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Abstract

We present a simple EM-based grammar induction algorithm
for Combinatory Categorial Grammar (CCG) that achieves
state-of-the-art performance by relying on a minimal number
of very general linguistic principles. Unlike previous work on
unsupervised parsing with CCGs, our approach has no prior
language-specific knowledge, and discovers all categories au-
tomatically. Additionally, unlike other approaches, our gram-
mar remains robust when parsing longer sentences, perform-
ing as well as or better than other systems. We believe this
is a natural result of using an expressive grammar formalism
with an extended domain of locality.

Introduction
What kind of inductive bias and supervision signal are nec-
essary to learn natural language syntax? Chomsky (1965)’s
argument of the poverty of the stimulus and his result-
ing proposal of an innate ‘universal grammar’ were cru-
cial to the development of much of modern linguistic the-
ory, even though there is now strong evidence that even
very young children are very good at identifying patterns
in the speech stream (Saffran, Aslin, and Newport 1996;
Lany and Saffran 2010). This question is also of consid-
erable practical interest: Accurate statistical parsing, which
is a core component of many natural language processing
systems, relies largely on so-called treebanks (Marcus, San-
torini, and Marcinkiewicz 1993), i.e. corpora that have been
manually annotated with syntactic analyses, and do not ex-
ist for all languages or domains. In recent years, a num-
ber of approaches to automatically induce grammars from
text alone have been introduced (Klein and Manning 2002;
2004; 2005; Headden III, Johnson, and McClosky 2009;
Spitkovsky, Alshawi, and Jurafsky 2010; Tu and Honavar
2011; Cohn, Blunsom, and Goldwater 2011; Naseem et al.
2010). This literature has shown that improvements over a
simple EM-based system (Klein and Manning 2004) can be
achieved through complex smoothing (Headden III, John-
son, and McClosky 2009), more expressive, hierarchical
Bayesian models (Cohn, Blunsom, and Goldwater 2011;
Naseem et al. 2010), and richer representations (Cohn, Blun-
som, and Goldwater 2011; Boonkwan and Steedman 2011).
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While it is standard to assume that the words in the training
data have been part-of-speech tagged (words are in fact typ-
ically replaced by their POS tags), most systems assume no
further linguistic knowledge. Recently, Naseem et al. (2010)
and Boonkwan and Steedman (2011) have shown that the
incorporation of universal or language-specific prior knowl-
edge can significantly improve performance, but it is still
unclear what amount of prior linguistic knowledge is re-
ally necessary for this task. Naseem et al. assume that the
main syntactic roles of major parts of speech classes (e.g. ad-
verbs tend to modify verbs whereas adjectives tend to mod-
ify nouns), are known. Boonkwan and Steedman use expert
knowledge to predefine a grammar which produces a set of
candidate parses over which the model is defined and show
that the performance of their system degrades significantly
as the amount of prior knowledge is reduced.

In this paper, we show that a simple EM-based algorithm
that has enough information about the POS tag set to dis-
tinguish between nouns, verbs and other word classes, and
has enough universal linguistic knowledge to know that sen-
tences are headed by verbs and that verbs can take nouns
as arguments, achieves state-of-the-art performance on the
standard WSJ10 (Klein and Manning 2002) task, and out-
performs most other approaches, which are based on more
complex models, on longer sentences. Our algorithm uses
Combinatory Categorial Grammar (CCG) (Steedman 2000),
an expressive lexicalized grammar formalism that provides
an explicit encoding of head-argument and head-modifier
dependencies by associating rich syntactic types with the
tokens in the language. These types differ from phrase-
structure categories in that they are not arbitrary atomic sym-
bols, but capture information about the context in which a
word or constituent tends to appear. Like dependency gram-
mar (assumed by the bulk of the approaches we compare
ourselves against), we capture the fact that words (e.g. verbs)
may take other words or constituents (e.g. nouns or adverbs)
as dependents. Unlike dependency grammar, CCG makes
an explicit distinction between (obligatory) arguments and
(optional) modifiers, and associates words with lexical types
which determine which arguments they take. Syntactic types
are defined recursively from two primitives, sentences and
nouns (i.e. propositions and entities). Unlike Boonkwan and
Steedman (2011), we automatically induce the inventory of
language-specific types from the training data.
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Combinatory Categorial Grammar (CCG)
Combinatory Categorial Grammar (Steedman 2000) is a
linguistically expressive, lexicalized grammar formalism,
which associates rich syntactic types with words and con-
stituents. Typically, one assumes two atomic types: S (sen-
tences) and N (nouns). Complex types are of the form X/Y
or X\Y, and represent functions which combine with an im-
mediately adjacent argument of type Y to yield a constituent
of type X as result. The slash indicates whether the Y pre-
cedes (\) or follows (/) the functor. The lexicon pairs words
with categories, and is of crucial importance, since it cap-
tures the only language-specific information in the grammar.
An English lexicon may contain entries such as:

N : {he, girl , lunch, ...} N/N : {good , the, eating , ...}
S\N : {sleeps, ate, eating , ...} (S\N)/N : {sees, ate, ...}
S\S : {quickly , today ...} (S\N)/(S\N) : {good , the, ...}

While the set of categories is theoretically unbounded, the
inventory of lexical category types is assumed to be finite
and of a bounded maximal arity (typically 3 or 4). Catego-
rial grammar rules are defined as schemas over categories
(where X, Y, Z etc. are category variables and | ∈ {\, /} is
a slash variable), and are usually given in a bottom-up man-
ner. All variants of categorial grammar (Ajdukiewicz 1935;
Bar-Hillel 1953) use the basic rule of forward (>) and back-
ward (<) application, which specifies that a functor X|Y can
combine with an adjacent argument Y to form a new X:

X/Y Y → X (>)

Y X\Y → X (<)

CCG includes additional rules: in function composition
(the B combinator of Curry and Feys (1958)), the arity of
the secondary functor can vary from 1 to a fixed upper limit
n. We examine the effect of limiting the grammar to applica-
tion and simple composition B1 on our induction algorithm
below, but generally restrict ourselves to n = 2:

X/Y Y|iZ ⇒ X|iZ (B1
>)

Y|iZ X\Y ⇒ X|iZ (B1
<)

X/Y (Y|iZ1)|jZ2 ⇒ (X|iZ1)|jZ2 (B2
>)

(Y|iZ1)|jZ2 X\Y ⇒ (X|iZ1)|jZ2 (B2
<)

(C)CG parses are typically written as logical derivations:

The man ate quickly

N/N N S\N S\S
> <B

N S\N
<

S

Here, the intransitive verb ate only takes a subject as argu-
ment, whereas the determiner the modifies the noun man,
and the adverb quickly can combine with the verb via com-
position. This example illustrates the two main kinds of de-
pendency relations between words or constituents (Tesnière

1959), which CCG distinguishes explicitly: in a head-
argument relation, the head X|Y (e.g. S\N) takes its depen-
dent Y (N) as argument, whereas in a head-modifier relation,
the modifier X|X (N/N) takes the head X (N) as argument.
One of the roles of CCG’s composition is that it allows mod-
ifiers such as adverbs to have generic categories such as S\S,
regardless of the verb they modify:

he ate quickly the lunch he bought

N (S\N)/N S\S N
<B×

(S\N)/N
CCG also includes a unary type-raising rule, which re-

verses the relationship between functors and arguments, and
allows Y (which may be the argument of X\Y) to turn into a
functor that takes X\Y as argument and returns X:

Y ⇒ X/(X\Y) ( >T)

Y ⇒ X\(X/Y) ( <T)

The category X\Y or X/Y is generally restricted to be of a
type that also occurs in the lexicon of the language (Steed-
man 2000). Although type-raising Y followed by applica-
tion of the type-raised argument to the original functor X\Y
is equivalent to applying the functor itself (and we therefore
disallow type-raised categories to apply to other categories
to reduce the number of spurious ambiguities), type-raising
and composition act together to capture non-local dependen-
cies which arise through extraction or coordination, e.g.:

the man that I saw

N (N\N)/(S/N) N (S\N)/N
>T

S/(S\N)
>B

S/N
>

N\N
<

N

Although type-raising and composition introduce addi-
tional derivations, our system does not try to eliminate the
spurious ambiguities they introduce, such as:

The man ate quickly

N/N N S\N S\S
> <B

N S\N
>T

S/(S\N)
>

S

For coordination we assume a special ternary rule (Hock-
enmaier and Steedman 2007) that is binarized as follows:

X X[conj] ⇒&1 X (&1)

conj X ⇒&2 X[conj] (&2)

Since CCG contains only unary and binary rules, it can be
parsed with the standard CKY algorithm.
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An algorithm for unsupervised CCG induction
We now describe our induction algorithm, which consists of
two stages: category induction (creation of the grammar),
followed by parameter estimation for the probability model.

The category induction stage
We assume there are two atomic categories, N (nouns or
noun phrases) and S (sentences), a special conjunction cate-
gory conj, and a special start symbol TOP. We assume that
all strings we encounter are either nouns or sentences:

N⇒ TOP S⇒ TOP

We also assume that we can group POS-tags into four
groups: nominal, verbal, coordinations, and others. This al-
lows us to create an initial lexicon L(0), which only contains
entries for atomic categories, e.g. for the English Penn Tree-
bank tag set (Marcus, Santorini, and Marcinkiewicz 1993):

N : {NN,NNS,NNP,PRP,DT}
S : {MD,VB,VBZ,VBG,VBN,VBD}

conj : {CC}

We force any string that contains one or more verbs (besides
VBG), to be parsed with the S⇒ TOP rule.

Since the initial lexicon would only allow us to parse sin-
gle word utterances (or conjunctions thereof), we need to
induce complex functor categories. The lexicon for atomic
categories remains fixed, but all POS-tags will be able to ac-
quire complex, categories during induction. We impose the
following constraints on the lexical categories we induce:

1. Nouns (N) do not take any arguments.

2. The heads of sentences (S|...) and modifiers (X|X,
(X|X)|(X|X)) may take N or S as arguments.

3. Sentences (S) may only take nouns (N) as arguments.
(We assume S\S and S/S are modifiers).

4. Modifiers (X/X or X\X) can be modified by categories of
the form (X/X)|(X/X) or (X\X)|(X\X).

5. The maximal arity of any lexical category is 3.

6. Since (S\N)/N is completely equivalent to (S/N)\N, we
only allow the former category.

Induction is an iterative process. At each stage, we aim
to parse all sentences Si in our training corpus D =
{S1, ...., SD} with the current lexicon L(t). In order to parse
a sentence S = w0...wn, all words wi ∈ S need to have
lexical categories that allow a complete parse (resulting in
a constituent TOP that spans the entire sentence). Initially,
only some words will have lexical categories:

The man ate quickly
DT NNS VBD RB
- N S -

We assume that any word may modify adjacent constituents:

The man ate quickly
DT NNS VBD RB
N/N N, S/S S, N\N S\S

We also assume that any word that previously had a cate-
gory other than N (which we postulate does not take any
arguments) can take any adjacent non-modifier category as
argument, leading us here to introduce S\N for the verb:

The man ate quickly
DT NNS VBD RB
N/N N, S/S S, N\N, S\N S\S

With these categories, we obtain the correct parse:

The man ate quickly
DT NNS VBD RB

N/N N S\N S\S
> <B

N S\N
<

S

We then update the lexicon with all new tag-category pairs
that have been found, excluding those that did not lead to a
successful parse:

N/N : {DT} S\N : {VBD,VBZ} S\S : {RB,NNS,IN}

The first stage of induction can only introduce functors of
arity 1, but many words, such as prepositions or transitive
verbs, require more complex categories, leading us to com-
plete, but incorrect parses such as

The man eats with friends
DT NNS VBZ IN NNS

N/N N S\N S\S S\S
> <B

N S\N
<B

S\N
<

S

During the second iteration, we can discover additional
simple, as well as more complex, categories. We now dis-
cover transitive verb categories:

The man ate chips
DT NNS VBD NNS

N/N N (S\N)/N N
> >

N S\N
<

S

The second stage also introduces a large number of complex
modifiers of the form (X/X)|(X/X) or (X\X)|(X\X), e.g.:

The man ate very quickly
DT NNS VBD RB RB

N/N, N, S/S S, N\N, S\S, S\S,
(S/S)/(S/S) (N\N)/(N\N) S\N (S\S)/(S\S) (S\S)\(S\S)

(N/N)\(N/N) (S/S)\(S/S) (N\N)\(N\N)
(S\S)/(S\S)

Finally, we include a final induction step which takes adja-
cent constituents that can be derived from the existing lexi-
con into account. Since we can combine e.g. a friend to N,
we can now also induce (S\S)/N for IN.

After constructing the lexicon, we parse the training cor-
pus, and use the Inside-Outside algorithm (Lari and Young
1991), a variant of the Expectation-Maximization algorithm
for probabilistic context-free grammars, to estimate model
parameters. We use the baseline model of Hockenmaier and
Steedman (2002), which is a simple generative model that is
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Viterbi EM k=best EM Full EM

Impact of combinators and EM regime

K Mod TR Gen no TR Gen
1
2
3
5
7
8
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75
80
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500
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9999999

57.43 54.12 43.48
69.21
69.71
70.51
70.09
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69.33
70.24
69.78
69.59 63.47 62.30
70.66
69.40
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70.39
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70.51 64.69 65.41
69.71
69.78
70.96
71.53 63.36 66.82
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40
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Performance on Section 23 x K

Mod TR Gen no TR Gen

Sec 00 Viterbi EM k=best EM Full EM
B0
B1
B1 TR
B2
B2 TR

57.8 62.2 55 75
51.6 66.84 55.3 75
60.6 71.52 55 100
57.9 66 57.9 100

50 68.79 56 70

B0 B1 B1&TR B2 B2&TR

Sec 00 1 1 + T 2 2 + T 3 3 + T
B1 TR
B2 TR

47.47 49.71 71.08 71.52 63.51 62.43
41.41 68.79

40

45

50

55

60

65

70

75

B1&TR

Amount of Category Induction

1 1+d 2 2+d 3 3+d

Figure 1: Impact of the beam width k and the expressiveness
of the grammar on performance

equivalent to an unlexicalized PCFG. In a CFG, the set of
terminals and non-terminals is disjoint, but in CCG, not ev-
ery category can be lexical. Since this model is also the basis
of a lexicalized model that captures dependencies, it distin-
guishes between lexical expansions (which produce words),
unary expansions (which are the result of type-raising or
the TOP rules), binary expansions where the head is the
left child, and binary expansions whose head is the right
child. Each tree is generated top-down from the start cate-
gory TOP. For each (parent) node, first its expansion type
exp ∈ {Lex,Unary,Left,Right} is generated. Based on
the expansion type, the model then produces either the word
w, or the category of the head child (H), and, possibly the
category of the non-head sister category (S):

Lexical pe(exp=Lex | P)× pw(w | P, exp=Lex)

Unary pe(exp=Unary | P)× pH(H | P, exp=Unary)

Left pe(exp=Left | P)× pH(H | P, exp=Left)

× pS(S | P,H, exp=Left)

Right pe(exp=Right | P)× pH(H | P, exp=Right)

× pS(S | P,H, exp=Right)

Training regime Spitkovsky et al. (2010) demonstrated
the utility of using hard EM (i.e. restricting the updates to
only the single best, Viterbi, parse according to the current
model) for unsupervised grammar induction. We compare
standard full (soft) EM, where we use the entire parse for-
est during estimation with Viterbi EM, as well as with a
smoothed variant of k-best EM which interpolates the prob-
abilities from the top-k parses with those of the full forest,1
using the algorithm of Huang and Chiang (2005) to compute
the k-best parses according to the current model.

Experimental setup
Data As is standard, our induction uses sentences of
length 10 or less (not counting punctuation) from the
WSJ part of the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz 1993), and relies on gold part-of-speech tags.
We use all sentences of length 10 or less (not counting punc-

1If ck and cfull are the frequencies of y in the k-best and the
full parse forests, we define λk = ck/(ck + cfull), and compute
p̃(x | y) = λkp̂k(x | y) + (1− λk)p̂full(x | y).

tuation) from sections 02-21 for training, section 23 for test-
ing, and 00 for development.

Training procedure We run the induction routine N
times over the entire data set, initialize the probability model
uniformly based on the events observed in the training data,
and run EM until convergence. We do not allow any proba-
bilities to go below e−6(' 0.0025). During k-best estima-
tion, the top k parses for each sentence are recomputed ac-
cording to the current model.

Evaluation metrics As is standard, we evaluate against
word-word dependencies obtained from the original Penn
Treebank. We use Johansson and Nugues (2007)’s code to
obtain these dependencies and the CoNLL 2008 shared task
script to evaluate unlabeled directed attachment. In order to
allow a direct comparison with approaches based on other
formalisms (and in contrast to the CCG dependencies for
the Penn Treebank provided by Hockenmaier and Steed-
man (2007)), we treat modifiers as dependents of their heads
(even though in CCG terms, the constituent X is an argument
of X|X), assume that the head of the sentence is a dependent
of a root node at position 0 in the sentence, and analyze con-
junction (X1 conj X2) as creating a dependency from X1 (the
head) to conj, and from conj to X2.
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Figure 2: Impact of the number of induction stages on per-
formance (“d”: derived constituents are considered).

Tag Cat P(c | t) Tag Cat P(c |t)
NN N 0.839 RB S/S 0.527

N/N 0.133 (S\S)/(S\S) 0.275
(N/N)/N 0.021 S\S 0.119

DT N/N 0.925 VBD (S\N)/N 0.419
N 0.034 S\N 0.339
(N/N)/N 0.011 (S\N)\S 0.339

JJ N/N 0.861 TO (S\S)/S 0.498
S\S 0.114 (S\S)/N 0.437
(S/S)/N 0.012 N/N 0.012

IN (S\S)/N 0.678 VB S/N 0.743
(N\N)/N 0.148 S 0.151
(N/N)/N 0.069 N/N 0.031

Figure 3: The most likely induced lexical categories for
common parts of speech (probabilities based on Viterbi
parses of section 00)
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10 20 Inf
Klein & Manning ’04 47.5
Headden ’09 68.8
Spitkovsky Vit ’10 65.3* 53.8* 47.9*
Cohn ’10 65.9 58.3 53.1
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(b) Bar graph of the top models’ performance

Figure 4: Results on section 23 when trained on length 10 data. Starred results were obtained with additional training data: up
to length 20 (Naseem 20) or 45 (Spitkovsky)

Experimental results
Before providing a comparison with related work, we first
evaluate the effect that the size of the induced grammar (as
determined by the inventory of combinatory rules and the
number of stages of induction before model estimation) and
the width of the beam have during k-best estimation.

Impact of combinators and beam width k Which com-
binatory rules are allowed during parsing determines the ex-
pressiveness of the grammar, and hence the complexity of
linguistic phenomena which can be captured. It also has a
significant effect on the size of the grammar and number of
parses per sentence. The training regime impacts the effec-
tive size of the grammar as well: Viterbi training (i.e. only
using the highest scoring parse to update the model) prunes
the grammar, while our smoothed k-best algorithm assigns
significantly more mass to frequent constructions and cat-
egories. We therefore found a strong interaction between
these two parameters. Figure 1 provides results on the test
set for each grammar setting with Viterbi, k = bestG (a
grammar-specific setting of k that was found to optimize
performance on the development set) and full EM. Unlike
Spitkovsky et al. (2010), Viterbi parsing does not in general
outperform full EM, but with the right choice of k, k-best
parsing can yield substantial improvements in performance.
We also found that type-raising proved beneficial in both the
B1 and B2 cases. These results are based on the use of two
induction steps at initialization in addition to a final induc-
tion step with derived constituents.

Number of induction stages The second dimension we
examine is the impact of the number of induction iterations
on performance (again using a grammar-specific optimal k).
Figure 2 shows that, for grammars that use B1 with type rais-
ing, two iterations of induction perform the best, while in-
duction from derived constituents has a minimal (or slightly
detrimental) effect.

The induced lexicons We generally find that the lexical
categories our system induces match very well the com-
monly assumed CCG categories for English. Figure 3 lists

common POS tags and their most likely categories (proba-
bilities of category given tag were computed based on the
Viterbi parses of our best performing model on the develop-
ment set). Besides actual performance (which depends not
just on the lexicon, but also on the kinds of attachment deci-
sions the model makes), this is a very good indicator of how
much of the language the model as captured, because CCG
encodes all language specific information in its lexicon. We
find that most of the mass is centered on exactly those cat-
egories that a linguist would include in a basic (C)CG lexi-
con for English, and that generally little mass is assigned to
non-standard categories such as (N/N)/N for NN (common
noun) or IN (prepositions and subordinating conjunctions).
The only possible exceptions are (S\S)/S for infinitival TO
(to) and S/N for VB (infinitival verbs), which can both be
explained by the fact that infinitives are rarely preceded by
subjects, whereas (S\N)\S for VBD (past tense verbs) is ac-
tually required for inversions that are frequently used with
direct speech in our domain (‘This was obvious”, he said.).

Why is our model able to induce these linguistically cor-
rect categories? Since our induction scheme allows all cate-
gories to be modifiers or modifiers of modifiers, one obvious
grammar that it permits is one where verbs are S, and every-
thing else is either S/S or S\S. The reason that this does not
plague us is subtle yet important. Because we do not dif-
ferentiate between lexical and non-lexical non-terminals but
rather have a distribution over expansions (discussed in the
model), the frequent use of S throughout the tree in vari-
ous binary productions leaves little mass for a lexical S. In
contrast, a category like (S\N)/N will nearly never appear
anywhere but at the lexical level, resulting in a very high
probability of being a lexical category. An additional ques-
tion is why do nouns learn the English ordering N/N when
they have the equally valid opportunity to be N\N. Although
we allow the tag DT (e.g. this) to act as a noun, many noun
phrases do not contain a determiner, increasing the relative
frequency with which N generates a nominal tag, and de-
creasing the probability of it generating DT. Furthermore,
our current system assumes that adjectives, which tend to
precede nouns, cannot carry the category N.
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Comparison with related work
Since we evaluate on dependencies, we compare ourselves
against the following other approaches: Klein and Man-
ning (2004)’s DMV model is a very simple EM-based
generative dependency model that is the foundation for
most of the subsequent proposals (The performance quoted
here is achieved by their slightly more complex DMV-
CCM model). Spitkovsky et al. (2010) build on previ-
ous work which demonstrated improved DMV performance
when trained with a curriculum, and find that Viterbi pars-
ing helps as it enables learning from longer sentences
which would otherwise lead the model astray, resulting in
a multi-stage training process. Headden III, Johnson, and
McClosky (2009)’s Lexicalized Extended Valence Gram-
mar both lexicalizes the DMV models, and includes a va-
lence term which captures subcategorization information
and models the proximity of a word to the head. Cohn, Blun-
som, and Goldwater (2011) learn a non-parametric Bayesian
model of tree-substitution grammar biased towards a sparse
grammar with shallow productions. Underlying the model is
a base distribution computed over CFG trees derived from
the DMV model. Naseem et al. (2010) demonstrate the ef-
fectiveness of universal linguistic knowledge. Their model
has access to 13 universal dependency constraints for all
major parts of speech, including rules such as sentences
tend to be headed by verbs or auxiliaries, auxiliaries tend
to take verbs as dependents, verbs tend to take nouns and
adverbs as dependents, adjectives tend to modify nouns,
prepositions tend to take nouns as arguments, etc. In con-
trast to this rich information, we only capture two basic
principles: sentences are headed by verbs and auxiliaries,
and verbs and auxiliaries can take nouns as arguments.
All other information regarding the relationship between
verbs and adverbs/auxiliaries or between nouns and adjec-
tives/articles/numerals/prepositions is learned automatically
by our system with signals from the data and our induction
procedure. Naseem et al. also evaluate a variant of their sys-
tem that uses a number of highly effective English-specific
heuristics at test time. Boonkwan and Steedman (2011) also
use a categorial grammar, but use a 30 question survey to
discover basic facts about word order. The results of this
survey determine the inventory of lexical types for the lan-
guage, which are then mapped to specific part-of-speech tags
by the experimenter to create a custom language specific lex-
icon. Without this knowledge, their English WSJ10 results
drop from 74.8 to 40.2. By comparison, we do not encode
any language specific information and discover the underly-
ing word order automatically.

Comparing experimental results Figure 4 compares our
performance on section 23 against state-of-the-art systems
given in the literature, as well as the DMV model of Klein
and Manning (2004) that many of the more recent ap-
proaches are based on. We evaluate our performance on sen-
tences of length 10 (WSJ10), length 20 (WSJ20) as well as
all sentences (∞) in section 23, and compare against results
in the literature where available. Our WSJ20 and WSJ∞
results are trained on WSJ10 data. On WSJ20, our perfor-

mance is significantly higher than Naseem et al. (Universal),
and at ∞, our performance is indistinguishable from Cohn
et al.’s, although we outperform them at shorter lengths. It
is important to note that our system’s simplicity leads to
very efficient EM training, unlike other systems which re-
quire sampling, complex smoothing or training curricula.

We draw two main conclusions from this comparison:
First, it is clear that performance on this task depends
strongly on the amount of prior linguistic knowledge that
is provided to the system. On the one hand, the DMV base-
line system (Klein and Manning 2004) as well as the related
approaches of Spitkovsky et al. (2010), Headden III, John-
son, and McClosky (2009), Cohn, Blunsom, and Goldwa-
ter and (2011) assume no prior linguistic knowledge (other
than that implicit in the gold POS tags). Although the words
themselves clearly carry important information, it is unclear
how much of that information can be captured based on
the standard WSJ10 corpus without sophisticated smooth-
ing, and Headden III, Johnson, and McClosky’s is the only
approach that incorporates actual words into the model. On
the other hand, both Naseem et al.’s set of universal con-
straints and their English heuristics, as well as Boonkwan
and Steedman’s expert linguistic knowledge clearly outper-
form the linguistically uninformed systems.

Second, the capacity of the model to represent linguistic
phenomena such as valence (subcategorization), either ex-
plicitly through richer representations (Cohn, Blunsom, and
Goldwater 2011), or implicitly through an expressive model
(Headden III, Johnson, and McClosky 2009) has a clear im-
pact on performance. Like categorial grammar, Cohn, Blun-
som, and Goldwater’s tree-substitution grammar is a lexical-
ized formalism with an extended domain of locality (Joshi
1988), which associates words (or POS-tags, for the cur-
rent task) with complex symbols that capture the context in
which they appear. While the generative capacity of TSG
(and CCG without crossing composition) is weakly equiva-
lent to that of CFGs and to projective dependency grammars
that disallow crossing dependencies (which is the case for
all dependency-based systems discussed here), the choice of
representation (in the grammar or the model) determines the
independence assumptions, and hence generalizations, that
are made during induction. Cohn et al.’s and our system are
remarkably robust at longer sentence lengths.

Conclusions
This paper has demonstrated that unsupervised CCG induc-
tion can rival other methods; although our approach cannot
be compared directly to approaches without prior linguis-
tic knowledge, we perform as well as or better (on longer
sentences) than the system of Naseem et al. (2010), which
arguably captures much more prior knowledge, and uses a
richer statistical model. Future work will examine the effect
of relaxing our assumptions (e.g. about the ability to identify
nouns and verbs), and the impact of richer models on CCG.
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