is larger than some universal constant.

5.3.3 Proof of Lemma 9

We divide the proof into two cases depending on the value of h.
Case I: h ≥ 1

2ν1ν2
: Let L denote the number of binary strings of length m0 such that

each has a Hamming weight w0 and each pair has a Hamming distance at least d0. It is
known (Levenshtein, 1971; Jiang and Vardy, 2004) that L can be lower bounded as:

L ≥
(
m0

w0

)

∑⌊ d0−1
2

⌋
i=0

(
w0

j

)(
m0−w0

j

) ≥
(
m0
w0

)w0

d0+1
2

(
ew0

min{d0,w0}/2
)min{d0,w0}/2( em0

min{d0,m0}/2
)min{d0,m0}/2 .

Note that for the setting at hand, we have m0 =
n
2 , w0 = 2(1+ ν2)h and d0 = 4h+1. Since

ν1 ∈ (0, 1) and ν2 ∈ (0, 1), we have the chain of inequalities

w0 < d0 ≤ 4n1−ν1
(i)
<

n

2
= m0,
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where the inequality (i) holds when n is large enough. These relations allow for the simpli-
fication:

logL ≥ log





(
m0
w0

)w0

d0+1
2

(
ew0
w0/2

)w0/2( em0
d0/2

)d0/2





= (w0 − d0/2) logm0 − w0 logw0 +
d0
2

log d0 −
d0 + w0

2
log(2e)− log((d0 + 1)/2).

Substituting the values of w0, d0 and m0 and then simplifying yields

logL ≥ (2ν2h− 1

2
) log

n

2
− 2(1 + ν2)h log(2(1 + ν2)h) + (2h+

1

2
) log(4h+ 1)

− (((3 + ν2)h) +
1

2
) log(2e)− log(2h+ 1)

≥ (2ν2h− 1

2
) log

n

2
− 2ν2h log(2(1 + ν2)h)− c′1h,

where c′1 is a constant whose value depends only on (ν1, ν2). In the regime 1
ν1ν2

≤ 2h ≤ n1−ν1

1+ν2
,

some algebraic manipulations then yield

logL ≥ (2ν1ν2h− 1

2
) log

n

2
− c′2h ≥ ν1ν2h(log n− log 2− c′3) ≥

9

10
ν1ν2h log n,

where the final inequality holds when n is large enough, and where c′2 and c′3 are (ν1, ν2)-
dependent positive constants.

Case II: h < 1
2ν1ν2

Consider a partition of the n
2 bits into n

4(1+ν2)h
sets of size 2(1+ ν2)h

each. Define an associated set of n
4(1+ν2)h

binary strings, each of length n
2 , with the ith

string having ones in the positions corresponding to the ith set in the partition and zeros
elsewhere. Then each of these strings have a Hamming weight of 2(1+ ν2)h, and every pair
has a Hamming distance at least 4(1 + ν2)h > 4h. The total number of such strings equals

exp
(
log

n

4(1 + ν2)h

) (i)

≥ exp
(
log n− log(

2(1 + ν2)

ν1ν2
)
) (ii)

≥ exp
( 9
10

log n)
(iii)
> exp

(
1.8ν1ν2h log n

)
,

where the inequalities (i) and (iii) are a result of operating in the regime h < 1
2ν1ν2

and the
inequality (ii) assumes that n is greater than a (ν1, ν2)-dependent constant.

5.4 Proof of Theorem 6

We now turn to the proof of Theorem 6.

5.4.1 Proof of part (a)

For every i ∈ [n], let (i) denote the item ranked i according to their latent scores, as defined
in equation (2). Recall from the proof of Theorem 1 that for any u < v ∈ [n], the condition

τ(u) − τ(v) ≥ 8

√
log n

npr

30



Simple, Robust and Optimal Ranking

ensures that with probability at least 1 − n−14, every item in the set {(1), . . . , (u)} wins
more comparisons than every item in the set {(v), . . . , (n)}. Consequently, if the set S̃k

contains any item in {(v), . . . , (n)}, then it must contain the entire set {(1), . . . , (u)}. In
other words, at least one of the following must be true: either {(1), . . . , (u)} ⊆ S̃k or
S̃k ⊆ {(1), . . . , (v − 1)}. Consequently, in the regime v = k + t − u + 1 for any 1 ≤ u ≤ k
and u ≤ t ≤ n, we have that

|S̃k ∩ {(1), . . . , (t)}| ≥ u. (27)

Now consider any b ∈ [β] that satisfies the condition

min
j∈[k]

(τ(j) − τ(k+tbj−j+1)) ≥ 8

√
log n

npr
.

For any j ∈ [k], setting u = j and v = (k+ tbj− j+1) in (27), and applying the union bound
over all values of j ∈ [k] yields that

|S̃k ∩ {(1), . . . , (tbj)}| ≥ j for every j ∈ [k],

with probability at least 1− n−13. Consequently, we have that

P
(
S̃k ∈ Λ(Tb)

)
≥ 1− n−13,

completing the proof of the claim.

5.4.2 Proof of part (b)

In the regime tbµ2k
≤ n

2 for every b ∈ [β], it suffices to show that any estimator Ŝk will incur
an error lower bounded as

P
(
|Ŝk ∩ {(1), . . . , (n/2)}| < µ2k

)
≥ 1

15
,

where (i) denotes the item ranked i according to their latent scores according to equation (2).
Our proof relies on the result and proof of the Hamming error case analyzed in Theo-

rem 3(b). To this end, let us set the parameter h of Theorem 3(b) as h = 2(1− µ2)k. We
claim that this value of h lies in the regime h ≤ 1

2(1+ν2)
min{k, n−k, n1−ν1} for some values

ν1 ∈ (0, 1) and ν2 ∈ (0, 1), as required by Theorem 3(b). This claim follows from the fact
that

h = 2(1− µ2)k ≤ 1

2(1 + ν2)
k,

for ν2 = min{ 1
4(1−µ2)

− 1, 12} ∈ (0, 1). Furthermore,

h = 2(1− µ2)k
(i)

≤ n1−µ1

4

(ii)

≤ 1

2(1 + ν2)
n1−ν1

for ν1 = 9
10µ1 ∈ (0, 1), where (i) is a result of our assumption 8(1− µ2)k ≤ n1−µ1 and (ii)

holds when n is large enough. This assumption also implies that k ≤ n − k for a large
enough value of n. We have now verified operation in the regime required by Theorem 3(b).
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The construction in the proof of Theorem 3 is based on setting

τ(1) = · · · τ(k) = τ(k+1) +∆0 = · · · = τ(n) +∆0,

for any real number ∆0 in the interval
(
0, 1

14

√
ν1ν2 logn

npr

]
. This condition is also satisfied

in our construction due to the assumed upper bound α ≤ 1
15

√
µ1min

{
1

4(1−µ2)−1 ,
1
2

}
. Conse-

quently, the result of Theorem 3(b) implies that in this setting, any estimator Ŝk will incur
a Hamming error greater than h = 2(1− µ2)k with probability at least 1

7 , or equivalently,

P
(
|Ŝk ∩ {(1), . . . , (k)}| < (2µ2 − 1)k

)
≥ 1

7
.

Under this event, the estimator Ŝk contains at most (2µ2−1)k−1 items from the set of top
k items. In order to ensure it gets at least µ2k items from {(1), . . . , (n/2)}, the remaining
2(1−µ2)k+1 chosen items must have at least (1−µ2)k+1 items from {(k+1), . . . , (n/2)}.
However, in the construction, items (k + 1), . . . , (n) are indistinguishable from each other,
and hence by symmetry these 2(1−µ2)k+1 chosen items must contain at least (1−µ2)k+1
items from the set {(n/2+1), . . . , (n)} with probability at least 1

2 . Putting these arguments

together, we obtain that under this construction, any estimator Ŝk has error probability
lower bounded as

P
(
|Ŝk ∩ {(1), . . . , (n/2)}| < µ2k

)
≥ 1

14
. (28)

It remains to deal with a subtle technicality. The construction above involves items
(k + 1), . . . , (n) with identical scores. Recall that in the definition of the user-defined re-
quirement, in case of multiple items with identical scores, we considered the choice of either
of such items as valid. The following lemma helps overcome this issue.

Lemma 10 Consider any two (n× n) matrices Ma and M b of pairwise probabilities such
that

max
(i,j)∈[n]2

|[Ma]ij − [M b]ij | ≤ ǫ, (29a)

for some ǫ ∈ [0, 1]. Then for any k-sized sets of items T1, . . . , Tβ ⊆ [n], and any estimator

Ŝk, we have

| PMa(Ŝk ∈ {T1, . . . , Tβ})− PMb(Ŝk ∈ {T1, . . . , Tβ}) |≤ 6n
2rǫ. (29b)

See Section 5.4.3 for the proof of this claim.

Now consider an (n× n) pairwise probability matrix M ′ whose entries take values

M ′
(i)(j) =





1
2 +∆0 + ǫ if i ∈ [k] and j ∈ [n]\[n/2]
1
2 +∆0 if i ∈ [k] and j ∈ [n/2]\[k]
1
2 + ǫ if i ∈ [n/2]\[k] and j ∈ [n]\[n/2]
1
2 otherwise,
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and M ′
ji = 1−M ′

ij , whenever i ≤ j. Set ǫ = 7−n2r.
One can verify that under the probability matrix M ′, the scores of the n items satisfy

the relations

τ(1) = · · · = τ(k) = τ(k+1) +∆0 = · · · = τ(n/2) +∆0 = τ(n/2+1) +∆0 + ǫ = · · · = τ(n) +∆0 + ǫ.

The set of items {(1), . . . , (n/2)} are thus explicitly distinguished from the items {(n/2 +
1), . . . , (n)}. We now call upon Lemma 10 with Ma = M ′, and M b as the matrix of
probabilities constructed in the proof of Theorem 3, where both sets have the same ordering
of the items. This assignment is valid given that ∆0 < 1

3 and ǫ = 7−n2r. Lemma 10 then
implies that any estimator that is S-respecting with probability at least 1 − 1

15 under M b

must also be S-respecting with probability at least 1− 1
14.5 under Ma. But by equation (28),

the latter condition is impossible, which implies our claimed lower bound.

5.4.3 Proof of Lemma 10

Let P
a and P

b denote the probabilities induced by the matrices Ma and M b respectively.
Consider any fixed observation Y1 ⊆ {0, 1, φ}n×n×r, where φ denotes the absence of an
observation. Let Pa(Y = Y1) and P

b(Y = Y1) denote the probabilities of observing Y1 under
P
a and P

b, respectively. Given the bounds (29a), some algebra leads to

| Pa(Y = Y1)− P
b(Y = Y1) | ≤ max

u∈[0,1−ǫ]n
2r

( n2r∏

i=1

(ui + ǫ)−
n2r∏

i=1

ui

)

≤ max
u∈[0,1−ǫ]n

2r

(
un2r

( n2r−1∏

i=1

(ui + ǫ)−
n2r−1∏

i=1

ui
)
+ ǫ
)

...

≤ n2rǫ. (30)

Now consider any estimator Ŝk, which is permitted to be randomized. Let L ≤ 3n
2r

denote the total number of possible values of the observation Y , and let {Y1, . . . , YL} =
{0, 1, φ}n×n×r denote the set of all possible valid values of the observation. For each i ∈ [L],
let qi ∈ [0, 1] denote the probability that the estimator Ŝk succeeds in satisfying the given
requirement when the data observed equals Yi. (Recall that the given requirement is in
terms of the actual items and not their positions.) Then we have

∣∣P1(Ŝk ∈ {T1, . . . , Tβ})− P
2(Ŝk ∈ {T1, . . . , Tβ})

∣∣ =
∣∣

L∑

i=1

P
1(Y = Yi)qi −

L∑

i=1

P
2(Y = Yi)qi

∣∣

≤
L∑

i=1

| P1(Y = Yi)− P
2(Y = Yi) | qi

(i)

≤
L∑

i=1

n2rǫqi
(ii)

≤ 6n
2rǫ,

as claimed, where step (i) follows from our earlier bound (30) and step (ii) uses the bounds
L ≤ 3n

2r and n2r ≤ 2n
2r.
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6. Discussion

In this paper, we analyzed the problem of recovering the k most highly ranked items based
on observing noisy comparisons. We proved that an algorithm that simply selects the items
that win the maximum number of comparisons is, up to constant factors, an information-
theoretically optimal procedure. Our results also extend to recovering the entire ranking of
the items. The results of this paper thus underscore the philosophy of Occam’s razor that
the simplest answer is often correct.

Empirical evaluations reveal the superior performance of the counting algorithm that
we analyzed through our “permutation-based” approach as compared to the Spectral MLE
algorithm. The intuition is that Spectral MLE is too tied to the restrictive parameter-based
model and the model mismatch in this crowdsourcing data causes the high amount of error.
On the other hand, the robustness and accuracy guarantees of the count estimator due to
our permutation-based approach carry over to practice. More generally, parameter-based
models are popular in many applications in part because they are quite intuitive to write
down, and in part because they are sometimes analytically more tractable. However, instead
if one were to consider rich enough models like permutation-based models then they may
yield a broader perspective and richer insights into the problem that can lead to superior
results (Shah, 2017, Chapter 1, Part 1).

There are number of open questions suggested by our work. The notion of allowed sets
introduced in this paper apply to recovery of k-sized subsets of the items; such a formulation
and associated results may apply to recovery of partial or total orderings of the items. The
observation model considered here is based on a random number of observations for all pairs
of comparisons. It would be interesting to extend our results to cases in which only specific
subsets of pairs are observed, and particularly when these pairs are chosen adversarially. A
parallel line of literature (e.g., Kaufmann and Kalyanakrishnan, 2013; Busa-Fekete et al.,
2013; Jamieson et al., 2015; Heckel et al., 2016) studies settings in which the pairs to be
compared can be chosen sequentially in a data-dependent manner, but to the best of our
knowledge, this line of literature considers only the metric of exact recovery of the top k
items. It is of interest to investigate the Hamming and allowed set recovery problems in
such an active setting. Finally, it will also be useful to obtain analogous results for ranking
problems where the identity of the person making the comparison is known and influences
the outcomes of the comparison, for instance, in applications of peer-grading (Shah et al.,
2013; Song et al., 2017) and peer-reviews (Shah et al., 2017c).
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