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SIMPLE-ROOT NEGACYCLIC CODES OF LENGTH

2pnℓm OVER A FINITE FIELD

Anuradha Sharma

Abstract. Let p, ℓ be distinct odd primes, q be an odd prime power
with gcd(q, p) = gcd(q, ℓ) = 1, and m, n be positive integers. In this
paper, we determine all self-dual, self-orthogonal and complementary-
dual negacyclic codes of length 2pnℓm over the finite field Fq with q
elements. We also illustrate our results with some examples.

1. Introduction

Berlekamp [4, 5] introduced negacyclic codes over the finite field Fp with
p elements, where p ≥ 5 is a prime. He also designed a decoding algorithm
that can correct errors having Lee weight at most ⌊p−1

2 ⌋. Later, Kelsch and

Green [14] constructed 2-error-correcting negacyclic codes of length 3m−1
2 and

redundancy 2m over F3. Since then, negacyclic codes have been an interesting
object of study for a long time.

Two extensively studied subclasses of negacyclic codes are that of self-dual
and self-orthogonal negacyclic codes, which have beautiful underlying algebraic
structures, have nice connections with unimodular lattices and the theory of
Jacobi forms, and are more practical to implement. Thus the problem of deter-
mination of all self-dual and self-orthogonal negacyclic codes over finite fields
is of great interest. Below we provide a brief survey of the results known in
this direction.

Blackford [6] proved that simple-root self-dual negacyclic codes of length
2am (a ≥ 1, m odd) over Fq exist if and only if q 6≡ −1 (mod 2a+1). Dinh
[7, 8, 9, 10, 11] explored the existence of all self-dual cyclic and negacyclic
codes of length mpr (r ≥ 1) over the finite field Fpn (p is a prime), where
m ∈ {1, 2, 3, 4, 6} is an integer coprime to p. Guenda and Gulliver [12] examined
all repeated-root cyclic and negacyclic codes of length mpr (r ≥ 1) over Fpn ,
where p is a prime and m ≥ 1 is an integer with gcd(m, p) = 1. When p is
odd, they derived necessary and sufficient conditions for the existence of self-
dual negacyclic codes of length mpr over Fpn . When m = 2m′ with m′ odd,
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they characterized these codes in terms of their polynomial generators, which
provides simple conditions on the existence of self-dual negacyclic codes and
generalizes the work of Dinh [8]. Later, Bakshi and Raka [2] listed all self-
dual negacyclic codes of 2n (n ≥ 1) over Fq, where q is an odd prime power.
In another paper, Bakshi and Raka [3] listed all self-dual and self-orthogonal
negacyclic codes of length 2pn (n ≥ 1) over Fq, where p is an odd prime
and q is an odd prime power coprime to p. Extending this work, Sharma [19]
listed all self-dual and self-orthogonal negacyclic codes of length 2mpn over Fq,
where p is an odd prime, q is an odd prime power coprime to p, and m,n are
positive integers. In a subsequent work, Sharma [20] listed all self-orthogonal
and complementary-dual cyclic codes of length pnℓm over Fq, where p, ℓ are
distinct odd primes, q is an odd prime power with gcd(q, p) = gcd(q, ℓ) = 1,
andm,n are positive integers. In another work, Sharma [18] provided a method
to list all constacyclic codes over finite fields.

Massey [15] studied another important class of linear codes, which are called
complementary-dual codes. He proved that there exist asymptotically good
complementary-dual codes and also showed that these codes provide an op-
timum linear coding solution for the two-user binary adder channel. In an-
other work, Yang and Massey [23] proved that a cyclic code of length N
over Fq is complementary-dual if and only if its generator polynomial g(x)
is self-reciprocal and all the monic irreducible factors of g(x) over Fq have
the same multiplicity in g(x) as in xN − 1. Later, Sendrier [17] proved that
complementary-dual linear codes meet the asymptotic Gilbert–Varshamov
bound using the hull dimension spectra of linear codes.

Throughout this paper, let p, ℓ be distinct odd primes, q be an odd prime
power with gcd(q, p) = gcd(q, ℓ) = 1, and m,n be positive integers. The main
goal of this paper is to determine all self-dual, self-orthogonal and complement-
ary-dual negacyclic codes of length 2pnℓm over Fq. Here we will employ tech-
niques similar to that of Sharma [19, 20].

This paper is organized as follows: In Section 2, we state some preliminaries
that are needed to derive our main results. In Section 3, we determine all
negacyclic codes of length 2pnℓm over Fq (Theorem 1). In Section 4, we list all
self-dual, self-orthogonal and complementary-dual negacyclic codes of length
2pnℓm over Fq (Theorems 2-4). To illustrate our results, we determine all
self-dual, self-orthogonal and complementary-dual negacyclic codes of length
374 over F5. We also determine all self-orthogonal and complementary-dual
negacyclic codes of length 286 over F3 and observe that there does not exist
any self-dual negacyclic code of length 286 over F3.

2. Some preliminaries

In this section, we state some preliminaries that are needed to derive our
main results.
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Let Fq denote the finite field of odd prime power order q and N be a positive
integer coprime to q. A negacyclic code C of length N over Fq is an ideal in
the principal ideal ring Fq[x]/

〈
xN + 1

〉
. Further, if we represent the element

f(x) +
〈
xN + 1

〉
∈ Fq[x]/

〈
xN + 1

〉
by the polynomial f(x) ∈ Fq[x] of degree

strictly less than N, then for every non-zero negacyclic code C, there exists a
unique monic polynomial g(x) in C, which generates the code C and is a factor
of xN + 1 in Fq[x]. The polynomial g(x) is called the generator polynomial
of C and we write C = 〈g(x)〉. Conversely, each factor of xN + 1 in Fq[x]
generates a negacyclic code of length N over Fq. Furthermore, the dual code
of C, denoted by C⊥, is defined as C⊥ = {a(x) ∈ Fq[x]/

〈
xN + 1

〉
: a(x)c∗(x) =

0 for all c(x) ∈ C}, where c∗(x) = xdeg c(x)c(x−1) for all c(x) ∈ C. Note that
the dual code C⊥ is also a negacyclic code of the same length N over Fq and

has generator polynomial ĥ(x) = h(0)
−1

xdeg h(x)h(x−1), where h(x) = xN−1
g(x) .

Furthermore, the code C is said to be

• self-orthogonal if it satisfies C ⊆ C⊥.
• self-dual if it satisfies C = C⊥.
• complementary-dual if it satisfies C ∩ C⊥ = {0}.

In general, if f(x) is any monic polynomial in Fq[x] and f(0) is non-zero,

then the reciprocal polynomial of f(x), denoted by f̂(x), is defined as f̂(x) =
f(0)−1xdeg f(x)f(x−1). Further, the polynomial f(x) is said to be a self-reci-

procal polynomial if it satisfies f̂(x) = f(x). A pair g(x), h(x) of relatively prime
monic polynomials in Fq[x] is said to be a reciprocal pair if h(x) = ĝ(x) holds.
For example, note that the polynomial xN + 1 is a self-reciprocal polynomial
in Fq[x]. Therefore if some polynomial f(x) divides xN + 1 in Fq[x] (note that

f(0) must be non-zero), either f(x) = f̂(x) holds or f(x), f̂(x) form a reciprocal

pair such that f(x)f̂(x) divides xN + 1 in Fq[x]. Then the following result is
straightforward.

Proposition 1. Let gcd(N, q) = 1. Let

xN + 1 = f1(x)f2(x) · · · fS(x)h1(x)ĥ1(x)h2(x)ĥ2(x) · · · hR(x)ĥR(x)

be the factorization of xN + 1 over Fq, where fi(x) = f̂i(x) (1 ≤ i ≤ S) and

hj(x), ĥj(x) (1 ≤ j ≤ R) are reciprocal pairs of polynomials in Fq[x].

(a) There are precisely 2S+2R distinct negacyclic codes of length N over

Fq, given by

〈
f1(x)

ǫ1f2(x)
ǫ2 · · · fS(x)

ǫSh1(x)
µ1 ĥ1(x)

κ1h2(x)
µ2 ĥ2(x)

κ2 · · ·hR(x)
µR ĥR(x)

κR

〉
,

where ǫi’s, µj’s, κj’s are either 0 or 1.
(b) There exists a self-dual negacyclic code of length N over Fq if and only

if no self-reciprocal polynomial divides xN + 1 in Fq[x]. Furthermore,

if no self-reciprocal polynomial divides xN + 1 in Fq[x], then there are
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precisely 2R distinct self-dual negacyclic codes of length N over Fq,
given by
〈
h1(x)

µ1 ĥ1(x)
1−µ1h2(x)

µ2 ĥ2(x)
1−µ2 · · ·hR(x)

µR ĥR(x)
1−µR

〉
,

where µj’s are either 0 or 1.
(c) There are precisely 3R distinct self-orthogonal negacyclic codes of length

N over Fq, given by
〈
f1(x)f2(x) · · · fS(x)h1(x)

µ1 ĥ1(x)
κ1h2(x)

µ2 ĥ2(x)
κ2 · · ·hR(x)

µR ĥR(x)
κR

〉
,

where (µj , κj) ∈ {(1, 0), (0, 1), (1, 1)} for 1 ≤ j ≤ R.
(d) There are precisely 2S+R distinct complementary-dual negacyclic codes

of length N over Fq, given by
〈
f1(x)

ǫ1f2(x)
ǫ2 · · · fS(x)

ǫSh1(x)
µ1 ĥ1(x)

µ1h2(x)
µ2 ĥ2(x)

µ2 · · ·hR(x)
µR ĥR(x)

µR

〉
,

where ǫi’s and µj’s are either 0 or 1.

Proof. Proof is left to the reader. �

From the above proposition, we see that to write down all negacyclic codes
of length N over Fq more explicitly, we need to factorize the polynomial xN +1
over Fq. For this, we study q-cyclotomic cosets, which are as defined below:

Let K be any positive integer coprime to q. For any integer s ≥ 0, the

q-cyclotomic coset of s modulo K is defined as the set C
(K)
s = {s, sq, sq2, . . .,

sqKs−1}, where Ks is the least positive integer such that sqKs ≡ s (mod K).

The integer s is called a representative of C
(K)
s modulo K. Note that the

cardinality of C
(K)
s equals the multiplicative order of q modulo K

gcd(K,s) . A

set SK = {s1, s2, . . . , st} of integers modulo K is said to be a complete set
of representatives of q-cyclotomic cosets modulo K if the q-cyclotomic cosets

C
(K)
si (1 ≤ i ≤ t) are mutually disjoint modulo K and

⋃t
i=1 C

(K)
si = ZK , where

ZK is the ring of integers modulo K. Let us define SK = {s ∈ SK : s ≡
1 (mod 2)}. The q-cyclotomic cosets modulo K are useful in describing the
factorization of xK − 1 in Fq[x], as follows:

If β is a primitive Kth root of unity in some extension field of Fq, then for
each integer s ≥ 0, the polynomial Ms(x) =

∏
j∈C

(K)
s

(x − βj) is the minimal

polynomial of βs over Fq. From this, it is easy to observe the following:

Lemma 1. We have C
(K)
s = C

(K)
−t if and only if Ms(x) = M̂t(x).

Proof. Proof is trivial. �

Moreover, if SK is a complete set of representatives of q-cyclotomic cosets
modulo K, then

xK − 1 =
∏

s∈SK

Ms(x)
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is the factorization of xK − 1 into monic irreducible polynomials over Fq.
From now onwards, we focus our attention on negacyclic codes of length

N = 2pnℓm over Fq, where p, ℓ are distinct odd primes, q is an odd prime
power with gcd(q, p) = gcd(q, ℓ) = 1, and m,n are positive integers.

3. Negacyclic codes of length 2pnℓm over Fq

In order to write down all negacyclic codes of length 2pnℓm over Fq, by

Proposition 1, we need to factorize the polynomial x2pnℓm +1 over Fq. For this,
we first observe the following:

Lemma 2. (a) Let S4pnℓm = {s ∈ S4pnℓm : s ≡ 1 (mod 2)}. For each

s ∈ S4pnℓm , let Ms(x) denote the minimal polynomial of αs over Fq,
where α is a primitive (4pnℓm)th root of unity over Fq. Then we have

x2pnℓm + 1 =
∏

s∈S4pnℓm
Ms(x).

(b) All the distinct negacyclic codes of length 2pnℓm over Fq are given by〈∏
s∈I Ms(x)

〉
, where I runs over all subsets of S4pnℓm .

Proof. Proof is trivial. �

Now to obtain the set S4pnℓm , we need the following lemma:

Lemma 3. We have

S4pnℓm =
⋃

(s1,s2)

{
θ(s1, s2), θ(s1, s2q), . . . , θ(s1, s2q

γ(s1,s2)−1)
}
,

where the union
⋃

(s1,s2)
runs over all (s1, s2) ∈ S4pn×Sℓm , θ denotes the usual

ring isomorphism given by Chinese Remainder Theorem from Z4pn ×Zℓm onto

Z4pnℓm and γ(s1, s2) = gcd
(
|C

(4pn)
s1 |, |C

(ℓm)
s2 |

)
for each s1 ∈ S4pn , s2 ∈ Sℓm .

(Throughout this paper, |A| denotes the cardinality of the set A.)

Proof. It follows from Proposition 3 of Sharma [18]. �

From the above lemma, we see that in order to determine the set S4pnℓm

more explicitly, we need to determine the sets S4pn and Sℓm . For this, we
proceed as follows:

Let a be the multiplicative order of q modulo p. Let us write qa = 1+2pcc′,
where p does not divide c′ and c ≥ 1 is an integer. With these assumptions,
it is easy to see that the multiplicative orders of q modulo pr and modulo 2pr,
denoted by Opr (q) and O2pr (q) respectively, are given by Opr (q) = O2pr (q) =

apmax{0,r−c} = λr (say) for 1 ≤ r ≤ n. Also it is easy to show that

O4pr (q) =

{
λr if q ≡ 1 (mod 4) or q ≡ 3 (mod 4) with a even;
2λr if q ≡ 3 (mod 4) with a odd.

For 1 ≤ r ≤ n, let δr = φ(pr)
λr

, where φ denotes the Euler’s phi function. Next

working as in Lemma 4 of Sharma [21], we choose a primitive root g modulo
p satisfying gp−1 6≡ 1 (mod p2) and g ≡ 1 (mod 4). In view of Theorems 10.6
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and 10.7 of [1], we see that the integer g is a primitive root modulo pr and 2pr

for all r ≥ 1. Further, for integers s, r, k satisfying gcd(s, p) = 1, 1 ≤ r ≤ n

and k ≥ 0, it is easy to see that the q-cyclotomic coset C
(4pn)

spn−rgk modulo 4pn is

given by

C
(4pn)

spn−rgk =





{spn−rgk, spn−rgkq, . . . , spn−rgkq2λr−1},
if q ≡ 3 (mod 4) with both a, s odd;
{spn−rgk, spn−rgkq, . . . , spn−rgkqλr−1},
otherwise.

Then the following lemma provides all the distinct q-cyclotomic cosets modulo
4pn.

Lemma 4. (a) Let q ≡ 1 (mod 4). Let A be an integer satisfying A ≡
3 (mod 4) and A ≡ 1 (mod pn). All the distinct q-cyclotomic cosets

modulo 4pn are given by C
(4pn)
0 = {0}, C

(4pn)
pn = {pn}, C

(4pn)
2pn = {2pn},

C
(4pn)
3pn = {3pn}, C

(4pn)

pn−rgk , C
(4pn)

Apn−rgk , C
(4pn)

2pn−rgk and C
(4pn)

4pn−rgk with k run-

ning over the set {0, 1, 2, . . . , δr − 1} for each r (1 ≤ r ≤ n). As a

consequence, we have

S4pn = {pn, 3pn}
⋃{

n⋃

r=1

δr−1⋃

k=0

{pn−rgk,Apn−rgk}

}
.

(b) Let q ≡ 3 (mod 4) and a be even. All the distinct q-cyclotomic cosets

modulo 4pn are given by C
(4pn)
0 = {0}, C

(4pn)
pn = {pn, 3pn}, C

(4pn)
2pn =

{2pn}, C
(4pn)

pn−rgk , C
(4pn)

pn−rgk+δr
, C

(4pn)

2pn−rgk and C
(4pn)

4pn−rgk with k running over

the set {0, 1, 2, . . . , δr − 1} for each r (1 ≤ r ≤ n). As a consequence,

we have

S4pn = {pn}
⋃{

n⋃

r=1

2δr−1⋃

k=0

{pn−rgk}

}
.

(c) Let q ≡ 3 (mod 4) and a be odd. All the distinct q-cyclotomic cosets

modulo 4pn are given by C
(4pn)
0 = {0}, C

(4pn)
pn = {pn, 3pn}, C

(4pn)
2pn =

{2pn}, C
(4pn)

pn−rgk , C
(4pn)

2pn−rgk and C
(4pn)

4pn−rgk with k running over the set

{0, 1, 2, . . . , δr − 1} for each r (1 ≤ r ≤ n). As a consequence, we have

S4pn = {pn}
⋃{

n⋃

r=1

δr−1⋃

k=0

{pn−rgk}

}
.

Proof. (a) Suppose, if possible, that there exist integers u, v ∈ {1,A, 2, 4},
r, r′ (1 ≤ r, r′ ≤ n), k (0 ≤ k ≤ δr − 1) and k′ (0 ≤ k′ ≤ δr′ − 1) satisfying

C
(4pn)

upn−rgk = C
(4pn)

vpn−r′gk′ . This holds if and only if there exists an integer j (0 ≤

j ≤ λr − 1) such that upn−rgkqj ≡ vpn−r′gk
′

(mod 4pn). This implies that r =

r′, which gives ugk−k′

qj ≡ v (mod 4pr). This further implies that ugk−k′

qj ≡
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v (mod 4) and ugk−k′

qj ≡ v (mod pr). Now as q ≡ g ≡ 1 (mod 4), we get

u ≡ v (mod 4), which holds only if u = v. This gives ugk−k′

qj ≡ u (mod pr). As

gcd(u, p) = 1, we get gk−k′

qj ≡ 1 (mod pr), which gives g(k−k′)λr ≡ 1 (mod pr).
This implies that δr divides k − k′, as g is a primitive root modulo pr. Since
0 ≤ k, k′ ≤ δr − 1, we get k = k′, which gives j = 0. Further, these are all the
distinct q-cyclotomic cosets modulo 4pn, as these contain

|C
(4pn)
0 |+ |C

(4pn)
pn |+ |C

(4pn)
2pn |+ |C

(4pn)
3pn |

+

n∑

r=1

δr−1∑

k=0

(
|C

(4pn)

pn−rgk |+ |C
(4pn)

Apn−rgk |+ |C
(4pn)

2pn−rgk |+ |C
(4pn)

4pn−rgk |
)

= 4 + 4

n∑

r=1

δr−1∑

k=0

λr = 4 + 4
∑

r=1

λrδr = 4pn elements.

(b) Suppose, if possible, that there exist integers r, r′ (1 ≤ r, r′ ≤ n),

k (0 ≤ k ≤ 2δr − 1) and k′ (0 ≤ k′ ≤ 2δr′ − 1) satisfying C
(4pn)

pn−rgk = C
(4pn)

pn−r′gk′ .

Then there exists an integer j (0 ≤ j ≤ λr − 1) such that pn−rgkqj ≡

pn−r′gk
′

(mod 4pn), which gives r=r′. This implies that gk−k′

qj≡ 1 (mod 4pr),

which gives gk−k′

qj ≡ 1 (mod 4) and gk−k′

qj ≡ 1 (mod pr). As g ≡ 1 (mod 4),
we get qj ≡ 1 (mod 4), which implies that the integer j is even, as q ≡

3 (mod 4). From this, we obtain gk−k′

qj ≡ 1 (mod pr) with j even, which

implies that g(k−k′)λr/2 ≡ 1 (mod pr). As g is a primitive root modulo pr,
φ(pr) = λrδr must divide (k − k′)λr/2, which implies that 2δr divides k − k′.
From this, we obtain k = k′ and j = 0, as 0 ≤ k, k′ ≤ 2δr − 1. Next working

in a similar way as above, one can show that the q-cyclotomic cosets C
(4pn)

2pn−rgk ,

C
(4pn)

4pn−rgk , 0 ≤ k ≤ δr − 1 for 1 ≤ r ≤ n, are also mutually disjoint modulo 4pn.

Further, these are all the distinct q-cyclotomic cosets modulo 4pn, as these
contain

|C
(4pn)
0 |+ |C

(4pn)
pn |+ |C

(4pn)
2pn |

+

n∑

r=1

2δr−1∑

k=0

|C
(4pn)

pn−rgk |+

n∑

r=1

δr−1∑

k=0

(
|C

(4pn)

2pn−rgk |+ |C
(4pn)

4pn−rgk |
)

= 4 + 4

n∑

r=1

δr−1∑

k=0

λr = 4 + 4
∑

r=1

λrδr = 4pn elements.

(c) Here we have Opr (q) = O2pr (q) = λr and O4pr (q) = 2λr for each r ≥ 1.
Now working in a similar way as in parts (a) and (b), part (c) follows. �

Next we proceed to determine a complete set Sℓm of representatives of q-
cyclotomic cosets modulo ℓm. For this, let b be the multiplicative order of q
modulo ℓ. Let us write qb = 1 + 2ℓdd′, where ℓ does not divide d′ and d ≥ 1 is
an integer. With these assumptions, the multiplicative order of q modulo ℓt,
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denoted by Oℓt(q), is given by Oℓt(q) = bℓmax{0,t−d} = µt (say) for 1 ≤ t ≤ m.

For 1 ≤ t ≤ m, let νt = φ(ℓt)
µt

. Let h be a primitive root modulo ℓt for all

t ≥ 1. Such an integer h always exists (for details, see Theorem 10.6 of [1]).
Further, it is easy to observe that for any integer u ≥ 0, the q-cyclotomic coset

C
(ℓm)
ℓm−thu is given by C

(ℓm)
ℓm−thu = {ℓm−thu, ℓm−thuq, . . . , ℓm−thuqµt−1}. Then the

following lemma provides all the distinct q-cyclotomic cosets modulo ℓm.

Lemma 5. All the distinct q-cyclotomic cosets modulo ℓm are given by C
(ℓm)
0 =

{0}, C
(ℓm)
ℓm−thu with u running over the set {0, 1, 2, . . . , νt − 1} for each t (1 ≤

t ≤ m). As a consequence, we have

Sℓm = {0} ∪

{
m⋃

t=1

νt−1⋃

u=0

{ℓm−thu}

}
.

Proof. For proof, see Sharma et al. [22, Proposition 1]. �

In the following proposition, we explicitly determine the set S4pnℓm .

Proposition 2. For 1 ≤ r ≤ n and 1 ≤ t ≤ m, let fr,t = gcd(λr, µt). Let θ
denote the usual ring isomorphism given by Chinese Remainder Theorem from

Z4pn × Zℓm onto Z4pnℓm . Then we have the following:

(a) Let q ≡ 1 (mod 4). Let A be an integer satisfying A ≡ 3 (mod 4) and

A ≡ 1 (mod pn). Then we have

S4pnℓm = {θ(pn, 0), θ(3pn, 0)} ∪
( n⋃

r=1

δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu),

θ(3pn, ℓm−thu), θ(pn−rgk, 0), θ(Apn−rgk, 0), θ(pn−rgk, ℓm−thuqw),

θ(Apn−rgk, ℓm−thuqw)
})

.

(b) Let q ≡ 3 (mod 4) and a be even. Then we have

S4pnℓm = {θ(pn, 0)} ∪
( n⋃

r=1

2δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu),

θ(pn, ℓm−thuq), θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)
})

if b is even, and we have

S4pnℓm = {θ(pn, 0)} ∪
( n⋃

r=1

2δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu), θ(pn−rgk, 0),

θ(pn−rgk, ℓm−thuqw)
})

if b is odd.
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(c) Let q ≡ 3 (mod 4) and a be odd. Then we have

S4pnℓm = {θ(pn, 0)} ∪
( n⋃

r=1

δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

2fr,t−1⋃

w=0

{
θ(pn, ℓm−thu),

θ(pn, ℓm−thuq), θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)
})

if b is even, and we have

S4pnℓm = {θ(pn, 0)} ∪
( n⋃

r=1

δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu),

θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)
})

if b is odd.

Proof. It follows immediately from Lemmas 3-5. �

From now onwards, let us define δ =
∑n

r=1 δr, ν =
∑m

t=1 νt and F =∑n
r=1

∑m
t=1 δrνtfr,t.

Theorem 1. Let p, ℓ be distinct odd primes, q be an odd prime power with

gcd(q, p) = gcd(q, ℓ) = 1, and m,n be positive integers.

(a) Let q ≡ 1 (mod 4). Let A be an integer satisfying A ≡ 3 (mod 4)
and A ≡ 1 (mod pn). Then there are precisely 22(1+δ+ν+F) distinct

negacyclic codes
〈∏

s∈I Ms(x)
〉
of length 2pnℓm over Fq, where I runs

over all subsets of

{θ(pn, 0), θ(3pn, 0)} ∪
( n⋃

r=1

δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu), θ(3pn, ℓm−thu),

θ(pn−rgk, 0), θ(Apn−rgk, 0), θ(pn−rgk, ℓm−thuqw), θ(Apn−rgk, ℓm−thuqw)
})

.

(b) Let q ≡ 3 (mod 4) and a be even. Then there are precisely 21+2ν+2δ+2F

distinct negacyclic codes
〈∏

s∈I Ms(x)
〉
of length 2pnℓm over Fq with I

running over all subsets of

{θ(pn, 0)} ∪
( n⋃

r=1

2δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu), θ(pn, ℓm−thuq),

θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)
})

if b is even, while there are precisely 21+ν+2δ+2F distinct negacyclic

codes
〈∏

s∈I Ms(x)
〉
of length 2pnℓm over Fq with I running over all

subsets of

{θ(pn, 0)} ∪
( n⋃

r=1

2δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu), θ(pn−rgk, 0),
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θ(pn−rgk, ℓm−thuqw)
})

if b is odd.

(c) Let q ≡ 3 (mod 4) and a be odd. Then there are precisely 21+2ν+δ+2F

distinct negacyclic codes
〈∏

s∈I Ms(x)
〉
of length 2pnℓm over Fq with I

running over all subsets of

{θ(pn, 0)} ∪
( n⋃

r=1

δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

2fr,t−1⋃

w=0

{
θ(pn, ℓm−thu), θ(pn, ℓm−thuq),

θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)
})

if b is even, while there are precisely 21+ν+δ+F distinct negacyclic codes〈∏
s∈I Ms(x)

〉
of length 2pnℓm over Fq with I running over all subsets

of

{θ(pn, 0)} ∪
( n⋃

r=1

δr−1⋃

k=0

m⋃

t=1

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn, ℓm−thu), θ(pn−rgk, 0),

θ(pn−rgk, ℓm−thuqw)
})

if b is odd.

Proof. It follows immediately from Lemma 2 and Proposition 2. �

4. Self-dual, self-orthogonal and complementary-dual negacyclic
codes of length 2pnℓm over Fq

From now onwards, we will follow the same notations as in Section 3. Fur-
ther, for integersR and S ≥ 1, let [R]S be the remainder obtained upon dividing
R by S. Note that [R]S = R if 0 ≤ R ≤ S − 1. For each s ∈ S4pnℓm , let Cs

denote the q-cyclotomic coset of s modulo 4pnℓm.
In this section, we will determine all self-dual, self-orthogonal and comple-

mentary-dual negacyclic codes of length 2pnℓm over Fq by considering the fol-
lowing three cases separately: (i) q ≡ 1 (mod 4), (ii) q ≡ 3 (mod 4) with a even,
and (iii) q ≡ 3 (mod 4) with a odd. For this, we need the following lemma:

Lemma 6 ([19]). Let 1 ≤ r ≤ n and 1 ≤ t ≤ m be fixed integers. Then we

have the following:

(a) There exist integers yr and zt satisfying q ≡ gyrδr (mod pr) and q ≡
hztνt (mod ℓt) with gcd(yr, λr) = gcd(zt, µt) = 1.

(b) Suppose that there exists an integer j satisfying gs−s′qj ≡ −1 (mod pr)
for some integers s, s′ (0 ≤ s, s′ ≤ δr − 1). Then we have

s′ =

{ [
s+ δr

2

]
δr

if a is odd;

s if a is even.
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(Note that when a is odd, each λr is odd. This implies that each δr is

even, as φ(pr) = λrδr is even for each r.)

(c) Suppose that there exists an integer k satisfying hu−u′

qk ≡ −1 (mod ℓt)
for some integers u, u′ (0 ≤ u, u′ ≤ νt − 1). Then we have

u′ =

{ [
u+ νt

2

]
νt

if b is odd;

u if b is even.

(Note that when b is odd, each µt is odd. This implies that each νt is

even, as φ(ℓt) = µtνt is even for each t.)

Proof. For proof, see Sharma [19, Lemma 8]. �

Next we make the following observation:

Remark 1. Note that ̂x2pnℓm + 1 = x2pnℓm + 1. From this, it follows that for

every s ∈ S4pnℓm , there exists t ∈ S4pnℓm such that M̂s(x) = Mt(x) (or
equivalently, C−s = Ct by Lemma 1).

4.1. q ≡ 1 (mod 4)

Throughout this subsection, let q ≡ 1 (mod 4), and A be an integer satisfying
A ≡ 3 (mod 4) and A ≡ 1 (mod pn). Then in the following theorem, we list
all the self-dual, self-orthogonal and complementary-dual negacyclic codes of
length 2pnℓm over Fq.

Theorem 2. Let q ≡ 1 (mod 4), and A be an integer satisfying A ≡ 3 (mod 4)
and A ≡ 1 (mod pn). There are precisely

• 21+δ+ν+F distinct self-dual negacyclic codes
〈∏

j∈J

Mj(x)
∏

k∈S̃4pnℓm\J

M̂k(x)

〉

of length 2pnℓm over Fq,
• 31+δ+ν+F distinct self-orthogonal negacyclic codes

〈∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+δ+ν+F distinct complementary-dual negacyclic codes

〈∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,
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with J, J ′ running over all subsets of S̃4pnℓm satisfying J ∪J ′ = S̃4pnℓm , where

S̃4pnℓm = {θ(pn, 0)}
⋃( n⋃

r=1

m⋃

t=1

δr−1⋃

k=0

νt−1⋃

u=0

fr,t−1⋃

w=0

{θ(pn, ℓm−thu), θ(pn−rgk, 0),

θ(pn−rgk, ℓm−thuqw)}
)
.

To prove this theorem, we need to prove the following lemma:

Lemma 7. For 1 ≤ r ≤ n and 1 ≤ t ≤ m, let 0 ≤ k ≤ δr − 1, 0 ≤ u ≤ νt − 1
and 0 ≤ w ≤ fr,t − 1 be fixed integers. Further for each r and t, let yr and zt
be as chosen in Lemma 6(a) with y−1

r and z−1
t as the multiplicative inverses of

yr and zt modulo λr and µt, respectively. Then we have

(a) C−θ(pn,0) = Cθ(3pn,0),

(b) C−θ(pn,ℓm−thu) =

{
Cθ(3pn,ℓm−thût) if b is odd;
Cθ(3pn,ℓm−thu) if b is even,

(c) C−θ(pn−rgk,0) =

{
Cθ(Apn−rgk∗

r ,0) if a is odd;

Cθ(Apn−rgk,0) if a is even,

(d)

C−θ(pn−rgk,ℓm−thuqw)

=





Cθ(Apn−rgk,ℓm−thuqẇr,t) if both a, b are even;

Cθ(Apn−rgk,ℓm−thûtqẅr,t ) if a is even and b is odd;

Cθ(Apn−rgk∗
r ,ℓm−thuqwr,t) if a is odd and b is even;

Cθ(Apn−rgk∗
r ,ℓm−thûtqw̃r,t ) if both a, b are odd,

with ût =
[
u+ νt

2

]
νt
, k∗r =

[
k + δr

2

]
δr
, ẇr,t =

[
w + λr+µt

2

]
fr,t

,

ẅr,t =





[
w +

λr−z−1
t (µt+1)
2

]
fr,t

if 0 ≤ u ≤ νt
2 − 1;

[
w +

λr−z−1
t (µt−1)
2

]
fr,t

if νt
2 ≤ u ≤ νt − 1,

wr,t =





[
w +

µt+y−1
r (λr+1)
2

]
fr,t

if 0 ≤ k ≤ δr
2 − 1;

[
w +

µt+y−1
r (λr−1)
2

]
fr,t

if δr
2 ≤ k ≤ δr − 1,

w̃r,t =





[
w +

y−1
r (λr+1)−z−1

t (µt+1)
2

]
fr,t

if 0 ≤ k ≤ δr
2 − 1, 0 ≤ u ≤ νt

2 − 1;
[
w +

y−1
r (λr+1)−z−1

t (µt−1)
2

]
fr,t

if 0 ≤ k ≤ δr
2 − 1, νt2 ≤ u ≤ νt − 1;

[
w +

y−1
r (λr−1)−z−1

t (µt+1)
2

]
fr,t

if δr
2 ≤ k ≤ δr − 1, 0 ≤ u ≤ νt

2 − 1;
[
w +

y−1
r (λr−1)−z−1

t (µt−1)
2

]
fr,t

if δr
2 ≤ k ≤ δr − 1, νt2 ≤ u ≤ νt − 1.

Proof. (a) By Remark 1, there exists an element j ∈ S4pnℓm such that

C−θ(pn,0) = Cj .
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By Proposition 2(a), we write j = θ(j1, j2), where (j1, j2) is either of the
type (ϑpn, 0) or (ϑpn, ℓm−thu) or (̺pn−rgk, 0) or (̺pn−rgk, ℓm−thuqw) with
ϑ ∈ {1, 3}, ̺ ∈ {1,A}, 0 ≤ u ≤ νt−1, 0 ≤ k ≤ δr−1, 0 ≤ w ≤ fr,t−1, 1 ≤ r ≤ n
and 1 ≤ t ≤ m. That is, we have C−θ(pn,0) = Cθ(j1,j2), which holds if and only
if there exists an integer v ≥ 0 satisfying θ(j1, j2) ≡ −θ(pn, 0)qv (mod 4pnℓm).
This is equivalent to j1 ≡ −pnqv (mod 4pn) and j2 ≡ 0 (mod ℓm), which gives
j1 = 3pn, v = 0 and j2 = 0. This proves (a).

(b) By Remark 1, there exists an element s∈S4pnℓm such that

C−θ(pn,ℓm−thu) = Cs.

By Proposition 2(a), we write s = θ(s1, s2), where (s1, s2) is either of the type

(ϑpn, 0) or (ϑpn, ℓm−t′hu′

) or (̺pn−rgk, 0) or (̺pn−rgk, ℓm−t′hu′

qw) with ϑ ∈
{1, 3}, ̺ ∈ {1,A}, 0 ≤ u′ ≤ νt′ − 1, 0 ≤ k ≤ δr − 1, 0 ≤ w ≤ fr,t′ − 1, 1 ≤ r ≤ n
and 1 ≤ t′ ≤ m. Now C−θ(pn,ℓm−thu) = Cθ(s1,s2) holds if and only if there

exists an integer Y ≥ 0 satisfying −θ(pn, ℓm−thu)qY ≡ θ(s1, s2) (mod 4pnℓm).
This gives s1 ≡ −pnqY (mod 4pn) and s2 ≡ −ℓm−thuqY (mod ℓm). From this,
we obtain s1 = 3pn. Also note that gcd(s2, ℓ

m) = gcd(−ℓm−thuqY , ℓm) = ℓm−t

implies that j2 must be of the form ℓm−thu′

, where 0 ≤ u′ ≤ νt−1. This further
implies that hu−u′

qY ≡ −1 (mod ℓt). By Lemma 6(c), we get u′ =
[
u+ νt

2

]
νt

if b is odd and u′ = u if b is even, which proves (b).
(c) By Remark 1, there exists an element ǫ ∈ S4pnℓm such that

C−θ(pn−rgk,0) = Cǫ.

By Proposition 2(a), we write ǫ = θ(ǫ1, ǫ2), where (ǫ1, ǫ2) is either of the type

(ϑpn, 0) or (ϑpn, ℓm−thu) or (̺pn−r′gk
′

, 0) or (̺pn−r′gk
′

, ℓm−thuqw) with ϑ ∈
{1, 3}, ̺ ∈ {1,A}, 0 ≤ u ≤ νt − 1, 0 ≤ k′ ≤ δr′ − 1, 0 ≤ w ≤ fr′,t − 1,
1 ≤ r′ ≤ n and 1 ≤ t ≤ m. This holds if and only if there exists an integer
Z ≥ 0 satisfying −θ(pn−rgk, 0)qZ ≡ θ(ǫ1, ǫ2) (mod 4pnℓm), which gives ǫ1 ≡
−pn−rgkqZ (mod 4pn) and ǫ2 ≡ 0 (mod ℓm). From this, it follows that ǫ2 = 0

and ǫ1 must be of the form ̺pn−rgk
′

, where ̺ ∈ {1,A} and 0 ≤ k′ ≤ δr − 1.

This gives gk−k′

qZ ≡ −̺ (mod 4pr), which gives gk−k′

qZ ≡ −̺ (mod 4) and

gk−k′

qZ ≡ −̺ (mod pr). As g ≡ q ≡ 1 (mod 4) and A ≡ 3 (mod 4), we must

have ̺ = A. Since A ≡ 1 (mod pn), we get gk−k′

qZ ≡ −1 (mod pr), which by

Lemma 6(b), implies that k′ =
[
k + δr

2

]
δr

if a is odd and k′ = k if a is even.

(d) By Remark 1, there exists an element ∆ ∈ S4pnℓm such that

C−θ(pn−rgk,ℓm−thuqw) = C∆.

By Proposition 2(a), we write ∆ = θ(∆1,∆2), where (∆1,∆2) is either of the

type (ϑpn, 0) or (ϑpn, ℓm−t′hu′

) or (̺pn−r′gk
′

, 0) or (̺pn−r′gk
′

, ℓm−t′hu′

qw
′

)
with ϑ ∈ {1, 3}, ̺ ∈ {1,A}, 0 ≤ u′ ≤ νt′−1, 0 ≤ k′ ≤ δr′−1, 0 ≤ w′ ≤ fr′,t′−1,
1 ≤ r′ ≤ n and 1 ≤ t′ ≤ m. From this, we see that there exists an integer ϕ ≥ 0
satisfying

(1) −θ(pn−rgk, ℓm−thuqw)qϕ ≡ θ(∆1,∆2) (mod 4pnℓm).
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Let us write qϕ = θ(qϕ1 , qϕ2), where ϕ ≡ ϕ1 (mod λn), ϕ ≡ ϕ2 (mod µm) with
0 ≤ ϕ1 < λn and 0 ≤ ϕ2 < µm. Using this, we see that the congruence (1) is
equivalent to the following system of congruences:

(2) ∆1 ≡ −pn−rgkqϕ1 (mod 4pn) and ∆2 ≡ −ℓm−thuqw+ϕ2 (mod ℓm).

As gcd(∆1, 4p
n) = pn−r and gcd(∆2, ℓ

m) = ℓm−t, we must have ∆1 = ̺pn−rgk
′

and ∆2 = ℓm−thu′

qw
′

, where ̺ ∈ {1,A}, 0 ≤ k′ ≤ δr − 1, 0 ≤ u′ ≤ νt − 1 and

0 ≤ w′ ≤ fr,t − 1. In view of this, (2) gives gk−k′

qϕ1 ≡ −̺ (mod 4pr) and

hu−u′

qw−w′+ϕ2 ≡ −1 (mod ℓt). From this, we have gk−k′

qϕ1 ≡ −̺ (mod 4),
which holds only if ̺ = A, as q ≡ g ≡ 1 (mod 4) and A ≡ 3 (mod 4).

From this and using the fact that A ≡ 1 (mod pn), we obtain gk−k′

qϕ1 ≡

−1 (mod pr) and hu−u′

qw−w′+ϕ2 ≡ −1 (mod ℓt). Now working in a similar
way as in Lemma 7 of Sharma [20] and using Lemma 6(a), part (d) follows
immediately. �

Proof of Theorem 2. It follows from Lemmas 1 and 7, and Proposition 1. �

4.2. q ≡ 3 (mod 4) and a is even

Throughout this subsection, let q ≡ 3 (mod 4) and a be even.

As gcd(a, p) = gcd(b, ℓ) = 1, we write a = âℓa1 and b = b̂pb1 , where

gcd(â, ℓ) = gcd(b̂, p) = 1 and a1 ≥ 0, b1 ≥ 0 are integers. Let f = gcd(â, b̂).
Note that gcd(f, p) = gcd(f, ℓ) = 1. Then we make the following observation:

Lemma 8. If both a, b are even, then the following hold:

(i) λr + µt ≡ 0 (mod 2fr,t) if and only if a+ b ≡ 0 (mod 2f).

(ii) ẇr,t =
[
w + λr+µt

2

]
fr,t

= w if and only if a+ b ≡ 0 (mod 2f).

Proof. Proof is trivial. �

In the following theorem, we prove the non-existence of self-dual negacyclic
codes of length 2pnℓm over Fq, and list all the self-orthogonal and complement-
ary-dual negacyclic codes of length 2pnℓm over Fq.

Theorem 3. Let q ≡ 3 (mod 4) and a be even. Then there does not exist any

self-dual negacyclic code of length 2pnℓm over Fq.

A. When b is odd and a ≡ 2 (mod 4), there are precisely

• 3
ν
2 +F distinct self-orthogonal negacyclic codes〈 ∏

i∈S∗

4pnℓm

Mi(x)
∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+2δ+ ν

2+F distinct complementary-dual negacyclic codes〈∏

i∈I

Mi(x)
∏

j∈J

Mj(x)M̂j(x)

〉
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of length 2pnℓm over Fq,
with I running over all subsets of S∗

4pnℓm and J, J ′ running over all

subsets of S̃4pnℓm satisfying J ∪ J ′ = S̃4pnℓm , where

S∗
4pnℓm = {θ(pn, 0)} ∪

(
n⋃

r=1

2δr−1⋃

k=0

{θ(pn−rgk, 0)}

)

and

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

2δr−1⋃

k=0

νt
2 −1⋃

u=0

fr,t−1⋃

w=0

{θ(pn, ℓm−thu), θ(pn−rgk, ℓm−thuqw)}
)
.

B. When b is odd and a ≡ 0 (mod 4), there are precisely

• 3δ+
ν
2+F distinct self-orthogonal negacyclic codes

〈
Mθ(pn,0)(x)

∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+δ+ ν

2+F distinct complementary-dual negacyclic codes
〈
Mθ(pn,0)(x)

i
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,

with i ∈ {0, 1} and J, J ′ running over all subsets of S̃4pnℓm satisfying

J ∪ J ′ = S̃4pnℓm , where

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

δr−1⋃

k=0

νt
2 −1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn−rgk, 0), θ(pn, ℓm−thu),

θ(pn−rgk, ℓm−thuqw), θ(pn−rgk, ℓm−thu+
νt
2 qw)

})
.

C. Let b be even and a ≡ 2 (mod 4).

(i) When a+b
2 ≡ 0 (mod f), we have ẇr,t =

[
w + λr+µt

2

]
fr,t

= w for

0 ≤ w ≤ fr,t − 1, where 1 ≤ r ≤ n and 1 ≤ t ≤ m.
When b ≡ 2 (mod 4), we have the following:

• There is only one self-orthogonal negacyclic code of length

2pnℓm over Fq, namely the zero code.

• There are precisely 21+2δ+2ν+2F distinct complementary-

dual negacyclic codes
〈∏

i∈I Mi(x)
〉
of length 2pnℓm over

Fq with I running over all subsets of

{θ(pn, 0)} ∪
( n⋃

r=1

m⋃

t=1

2δr−1⋃

k=0

νt−1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn−rgk, 0), θ(pn, ℓm−thu),
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θ(pn, ℓm−thuq), θ(pn−rgk, ℓm−thuqw)
})

.

When b ≡ 0 (mod 4), there are precisely

• 3ν distinct self-orthogonal negacyclic codes
〈 ∏

i∈S∗

4pnℓm

Mi(x)
∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+ν+2δ+2F distinct complementary-dual negacyclic codes

〈∏

i∈I

Mi(x)
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,
with I running over all subsets of S∗

4pnℓm and J, J ′ running over

all subsets of S̃4pnℓm satisfying J ∪ J ′ = S̃4pnℓm , where

S∗
4pnℓm = {θ(pn, 0)}

∪
( n⋃

r=1

m⋃

t=1

2δr−1⋃

k=0

νt−1⋃

u=0

fr,t−1⋃

w=0

{θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)}
)

and

S̃4pnℓm =
( m⋃

t=1

νt−1⋃

u=0

{θ(pn, ℓm−thu)}
)
.

(ii) When a+b
2 6≡ 0 (mod f), we have ẇr,t =

[
w + λr+µt

2

]
fr,t

6= w for

0 ≤ w ≤ fr,t − 1, where 1 ≤ r ≤ n and 1 ≤ t ≤ m. Further, for

1 ≤ r ≤ n and 1 ≤ t ≤ m, let w
(1)
r,t , w

(2)
r,t , . . . , w

(
fr,t
2 )

r,t be the distinct

integers satisfying {0, 1, 2, . . . , fr,t − 1} =
⋃ fr,t

2

j=1{w
(j)
r,t , ẇ

(j)
r,t }.

When b ≡ 2 (mod 4), there are precisely

• 3F distinct self-orthogonal negacyclic codes
〈 ∏

i∈S∗

4pnℓm

Mi(x)
∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+2ν+2δ+F distinct complementary-dual negacyclic codes

〈∏

i∈I

Mi(x)
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,
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with I running over all subsets of S∗
4pnℓm and J, J ′ running over

all subsets of S̃4pnℓm satisfying J ∪ J ′ = S̃4pnℓm , where

S∗
4pnℓm = {θ(pn, 0)}

∪
( n⋃

r=1

m⋃

t=1

2δr−1⋃

k=0

νt−1⋃

u=0

{θ(pn, ℓm−thu), θ(pn, ℓm−thuq), θ(pn−rgk, 0)}
)

and

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

2δr−1⋃

k=0

νt−1⋃

u=0

fr,t
2⋃

j=1

{θ(pn−rgk, ℓm−thuqw
(j)
r,t )}

)
.

When b ≡ 0 (mod 4), there are precisely

• 3ν+F distinct self-orthogonal negacyclic codes
〈 ∏

i∈S∗

4pnℓm

Mi(x)
∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+ν+2δ+F distinct complementary-dual negacyclic codes

〈∏

i∈I

Mi(x)
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,
with I running over all subsets of S∗

4pnℓm and J, J ′ running over

all subsets of S̃4pnℓm satisfying J ∪ J ′ = S̃4pnℓm , where

S∗
4pnℓm = {θ(pn, 0)} ∪

( n⋃

r=1

2δr−1⋃

k=0

{θ(pn−rgk, 0)}
)

and

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

2δr−1⋃

k=0

νt−1⋃

u=0

fr,t
2⋃

j=1

{θ(pn, ℓm−thu), θ(pn−rgk, ℓm−thuqw
(j)
r,t )}

)
.

D. Let b be even and a ≡ 0 (mod 4).
(i) When b ≡ 2 (mod 4), there are precisely

• 3δ+F distinct self-orthogonal negacyclic codes
〈 ∏

i∈S∗

4pnℓm

Mi(x)
∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
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• 21+δ+2ν+F distinct complementary-dual negacyclic codes
〈∏

i∈I

Mi(x)
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,
with I running over all subsets of S∗

4pnℓm and J, J ′ running over

all subsets of S̃4pnℓm satisfying J ∪ J ′ = S̃4pnℓm , where

S∗
4pnℓm = {θ(pn, 0)} ∪

( m⋃

t=1

νt−1⋃

u=0

{θ(pn, ℓm−thu), θ(pn, ℓm−thuq)}
)

and

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

δr−1⋃

k=0

νt−1⋃

u=0

fr,t−1⋃

w=0

{θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)}
)
.

(ii) When b ≡ 0 (mod 4), there are precisely

• 3δ+ν+F distinct self-orthogonal negacyclic codes
〈
Mθ(pn,0)(x)

∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and
• 21+δ+ν+F distinct complementary-dual negacyclic codes

〈
Mθ(pn,0)(x)

i
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,

with i ∈ {0, 1} and J, J ′ running over all subsets of S̃4pnℓm satis-

fying J ∪ J ′ = S̃4pnℓm , where

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

δr−1⋃

k=0

νt−1⋃

u=0

fr,t−1⋃

w=0

{θ(pn−rgk, 0), θ(pn, ℓm−thu),

θ(pn−rgk, ℓm−thuqw)}
)
.

To prove this theorem, we need to prove the following lemma:

Lemma 9. For 1 ≤ r ≤ n and 1 ≤ t ≤ m, let 0 ≤ u ≤ νt − 1, 0 ≤ k ≤ 2δr − 1
and 0 ≤ w ≤ fr,t − 1 be fixed integers. For each r and t, let yr and zt be as

chosen in Lemma 6(a) with y−1
r and z−1

t as the multiplicative inverses of yr
and zt modulo λr and µt, respectively. Then we have

(a) C−θ(pn,0) = Cθ(pn,0),

(b) C−θ(pn−rgk,0) =

{
Cθ(pn−rgǩr ,0) if a ≡ 0 (mod 4);

Cθ(pn−rgk,0) if a ≡ 2 (mod 4),
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(c) for s ∈ {0, 1},

C−θ(pn,ℓm−thuqs) =





Cθ(pn,ℓm−thuqŝ) if b ≡ 0 (mod 4);
Cθ(pn,ℓm−thuqs) if b ≡ 2 (mod 4);
Cθ(pn,ℓm−thûtqs) if b is odd,

(d)

C−θ(pn−rgk,ℓm−thuqw)

=





Cθ(pn−rgk,ℓm−thûtqẅr,t) if b is odd and a ≡ 2 (mod 4);

Cθ(pn−rgǩr ,ℓm−thûtqw̃r,t ) if b is odd and a ≡ 0 (mod 4);

Cθ(pn−rgk,ℓm−thuqẇr,t ) if b is even and a ≡ 2 (mod 4);

Cθ(pn−rgǩr ,ℓm−thuqwr,t) if b is even and a ≡ 0 (mod 4),

with ŝ = [s+ 1]2 for s ∈ {0, 1}, ǩr = [k + δr]2δr , ût =
[
u+ νt

2

]
νt
, where

ẇr,t =
[
w + λr+µt

2

]
fr,t

,

wr,t =





[
w +

y−1
r (λr+2)+µt

2

]
fr,t

if 0 ≤ k ≤ δr − 1;
[
w +

y−1
r (λr−2)+µt

2

]
fr,t

if δr ≤ k ≤ 2δr − 1,

ẅr,t =





[
w +

λr−z−1
t (µt+1)
2

]
fr,t

if 0 ≤ u ≤ νt
2 − 1;

[
w +

λr−z−1
t (µt−1)
2

]
fr,t

if νt
2 ≤ u ≤ νt − 1,

w̃r,t =





[
w+

y−1
r (λr+2)−z−1

t (µt+1)
2

]
fr,t

if 0 ≤ k ≤ δr−1 and 0 ≤ u ≤ νt
2 −1;

[
w+

y−1
r (λr−2)−z−1

t (µt+1)
2

]
fr,t

if δr ≤ k ≤ 2δr−1 and 0 ≤ u ≤ νt
2 −1;

[
w+

y−1
r (λr+2)−z−1

t (µt−1)
2

]
fr,t

if 0 ≤ k ≤ δr−1 and νt
2 ≤ u ≤ νt−1;

[
w+

y−1
r (λr−2)−z−1

t (µt−1)
2

]
fr,t

if δr ≤ k ≤ 2δr−1 and νt
2 ≤ u ≤ νt−1.

Proof. (a) By Remark 1, there exists an element j ∈ S4pnℓm such that

C−θ(pn,0) = Cj .

By Proposition 2(b), we write j = θ(j1, j2), where (j1, j2) is either of the form
(pn, 0) or (pn, ℓm−thuqs) or (pn−rgk, 0) or (pn−rgk, ℓm−thuqw) with 0 ≤ u ≤
νt − 1, 0 ≤ k ≤ 2δr − 1, 0 ≤ w ≤ fr,t − 1, 1 ≤ r ≤ n, 1 ≤ t ≤ m and s = 0
if b is odd and s ∈ {0, 1} if b is even. That is, we have C−θ(pn,0) = Cθ(j1,j2),
which holds if and only if there exists an integer v ≥ 0 such that θ(j1, j2) ≡
−θ(pn, 0)qv (mod 4pnℓm). This is equivalent to j1 ≡ −pnqv (mod 4pn) and
j2 ≡ 0 (mod ℓm), which gives j1 = pn, v = 1 and j2 = 0. This proves (a).

(b) By Remark 1, there exists an element ǫ ∈ S4pnℓm such that

C−θ(pn−rgk,0) = Cǫ.
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By Proposition 2(b), we write ǫ = θ(ǫ1, ǫ2), where (ǫ1, ǫ2) is either of the

form (pn, 0) or (pn, ℓm−thuqs) or (pn−r′gk
′

, 0) or (pn−r′gk
′

, ℓm−thuqw) with
0 ≤ u ≤ νt − 1, 0 ≤ k′ ≤ 2δr′ − 1, 0 ≤ w ≤ fr′,t − 1, 1 ≤ r′ ≤ n, 1 ≤
t ≤ m, and s = 0 if b is odd and s ∈ {0, 1} if b is even. That is, we have
C−θ(pn−rgk,0) = Cθ(ǫ1,ǫ2), which holds if and only if there exists an integer

Y ≥ 0 such that θ(ǫ1, ǫ2) ≡ −θ(pn−rgk, 0)qY (mod 4pnℓm). This is equivalent
to ǫ1 ≡ −pn−rgkqY (mod 4pn) and ǫ2 ≡ 0 (mod ℓm), from which we see that

ǫ1 must be of the form pn−rgk
′

for some k′ (0 ≤ k′ ≤ 2δr − 1) and ǫ2 = 0.

This gives gk−k′

qY ≡ −1 (mod 4pr), which implies gk−k′

qY ≡ −1 (mod 4)

and gk−k′

qY ≡ −1 (mod pr). As g ≡ 1 (mod 4) and q ≡ 3 (mod 4), we must
have Y ≡ 1 (mod 2). Also by Lemma 6(a), we have q ≡ gyrδr (mod pr),

which gives gk−k′+yrδrY ≡ −1 (mod pr). This implies that k − k′ + yrδrY ≡
δrλr

2 (mod λrδr), as g is a primitive root modulo pr and φ(pr) = λrδr. As a
is even, we see that λr is even, which implies that δr divides k − k′. Since
0 ≤ k, k′ ≤ 2δr − 1, we must have either |k − k′| = 0 or |k − k′| = δr. As
Y ≡ 1 (mod 2), one can observe that k = k′ holds only if a ≡ 2 (mod 4) and
|k − k′| = δr holds only if a ≡ 0 (mod 4). This proves (b).

(c) When b is odd, we have s = 0. Here working in a similar way as in Lemma
7(b), one can show that C−θ(pn,ℓm−thu) = Cθ(pn,ℓm−thût ), where ût =

[
u+ νt

2

]
νt

for each u.
Next let b be even. Here s ∈ {0, 1}. By Remark 1, we see that there exists an

element ς ∈ S4pnℓm such that C−θ(pn,ℓm−thuqs) = Cς . By Proposition 2(b), we

write ς = θ(ς1, ς2), where (ς1, ς2) is either of the form (pn, 0) or (pn, ℓm−t′hu′

qs
′

)

or (pn−rgk, 0) or (pn−rgk, ℓm−t′hu′

qw) with 0 ≤ u′ ≤ νt′ − 1, 0 ≤ k ≤ 2δr − 1,
0 ≤ w ≤ fr,t′ − 1, 1 ≤ r ≤ n, 1 ≤ t′ ≤ m and s′ ∈ {0, 1}. That is, we
have C−θ(pn,ℓm−thuqs) = Cθ(ς1,ς2), which holds if and only if there exists an

integer Z ≥ 0 such that θ(ς1, ς2) ≡ −θ(pn, ℓm−thuqs)qZ (mod 4pnℓm). This
gives ς1 ≡ −pnqZ (mod 4pn) and ς2 ≡ −ℓm−thuqs+Z (mod ℓm), which implies

that ς1 = pn, Z ≡ 1 (mod 2) and ς2 = ℓm−thu′

qs
′

, where 0 ≤ u′ ≤ νt − 1

and s′ ∈ {0, 1}. This further gives hu−u′

qs−s′+Z ≡ −1 (mod ℓt). By Lemma
6(c), we must have u′ = u, which implies that s − s′ + Z ≡ µt

2 (mod µt), or
equivalently, Z ≡ s′ − s + µt

2 (mod µt). As µt is even and Z ≡ 1 (mod 2), we

must have s−s′+ µt

2 ≡ 1 (mod 2). This gives s′ ≡ s+ b
2+1 (mod 2), from which

it follows that s′ = s if b ≡ 2 (mod 4) and s′ = [s+ 1]2 = ŝ if b ≡ 0 (mod 4).
(d) Working in a similar way as above and as in Lemma 7(d), part (d)

follows. �

Proof of Theorem 2. It follows immediately from Lemmas 1 and 9, and Propo-
sition 1. �

4.3. q ≡ 3 (mod 4) and a is odd

Throughout this subsection, let q ≡ 3 (mod 4) and a be odd. In the fol-
lowing theorem, we observe that there does not exist any self-dual negacyclic
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code of length 2pnℓm over Fq. We also determine all the self-orthogonal and
complementary-dual negacyclic codes of length 2pnℓm over Fq.

Theorem 4. Let q ≡ 3 (mod 4) and a be odd. Then there does not exist any

self-dual negacyclic code of length 2pnℓm over Fq.

A. When b is odd, there are precisely

• 3
δ+ν+F

2 distinct self-orthogonal negacyclic codes
〈
Mθ(pn,0)(x)

∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and

• 21+
δ+ν+F

2 distinct complementary-dual negacyclic codes
〈
Mθ(pn,0)(x)

i
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,

with i ∈ {0, 1} and J, J ′ running over all subsets of S̃4pnℓm satisfying

J ∪ J ′ = S̃4pnℓm , where

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

δr
2 −1⋃

k=0

νt
2 −1⋃

u=0

fr,t−1⋃

w=0

{
θ(pn−rgk, 0), θ(pn, ℓm−thu),

θ(pn−rgk, ℓm−thuqw), θ(pn−rgk+
δr
2 , ℓm−thuqw)

})
.

B. When b ≡ 2 (mod 4), there are precisely

• 3
δ
2+F distinct self-orthogonal negacyclic codes

〈 ∏

i∈S∗

4pnℓm

Mi(x)
∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and

• 21+
δ
2+2ν+F distinct complementary-dual negacyclic codes

〈∏

i∈I

Mi(x)
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,
with I running over all subsets of S∗

4pnℓm and J, J ′ running over all

subsets of S̃4pnℓm satisfying J ∪ J ′ = S̃4pnℓm , where

S∗
4pnℓm = {θ(pn, 0)} ∪

( m⋃

t=1

νt−1⋃

u=0

{θ(pn, ℓm−thu), θ(pn, ℓm−thuq)}
)
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and

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

δr
2 −1⋃

k=0

νt−1⋃

u=0

2fr,t−1⋃

w=0

{θ(pn−rgk, 0), θ(pn−rgk, ℓm−thuqw)}
)
.

C. When b ≡ 0 (mod 4), there are precisely

• 3
δ
2+ν+F distinct self-orthogonal negacyclic codes

〈
Mθ(pn,0)(x)

∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 2pnℓm over Fq, and

• 21+
δ
2+ν+F distinct complementary-dual negacyclic codes

〈
Mθ(pn,0)(x)

i
∏

j∈J

Mj(x)M̂j(x)

〉

of length 2pnℓm over Fq,

with i ∈ {0, 1} and J, J ′ running over all subsets of S̃4pnℓm satisfying

J ∪ J ′ = S̃4pnℓm , where

S̃4pnℓm =
( n⋃

r=1

m⋃

t=1

δr
2 −1⋃

k=0

νt−1⋃

u=0

2fr,t−1⋃

w=0

{θ(pn−rgk, 0), θ(pn, ℓm−thu),

θ(pn−rgk, ℓm−thuqw)}
)
.

To prove this theorem, we need to prove the following lemma:

Lemma 10. For 1 ≤ r ≤ n and 1 ≤ t ≤ m, let 0 ≤ u ≤ νt−1 and 0 ≤ k ≤ δr−1
be fixed integers. For each r and t, let yr and zt be as chosen in Lemma 6(a)
with y−1

r and z−1
t as the multiplicative inverses of yr and zt modulo λr and

µt, respectively. For 1 ≤ r ≤ n and 1 ≤ t ≤ m, let w be an integer satisfying

0 ≤ w ≤ ðfr,t− 1, where ð = 1 if b is odd and ð = 2 if b is even. Then we have

(a) C−θ(pn,0) = Cθ(pn,0),
(b) for s ∈ {0, 1},

C−θ(pn,ℓm−thuqs) =





Cθ(pn,ℓm−thuqŝ) if b ≡ 0 (mod 4);
Cθ(pn,ℓm−thuqs) if b ≡ 2 (mod 4);
Cθ(pn,ℓm−thûtqs) if b is odd,

(c) C−θ(pn−rgk,0) = Cθ(pn−rgk∗
r ,0),

(d) C−θ(pn−rgk,ℓm−thuqw) =

{
Cθ(pn−rgk∗

r ,ℓm−thûtqw̃r,t ) if b is odd;

Cθ(pn−rgk∗
r ,ℓm−thuqŵr,t) if b is even,
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with ŝ = [s+ 1]2 for each s ∈ {0, 1}, ût =
[
u+ νt

2

]
νt
, k∗r =

[
k + δr

2

]
δr
, where

w̃r,t =





[
w +

(λr+1)y−1
r −(µt+1)z−1

t

2

]
fr,t

if 0 ≤ k ≤ δr
2 −1 and 0 ≤ u ≤ νt

2 −1;
[
w +

(λr−1)y−1
r −(µt+1)z−1

t

2

]
fr,t

if δr
2 ≤ k ≤ δr−1 and 0 ≤ u ≤ νt

2 −1;
[
w +

(λr+1)y−1
r −(µt−1)z−1

t

2

]
fr,t

if 0 ≤ k ≤ δr
2 −1 and νt

2 ≤ u ≤ νt−1;
[
w +

(λr−1)y−1
r −(µt−1)z−1

t

2

]
fr,t

if δr
2 ≤ k ≤ δr−1 and νt

2 ≤ u ≤ νt−1

for 0 ≤ w ≤ fr,t − 1 and ŵr,t (0 ≤ ŵr,t ≤ 2fr,t − 1) is an integer satisfying

ŵr,t ≡ w +
µt+(λr+1)y−1

r

2 (mod fr,t) and ŵr,t ≡ w + µt+2
2 (mod 2) for 0 ≤

w ≤ 2fr,t−1. (Note that the integer ŵr,t exists uniquely by Chinese Remainder

Theorem.)

Proof. Working in a similar way as in Lemmas 7 and 9, the result follows. �

Proof of Theorem 4. It follows immediately from Lemmas 1 and 10, and Propo-
sition 1. �

4.4. Examples

1. To list all self-dual, self-orthogonal and complementary-dual negacyclic
codes of length 374 over F5, let p = 11, ℓ = 17, q = 5 and m = n = 1. Here
we have a = 5, b = 16, g = 13 and h = 5 so that f = gcd(a, b) = 1. As
q ≡ 1 (mod 4), by Theorem 2, we see that there are precisely

• 64 distinct self-dual negacyclic codes
〈∏

j∈J

Mj(x)
∏

k∈S̃748\J

M̂k(x)

〉

of length 374 over F5,
• 729 distinct self-orthogonal negacyclic codes

〈∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 374 over F5,
• 64 distinct complementary-dual negacyclic codes

〈∏

j∈J

Mj(x)M̂j(x)

〉

of length 374 over F5,

with J, J ′ running over all subsets of S̃748 satisfying J ∪ J ′ = S̃748, where

S̃748 = {1, 187, 221, 409, 629, 715}.
2. Now we will list all self-orthogonal and complementary-dual negacyclic

codes of length 286 over F3. For this, we take p = 11, ℓ = 13, q = 3 and n =
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m = 1. Here we have a = 5, b = 3, g = 13, and h = 2 with f = gcd(a, b) = 1. As
q ≡ 3 (mod 4) and both a, b are odd, by Theorem 4, we see that there does not
exist any self-dual negacyclic code of length 286 over F3. Further by Theorem
4(A) again, we see that there are precisely

• 2187 distinct self-orthogonal negacyclic codes
〈
M143(x)

∏

j∈J

Mj(x)
∏

j′∈J′

M̂j′(x)

〉

of length 286 over F3, and
• 256 distinct complementary-dual negacyclic codes

〈
M143(x)

i
∏

j∈J

Mj(x)M̂j(x)

〉

of length 286 over F3,

with i ∈ {0, 1} and J, J ′ running over all subsets of S̃572 satisfying J ∪ J ′ =

S̃572, where S̃572 = {1, 145, 221, 275, 353, 365, 495}.
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