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SIMPLE-ROOT NEGACYCLIC CODES OF LENGTH
2p™¢™ OVER A FINITE FIELD

ANURADHA SHARMA

ABSTRACT. Let p, £ be distinct odd primes, ¢ be an odd prime power
with ged(q,p) = ged(g,£) = 1, and m, n be positive integers. In this
paper, we determine all self-dual, self-orthogonal and complementary-
dual negacyclic codes of length 2p™¢™ over the finite field F; with ¢
elements. We also illustrate our results with some examples.

1. Introduction

Berlekamp [4, 5] introduced negacyclic codes over the finite field F,, with
p elements, where p > 5 is a prime. He also designed a decoding algorithm
that can correct errors having Lee weight at most Lpg—lj Later, Kelsch and
Green [14] constructed 2-error-correcting negacyclic codes of length 3m2*1 and
redundancy 2m over F3. Since then, negacyclic codes have been an interesting
object of study for a long time.

Two extensively studied subclasses of negacyclic codes are that of self-dual
and self-orthogonal negacyclic codes, which have beautiful underlying algebraic
structures, have nice connections with unimodular lattices and the theory of
Jacobi forms, and are more practical to implement. Thus the problem of deter-
mination of all self-dual and self-orthogonal negacyclic codes over finite fields
is of great interest. Below we provide a brief survey of the results known in
this direction.

Blackford [6] proved that simple-root self-dual negacyclic codes of length
29m (a > 1, m odd) over F, exist if and only if ¢ # —1 (mod 2%T!). Dinh
[7, 8, 9, 10, 11] explored the existence of all self-dual cyclic and negacyclic
codes of length mp” (r > 1) over the finite field Fyn (p is a prime), where
m € {1,2,3,4,6} is an integer coprime to p. Guenda and Gulliver [12] examined
all repeated-root cyclic and negacyclic codes of length mp™ (r > 1) over Fpn,
where p is a prime and m > 1 is an integer with ged(m,p) = 1. When p is
odd, they derived necessary and sufficient conditions for the existence of self-
dual negacyclic codes of length mp” over Fpn. When m = 2m’ with m’ odd,
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they characterized these codes in terms of their polynomial generators, which
provides simple conditions on the existence of self-dual negacyclic codes and
generalizes the work of Dinh [8]. Later, Bakshi and Raka [2] listed all self-
dual negacyclic codes of 2" (n > 1) over F,, where ¢ is an odd prime power.
In another paper, Bakshi and Raka [3] listed all self-dual and self-orthogonal
negacyclic codes of length 2p” (n > 1) over Fy, where p is an odd prime
and ¢ is an odd prime power coprime to p. Extending this work, Sharma [19]
listed all self-dual and self-orthogonal negacyclic codes of length 2"p" over F,,
where p is an odd prime, ¢ is an odd prime power coprime to p, and m,n are
positive integers. In a subsequent work, Sharma [20] listed all self-orthogonal
and complementary-dual cyclic codes of length p™¢™ over IF,, where p,{ are
distinct odd primes, ¢ is an odd prime power with ged(g,p) = ged(q, £) = 1,
and m, n are positive integers. In another work, Sharma [18] provided a method
to list all constacyclic codes over finite fields.

Massey [15] studied another important class of linear codes, which are called
complementary-dual codes. He proved that there exist asymptotically good
complementary-dual codes and also showed that these codes provide an op-
timum linear coding solution for the two-user binary adder channel. In an-
other work, Yang and Massey [23] proved that a cyclic code of length N
over F, is complementary-dual if and only if its generator polynomial g(x)
is self-reciprocal and all the monic irreducible factors of g(x) over Fy have
the same multiplicity in g(x) as in ¥ — 1. Later, Sendrier [17] proved that
complementary-dual linear codes meet the asymptotic Gilbert—Varshamov
bound using the hull dimension spectra of linear codes.

Throughout this paper, let p, £ be distinct odd primes, ¢ be an odd prime
power with ged(q,p) = ged(g,¢) = 1, and m,n be positive integers. The main
goal of this paper is to determine all self-dual, self-orthogonal and complement-
ary-dual negacyclic codes of length 2p™¢™ over F,. Here we will employ tech-
niques similar to that of Sharma [19, 20].

This paper is organized as follows: In Section 2, we state some preliminaries
that are needed to derive our main results. In Section 3, we determine all
negacyclic codes of length 2p™¢™ over F, (Theorem 1). In Section 4, we list all
self-dual, self-orthogonal and complementary-dual negacyclic codes of length
2p™¢™ over Fy (Theorems 2-4). To illustrate our results, we determine all
self-dual, self-orthogonal and complementary-dual negacyclic codes of length
374 over F5. We also determine all self-orthogonal and complementary-dual
negacyclic codes of length 286 over F3 and observe that there does not exist
any self-dual negacyclic code of length 286 over Fs.

2. Some preliminaries

In this section, we state some preliminaries that are needed to derive our
main results.
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Let 4 denote the finite field of odd prime power order g and N be a positive
integer coprime to ¢. A negacyclic code C of length NV over [, is an ideal in
the principal ideal ring Fg[x]/ <:cN + 1> . Further, if we represent the element
f(@) 4+ (a2 +1) € Fglz]/ (zV + 1) by the polynomial f(z) € Fy[z] of degree
strictly less than N, then for every non-zero negacyclic code C, there exists a
unique monic polynomial g(z) in C, which generates the code C and is a factor
of 2%V + 1 in F,[z]. The polynomial g(z) is called the generator polynomial
of C and we write C = (g(x)). Conversely, each factor of 2V + 1 in F,[x]
generates a negacyclic code of length N over F,. Furthermore, the dual code
of C, denoted by C*, is defined as C+ = {a(z) € Fy[z]/ (zV + 1) : a(z)c*(z) =
0 for all ¢(x) € C}, where ¢*(z) = xz9 <(@)¢(2~1) for all ¢(z) € C. Note that
the dual code C* is also a negacyclic code of the same length N over F, and

has generator polynomial B(Z‘) = h(0)” "zdee M@ p (2~ 1), where h(z) = %.
Furthermore, the code C is said to be

e self-orthogonal if it satisfies C C C*.

o self-dual if it satisfies C = C*.

e complementary-dual if it satisfies C N C+ = {0}.

In general, if f(z) is any monic polynomial in Fylz] and f(0) is non-zero,
then the reciprocal polynomial of f(z), denoted by f(z), is defined as fA(x) =
f(0)~tzdes /(@) f(=1). Further, the polynomial f(x) is said to be a self-reci-
procal polynomial if it satisfies f(x) = f(z). A pair g(x), h(x) of relatively prime
monic polynomials in Fy[z] is said to be a reciprocal pair if h(z) = g(x) holds.
For example, note that the polynomial 2V + 1 is a self-reciprocal polynomial
in F,[z]. Therefore if some polynomial f(z) divides ¥ + 1 in F,[z] (note that
£(0) must be non-zero), either f(z) = f(z) holds or f(x), f(z) form a reciprocal
pair such that f (z)f(x) divides 2% + 1 in Fy[z]. Then the following result is
straightforward.

Proposition 1. Let gcd(N,q) = 1. Let

eV +1= fi(2)fo(x) - fs(@)hy(@)hy(2)ha(x)ha(z) - hr(2)hp(z)

be the factorization of z™ + 1 over Fy, where fi(x) = ﬁ(:c) (1<i<S) and
hj(z),hj(z) (1 <j < R) are reciprocal pairs of polynomials in Fqlx].
(a) There are precisely 2521 distinct negacyclic codes of length N over
Fq, given by

(F@) fal@) - fs (@) ha (@) B (@) ha () (@) - - hi(@)“* ()™ ),

where €;’s, p;’s, k;’s are either 0 or 1.

(b) There exists a self-dual negacyclic code of length N over F, if and only
if no self-reciprocal polynomial divides ™ + 1 in F,[x]. Furthermore,
if no self-reciprocal polynomial divides ™ + 1 in F,[x], then there are
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precisely 2% distinct self-dual negacyclic codes of length N over Fy,
given by

<h1(9€)ula(m)1—m hQ(x)szL;(x)l—uz e hR(-T)HRf/LE(.T)l_“R> ’

where ;s are either 0 or 1.
(c) There are precisely 3% distinct self-orthogonal negacyclic codes of length
N over Fy, given by

(R @) o(a) - fole)hs (@) T (@) o) T () - hia(a) 2 ()™ )
where (:ujﬂ Kj) € {(1;0)7 (Oﬂ 1)7 (L 1)} for1<j<R.

(d) There are precisely 258 distinct complementary-dual negacyclic codes
of length N over F,, given by

(Fue) ala) - Fs () ha (@) T (o) o) B (@) - ()" Rep() ),
where €;’s and ;s are either 0 or 1.

Proof. Proof is left to the reader. O

From the above proposition, we see that to write down all negacyclic codes
of length NV over IF, more explicitly, we need to factorize the polynomial v +1
over IFy. For this, we study g-cyclotomic cosets, which are as defined below:

Let K be any positive integer coprime to q. For any integer s > 0, the
g-cyclotomic coset of s modulo K is defined as the set C’gK) = {s,5q,5q¢°, ...,
sq®=~1}, where Kj is the least positive integer such that s¢’s = s (mod K).
The integer s is called a representative of CgK) modulo K. Note that the

cardinality of C§K) equals the multiplicative order of ¢ modulo W%' A
set Sk = {s1,82,...,8¢} of integers modulo K is said to be a complete set

of representatives of g-cyclotomic cosets modulo K if the ¢-cyclotomic cosets
CS(iK) (1 <4 <t) are mutually disjoint modulo K and Ule C§f(> = Zy, where
Zk is the ring of integers modulo K. Let us define G = {s € Sk : s =
1 (mod 2)}. The g¢-cyclotomic cosets modulo K are useful in describing the
factorization of # — 1 in F,[z], as follows:

If B is a primitive Kth root of unity in some extension field of F,, then for
each integer s > 0, the polynomial M(z) = HjecéK) (x — B7) is the minimal
polynomial of 3° over IFy. From this, it is easy to observe the following:

Lemma 1. We have C{f) = C(_It() if and only if My(x) = ]\/4\,5(50)
Proof. Proof is trivial. O
Moreover, if Sk is a complete set of representatives of g-cyclotomic cosets

modulo K, then
oK —1= H M (x)

sESK
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is the factorization of z¥ — 1 into monic irreducible polynomials over Fy,.
From now onwards, we focus our attention on negacyclic codes of length

N = 2p™"™ over Fy, where p,{ are distinct odd primes, ¢ is an odd prime

power with ged(g, p) = ged(q, ) = 1, and m, n are positive integers.

nem

3. Negacyclic codes of length 2p over [,

In order to write down all negacyclic codes of length 2p™¢™ over Iy, by
Proposition 1, we need to factorize the polynomial 22" " +1 over F,. For this,
we first observe the following:

Lemma 2. (a) Let Gaprgm = {s € Sapnem : s = 1 (mod 2)}. For each
s € Gupngm, let Ms(x) denote the minimal polynomial of o® over Fy,
where o s a primitive (4p™€™)th root of unity over F,. Then we have
22" 4] = Hse&mwm M(x).

(b) All the distinct negacyclic codes of length 2p™™ over F, are given by
(Il,e; Ms(x)) , where I runs over all subsets of Sapnpm.

Proof. Proof is trivial. (I
Now to obtain the set G4pnym, we need the following lemma:

Lemma 3. We have

Suprem = U {9(51, s2),0(s1,$29),...,0(s1, 52(17(51752)71)} ,
(s1,82)
where the union U(Shsz) runs over all (s1,82) € Gypn X Spm, 0 denotes the usual
ring isomorphism given by Chinese Remainder Theorem from Zapn X Zgm onto

Lgprem and y(s1,s2) = ged (|Cs(fpn)|, |C’§§m)|) for each s1 € Gypn, s € Spm.
(Throughout this paper, |A| denotes the cardinality of the set A.)

Proof. Tt follows from Proposition 3 of Sharma [18]. O

From the above lemma, we see that in order to determine the set Sypngm
more explicitly, we need to determine the sets G4pn and Sem. For this, we
proceed as follows:

Let a be the multiplicative order of ¢ modulo p. Let us write ¢ = 1 + 2p°c/,
where p does not divide ¢’ and ¢ > 1 is an integer. With these assumptions,
it is easy to see that the multiplicative orders of ¢ modulo p” and modulo 2p",
denoted by Opr(q) and Ogpr(q) respectively, are given by Opr(q) = Ozpr(q) =
apmax{0r—ch — ) (say) for 1 <r < n. Also it is easy to show that

O (q) = Ay ifg=1 (mod 4) or ¢ =3 (mod 4) with a even;
w9 =\ 2\, if =3 (mod 4) with a odd.
For1 <r <mn,let d, = %f), where ¢ denotes the Euler’s phi function. Next

working as in Lemma 4 of Sharma [21], we choose a primitive root g modulo
p satisfying g?~! # 1 (mod p?) and g = 1 (mod 4). In view of Theorems 10.6
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and 10.7 of [1], we see that the integer g is a primitive root modulo p" and 2p”
for all » > 1. Further, for integers s, r, k satisfying gcd(s p) =1,1<r<n

and k > 0, it is easy to see that the g-cyclotomic coset C gk modulo 4p™

given by
{sp" g%, sp""gtq, ... sp" gk Y,
ol if ¢ = 3 (mod 4) with both a, s odd;
spn—rgk — {Spn r k,Spn rgkq, . Spnfrgkq)wfl},
otherwise.

Then the following lemma provides all the distinct g-cyclotomic cosets modulo

4p™.

Lemma 4. (a) Let ¢ = 1 (mod 4). Let A be an integer satisfying A =
3 (mod 4) and A = 1 (mod p"). All the distinct q-cyclotomic cosets
modulo 4p™ are given by C’(()4p ) = {0}, C(4p ) = {p"}, C(4p ) = {2p"},
C(4p ) = {3p"}, C( g Cégn rgh> C(4n r gt and C(4n r gt With k run-
ning over the set {0, ooy 0 — 1} f07“ each (1 <r <n) 4sa

consequence, we have

n 0r—1
r=1 k=0
(b) Let ¢ = 3 (mod 4) and a be even. All the distinct q-cyclotomic cosets
modulo 4p™ are given by C(4p ) = {0}, C(4p ) = {p™,3p"}, C’éiﬂ ) =
{2p"}, Cﬁ{i) s Céi{i)gkﬁr, 0542 )Tgk and Cf“:b )Tgk with k running over
the set {0,1,2,...,6, — 1} for each v (1 < r < n). As a consequence,
we have

n 26,—1
n—{p"}U{U U " "d"} }
r=1 k=0
(¢) Let ¢ = 3 (mod 4) and a be odd. All the distinct q-cyclotomic cosets
modulo 4p™ are given by C( P = = {0}, C(4p ) = = {p", 3p"}, C’éiﬁ ) =

{2p" } C(4p )k, c\*)  and C(4p ) . with k running over the set

2pn rg n rgk
{0,1,2,...,6, — 1} for each r (1 § r <n). As a consequence, we have
n 6,—1
Supr = {p" }U{U U g }
r=1 k=0

Proof. (a) Suppose, if possible, that there exist integers u,v € {1,2,2,4},
! (1<7°7° <n) EO<k<d —1)and ¥ (0 <k < 6 — 1) satisfying

0(4’2 )T g = ,. This holds if and only if there exists an integer j (0 <
up ’Up" ! k
j < Ar—1)such that up" T gkgl = vpnr' gk (mod 4p™). This implies that r =

7, which gives ug"~* ¢/ = v (mod 4p"). This further implies that ugh* ¢/ =
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v (mod 4) and ug" % ¢/ = v (mod p"). Now as ¢ = g = 1 (mod 4), we get
u = v (mod 4), which holds only if u = v. This gives ug"* ¢/ = u (mod p"). As
ged(u, p) = 1, we get ¢* ¥ ¢ = 1 (mod p"), which gives g*=¥)* =1 (mod p").
This implies that 0, divides k — k’, as g is a primitive root modulo p”. Since
0<kk <6.—1, weget k=K, which gives j = 0. Further, these are all the
distinct g-cyclotomic cosets modulo 4p™, as these contain

4 4 4 4p™
ci) |+|c PO |C5ED | 4 o5

+ZZ (ICS72  + 1CS22, L+ OS50 L+ 105D, L))

r=1 k=0

n Op—
= Z Z =4+ 42 Ardy = 4p™ elements.

r=1

(b) Suppose, if possible, that there exist integers r,7’ (1 < r, ' < n),

k(0 <k <20, —1) and k' (0 < K <20, — 1) satisfying C\7) = c0P) .

Then there exists an integer j (0 < j < A, — 1) such that p"~ Tgkqﬂ =
""" g% (mod 4p™), which gives r =7/, This implies that g* =¥ ¢/ = 1 (mod 4p"),
which gives g% ¢/ =1 (mod 4) and ¢* ¥ ¢/ =1 (mod p"). As g = 1 (mod 4),
we get ¢ = 1 (mod 4), which implies that the integer j is even, as ¢ =
3 (mod 4). From this, we obtain ¢"*¢/ = 1 (mod p") with j even, which
implies that g*=¥)A/2 = 1 (mod p"). As g is a primitive root modulo p",
o(p") = A6, must divide (k — k')A, /2, which implies that 26, divides k — k'.
From this, we obtain k =k’ and j =0, as 0 < k, ¥’ < 2§, — 1. Next workmg
in a similar way as above, one can show that the g-cyclotomic cosets Cé i )T
C(4P )

4pn g k>
Further these are all the distinct g-cyclotomic cosets modulo 4p™, as these

contain

0<k<§—1for1l<r <n,are also mutually disjoint modulo 4p™.

4p™ 4p™ 4p™
G >|+|q§f I+ 105

n 26— n 0,—1
DD ICEENES b oy (EFEMETEEN
r=1 k=0 r=1 k=0
n 0,—1
=4+4> Y N 74+4ZA 5, = 4p™ elements.
r=1 k=0
(c) Here we have Opr(q) = O2pr(q) = A and Oupr(q) = 2), for each r > 1.
Now working in a similar way as in parts (a) and (b), part (c) follows. O

Next we proceed to determine a complete set Sym of representatives of ¢-
cyclotomic cosets modulo ¢™. For this, let b be the multiplicative order of ¢
modulo £. Let us write ¢® = 1+ 2¢%d’, where ¢ does not divide d’ and d > 1 is
an integer. With these assumptions, the multiplicative order of ¢ modulo ¢,
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denoted by Oy (q), is given by Oy (q) = be™@{0t=d} — ;; (say) for 1 <t < m.
For 1 <t <m,let vy = %ﬂ:). Let h be a primitive root modulo ¢! for all
t > 1. Such an integer h always exists (for details, see Theorem 10.6 of [1]).
Further, it is easy to observe that for any integer u > 0, the g-cyclotomic coset
Céfi{hu is given by Céfi{hu = {gm=thu gm=thug, ... " thtg* =1} Then the
following lemma provides all the distinct g-cyclotomic cosets modulo .

Lemma 5. All the distinct q-cyclotomic cosets modulo £™ are given by C(()em) =
{0}, Céi )thu with w running over the set {0,1,2,...,vs — 1} for each t (1 <
t <m). As a consequence, we have
m vi—1
Spm = {0} U {U U {W—thU}} :
t=1 u=0
Proof. For proof, see Sharma et al. [22, Proposition 1]. O

In the following proposition, we explicitly determine the set Gpnpm.

Proposition 2. For 1 <r <nand1l <t <m, let f,, = ged(\, ut). Let 0
denote the usual ring isomorphism given by Chinese Remainder Theorem from
Ligpn X Ligm 0nto Lapnem. Then we have the following:

(a) Let ¢ =1 (mod 4). Let A be an integer satisfying A = 3 (mod 4) and
A =1 (mod p™). Then we have

n 8.—1 m vi—1fre—1

Guprem = {0(p",0),0(3p" O}U(U UUU U {eeemtn,

r=1 k=0 t=1 u=0 w=0
9(3pn,€m—thu)79( n— r k 0) o(mpn—rgk,()%e(pn r_k Em thu w)

0(2[1)” r k Em thu w)})

(b) Let ¢ =3 (mod 4) and a be even. Then we have

n 26,—1 m ve—1 fri—1

Syren = 00" 0 0 (U U UU U foem.ema,

r=1 k=0 t=1 u=0 w=0
O(p", (™ R q),0(p" " "g",0),0(p" " g" €™ h g™} )

if b is even, and we have

vi—1 fre—1

U U {9 gm thu 9( n— rgk70),

1 u=0 w=0

n 26,—1

6wwa@0}ou Q
})

r=1 k=0

9(]7" r k gm thu 'w

if b is odd.
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(¢) Let ¢ =3 (mod 4) and a be odd. Then we have

n 8p—1 m vi—1 2fr¢—1

S = {000 0 (U UUU U {0007 mm,

r=1 k=0 t=1 u=0 w=0
o(pn,gm—thuq%o(pn r k 0) 9( n— 7‘ k [m thu w)})

if b is even, and we have

n 8p—1 m ve—1 fre—1

S = {000 0 (U U U U U {00 emn),

r=1 k=0 t=1 u=0 w=0
O(p""g",0),0(p" " g* " htq")} )

if b is odd.
Proof. Tt follows immediately from Lemmas 3-5. O
From now onwards, let us define § = Y., 6 = >, and § =

Z::l 2111 67‘th7‘,t-
Theorem 1. Let p,{ be distinct odd primes, q be an odd prime power with
ged(q, p) = ged(q, £) = 1, and m, n be positive integers.
(a) Let ¢ = 1 (mod 4). Let A be an integer satisfying A = 3 (mod 4)
and A = 1 (mod p™). Then there are precisely 22(H5+v+8) distinct

negacyclic codes ([ ,c; Ms(x)) of length 2p™¢™ over Fy, where I runs
over all subsets of

n 8.—1 m vi—1fre—1

{00,060 0ru (U U U U U {o0m e, 006", o),

r=1 k=0 t=1 u=0 w=0
e(pn r k 0) Q(Q[ n—r k 0) 9( n—r k gm thu w) Q(Q[pn r k gm thu w)})

(b) Let ¢ =3 (mod 4) and a be even. Then there are precisely 212 +20+28
distinct negacyclic codes <HS€I M (x )> of length 2p™ 0™ over F, with I
running over all subsets of

n 26,—1 m ve—1fre—1

o 0t (U U UU U e e nm),00m, e hvg),

r=1 k=0 t=1 u=0 w=0
e(pnfrgk,o)’e(pn r k ﬂm thu w)})

if b is even, while there are precisely 2'T*T20+28 distinct negacyclic
codes <HS€I Ms(z)> of length 2p™f™ over Fy with I running over all
subsets of

{00} u (U
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e(pnfrgk7 gmfthqu)} )

if b is odd.

(c) Let ¢ =3 (mod 4) and a be odd. Then there are precisely 21 T2V +9+28
distinct negacyclic codes <HS€I Ms(ac)> of length 2p™¢™ over F, with I
running over all subsets of

vi—1 2fr¢—1

n o m
penoru(UUUU U e em,00m e nvg),
=0 w=0

r=1 k=0 t=1u
0(p""g",0),0(p" " gk, " Thg")} )

=1

if b is even, while there are precisely 217198 distinet negacyclic codes
s(x)) of length 2p over F, wi running over all subsets
ser M length 2p™f™ F, with I ' Il subset

of

per oo (UUUU U {0 e m),00m 76 0),

if b is odd.

Proof. Tt follows immediately from Lemma 2 and Proposition 2. O

4. Self-dual, self-orthogonal and complementary-dual negacyclic
codes of length 2p™£™ over F,

From now onwards, we will follow the same notations as in Section 3. Fur-
ther, for integers R and S > 1, let [R]s be the remainder obtained upon dividing
R by S. Note that [R]s = Rif 0 < R < S —1. For each s € Sapnem, let C;
denote the g-cyclotomic coset of s modulo 4p™¢™.

In this section, we will determine all self-dual, self-orthogonal and comple-
mentary-dual negacyclic codes of length 2p™¢™ over [y by considering the fol-
lowing three cases separately: (i) ¢ = 1 (mod 4), (ii) ¢ = 3 (mod 4) with a even,
and (iii) ¢ = 3 (mod 4) with a odd. For this, we need the following lemma:

Lemma 6 ([19])). Let 1 <r < n and 1 <t < m be fized integers. Then we
have the following:
(a) There exist integers y, and z; satisfying ¢ = g¥% (mod p") and q =
h*vt (mod ') with ged(y,, Ar) = ged(z¢, pue) = 1.
(b) Suppose that there exists an integer j satisfying ¢ ¢ =1 (mod p")
for some integers s,s' (0 < s,s8" <6, —1). Then we have
, { [s—i—%h if a is odd;

s = e
S if a is even.
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(Note that when a is odd, each A, is odd. This implies that each 9, is
even, as ¢(p") = A6, is even for each r.)
(c) Suppose that there exists an integer k satisfying h“_“,q’C = —1 (mod ¢%)
for some integers u,u’ (0 < wu,u’ < vy —1). Then we have
o { [u+ %]w if b is odd;
U if b is even.

(Note that when b is odd, each uy is odd. This implies that each vy is
even, as ¢(£%) = vy is even for each t.)

Proof. For proof, see Sharma [19, Lemma 8§]. O
Next we make the following observation:

Remark 1. Note that 227" ¢" +1 = 22" 4 1. From this, it follows that for
every s € Gypngm, there exists t € Gypngm such that Ms(z) = M(z) (or
equivalently, C_s = C; by Lemma 1).

4.1. ¢ =1 (mod 4)

Throughout this subsection, let ¢ = 1 (mod 4), and 2 be an integer satisfying
2A =3 (mod 4) and 2 = 1 (mod p™). Then in the following theorem, we list
all the self-dual, self-orthogonal and complementary-dual negacyclic codes of
length 2p™¢™ over F,.

Theorem 2. Let ¢ =1 (mod 4), and A be an integer satisfying A = 3 (mod 4)
and A =1 (mod p™). There are precisely

o 21H0HVES distinct self-dual negacyclic codes

<HMj<x> I m<x>>

jed kEG 1y gm \J

of length 2p™{™ over Iy,
o 31HOHVHS distinct self-orthogonal negacyclic codes

<H M) ] M?(z>>
JjeJ jred’

of length 2p™{™ over IFy, and
o 21TV ES distinct complementary-dual negacyclic codes

<H Mj<z>@<z>>
jeJ

of length 2p™{™ over Iy,
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—_~—

with J, J' running over all subsets of Gypnem satisfying JUJ = Gypnem, where
n m 6p—1uvi—1 fre—1

Syren = (00" M (UU U U U (00" 7). 00""¢",0),

r=1t=1 k=0 u=0 w=0
e(pn r k Em thu w)})
To prove this theorem, we need to prove the following lemma;:

Lemma 7. For 1<r<nandl <t<m,let0<k<§ —1,0<u<y—1
and 0 < w < f,; — 1 be fized integers. Further for each r and t, let y, and z
be as chosen in Lemma 6(a) with y, ' and Zt_l as the multiplicative inverses of
yr and zy modulo A\, and py, respectively. Then we have

(@) C_gpm,0) = Cozpr0),
C@(3pn,em,fthu"t) Zfb 18 Odd;

(b) Copir ity = Co3pn,em—thuy  if b is even,

Clyiappn—r ok if a is odd;
ey = (Apn=rg*r,0) ’
(c) C_g(pn-rg*,0) { Co(aupn—rgh,0)  if a is even,
(d)

C_‘g(pnfrgk,em,fthqu)

Coapn—r gk gm—thugirs) if both a,b are even;
C(,(lenﬁgumfthﬁtqwr,t) if a is even and b is odd,
Ce(mpn,rgk; om—thugTre) if a is odd and b is even;
Ce(mpn,rgk; om—thie gTre) if both a,b are odd,

. ~ v : _ Art
with 1y = [u+ %] e = [k+ ] » Wt = {w—i— QMLM’
{w+>‘_zf (“"H)} if0<u< % ;
Wy = ( 1) e
s 2] g uznos
th
petys L1 ()\ +1) < O )
_ [w+ t :|ft Josk=5-1L
ot w e QD] <k <g, -1,
L frot
|:w+yT (Ar+1)— ztluﬂrl)} fO<k<Z_-10<u< .
fT,t - -2 n 7
i w4 YOz (Wl)}ft fO<k<%-1,%<u<py-1
Wyt = r -1 1)1 "
T _w+yr O 1)2zt (#t+1):|ft if%SkS(Sr*l 0<u< ;
iy 1 1 ’
_w+yr (/\T—l);Zt (Mt—l):|f t Zf% Skﬁ&«*l,% <u< 1

Proof. (a) By Remark 1, there exists an element j € Gypngm such that
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By Proposition 2(a), we write j = 6(j1,j2), where (j1,j2) is either of the
type (9p™,0) or (9p™, £m~th*) or (op™ "g*,0) or (op™Tg*, £ th¥q™) with
9e{l,3},0e{1,2},0<u<y—-1,0<k<é-1,0<w< f,;—1,1<r<n
and 1 <t < m. That is, we have C_g(,n o) = Cy(j, j,), Which holds if and only
if there exists an integer v > 0 satisfying 6(j1,j2) = —0(p™, 0)¢” (mod 4p™e™).
This is equivalent to j; = —p™¢¥ (mod 4p™) and jo = 0 (mod £™), which gives
j1=3p™, v =0 and jo = 0. This proves (a).
(b) By Remark 1, there exists an element s € Gypngm such that

C_e(pn7ém7thu) - CS‘

By Proposition 2(a), we write s = 0(s1, s2), where (s1, $2) is either of the type
(9p™,0) or (Ip™, £t B or (op™"g*,0) or (op™ gk, emt B ¢v) with ¥ €
{1,3},0e{1,A},0<v <1y —1,0<k <6 —-1,0<w< frp—1,1<r<n
and 1 <t < m. Now C_gpn gm—tpuy = Cys,.s,) holds if and only if there
exists an integer Y > 0 satisfying —0(p", (™ ~th*)q¥ = 0(s1,s2) (mod 4p™f™).
This gives s; = —p"¢" (mod 4p") and sy = —¢™~th*q¢Y (mod (™). From this,
we obtain s; = 3p". Also note that ged (s, ™) = ged(—¢mthtgY  4m) = (m~t
implies that jo must be of the form Em_th“/, where 0 < u' < 14 —1. This further
implies that h*~%'¢¥ = —1 (mod ¢!). By Lemma 6(c), we get u/ = [u+ %]
if b is odd and v’ = w if b is even, which proves (b).
(c) By Remark 1, there exists an element € € Gypngm such that

v

C_b(pr—rgr,0) = Ce-

By Proposition 2(a), we write € = (e, €2), where (€1, €2) is either of the type
(9p™,0) or (Ip™, £mth¥) or (gp”f’”/gk,,()) or (gp"’rlgk/,ﬁm’th“q“’) with ¥ €
{1,3},Q€ {1,9[},0 Su<y—-1L0< kK <6—1,0< w < ferg — 1,
1 <7 <nand1 <t < m. This holds if and only if there exists an integer
Z > 0 satisfying —0(p"""g*,0)q? = 0(e1,€2) (mod 4p™f™), which gives €; =
—p""gFq? (mod 4p™) and €3 = 0 (mod ¢™). From this, it follows that ez = 0
and €; must be of the form gp™~"¢* , where o € {1,2} and 0 < k' < ¢, — 1.
This gives ¢* %' ¢Z = —p (mod 4p”), which gives ¢* ¥ ¢Z = —p (mod 4) and
g ¥ qZ = —p (mod p"). As g = ¢ =1 (mod 4) and 2 = 3 (mod 4), we must
have ¢ = 2. Since A = 1 (mod p"), we get g" % ¢Z = —1 (mod p"), which by
Lemma 6(b), implies that &' = [k + %], if a is odd and k' = k if a is even.
(d) By Remark 1, there exists an element A € Gypngm such that
Cie(pnngkﬁlm,fthqu) =Ch.
By Proposition 2(a), we write A = 0(Aq, Az), where (A1, Ag) is either of the
type (9p™,0) or (ﬂp",ﬁm’t,h“/) or (gp"’rlgk/,()) or (gp"’rlgk/,ﬁm’t,h“/qw,)
with ¥ € {1,3}, A {1,9[},0 <u < vy —1,0< k< 0 —1,0< w < fwytlfl,
1 <7 <nand 1<t <m. From this, we see that there exists an integer ¢ > 0
satisfying
(1) —0(p" " g" " R ") g = 0(Aq, Az) (mod 4p™l™).
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Let us write ¢¥ = 0(¢¥*, ¢¥?), where ¢ = ¢1 (mod A,), p = @2 (mod p,,) with
0 <1 <A and 0 < 2 < py,. Using this, we see that the congruence (1) is
equivalent to the following system of congruences:

(2) A; = —p""gg# (mod 4p") and Ay = LM R g2 (mod (™).

As ged(Aq, 4p™) = p™~" and ged(Ag, £™) = ™~ we must have Ay = gp™ " g*
and Ay = mthY g% where o € {1,A}L 0<K <6, —1,0< v <1y — 1 and
0 <w < frp— 1. In view of this, (2) gives ¢* ¥ ¢#* = —p (mod 4p”) and
pu—v quw'te2 = 1 (mod ¢*). From this, we have g ¥ ¢#1 = —p (mod 4),
which holds only if p = A, as ¢ = g = 1 (mod 4) and A = 3 (mod 4).
From this and using the fact that 20 = 1 (mod p"), we obtain gk_k/q@”1 =

—1 (mod p") and h*~¥ g¥=w'+%2 = —1 (mod ¢*). Now working in a similar
way as in Lemma 7 of Sharma [20] and using Lemma 6(a), part (d) follows
immediately. (I

Proof of Theorem 2. It follows from Lemmas 1 and 7, and Proposition 1. [
4.2. ¢ = 3 (mod 4) and a is even

Throughout this subsection, let ¢ = 3 (mod 4) and a be even.

As ged(a,p) = ged(b,f) = 1, we write a = al™ and b = bph, where
ged(a, £) = ged(b,p) = 1 and a1 > 0,by > 0 are integers. Let f = ged(a,b).
Note that ged(f, p) = ged(f,£) = 1. Then we make the following observation:
Lemma 8. If both a,b are even, then the following hold:

(1) A+ pe =0 (mod 2f,.,) if and only if a+b =0 (mod 2f).
(ii) Wys = [er’\T—;“—’} =w if and only if a +b =0 (mod 2f).

r,t

Proof. Proof is trivial. (I

In the following theorem, we prove the non-existence of self-dual negacyclic
codes of length 2p"¢™ over F,, and list all the self-orthogonal and complement-
ary-dual negacyclic codes of length 2p"¢™ over F,.

Theorem 3. Let ¢ =3 (mod 4) and a be even. Then there does not exist any
self-dual negacyclic code of length 2p™€™ over F,.

A. When b is odd and a = 2 (mod 4), there are precisely
e 3213 distinct self-orthogonal negacyclic codes

< 11 Mi<z>HMj<x>HJVf?<z>>
1€6% nym jeJ jeJ’

of length 2p™™ over Fq, and
o 21204548 distinct complementary-dual negacyclic codes

<H M;(w) [T M; <x>ﬁj<x>>

i€l jeJ
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of length 2p™l™ over Iy,
with I running over all subsets of Spnpm and J, J' running over all

subsets of Gapnem satisfying J U J = Gypnem, where

n 26,—1
Shpep = (00" 0}u<U U 06" ", >}>

r=1 k=0
and

v
0r—1 %71 frie—

swe-(UUU U |

B. When b is odd and a =0 (mod 4), there are precisely
o 39T3+S distinct self-orthogonal negacyclic codes

<M9(,,0) ) [T M5(2) T] My (a >

jeJ jreJ’

1
{e(pn7£m7thu),9( n—r k Em thu w)})
0

of length 2p™{™ over Fq, and
o 21H0+5+T distinet complementary-dual negacyclic codes

<M9<p o@) T M;(=) >

JjeJ
of length 2p™0™ over Fg,
with i € {0,1} and J,J" running over all subsets of 6/4;;n satisfying
JUJ = (‘5/4;,;n, where

o n m Sp—12—1fri—1
64;}"@7" - (U U U U U {9(pn7""gk70),9(pn7£m*thu>,
r=1t=1 k=0 u=0 w=0

e(pn—rgk’gm—thqu)’e(pn r _k gm thu+2 q )})

C. Let b be even and a = 2 (mod 4).
(i) When %2 =0 (mod f), we have b, = [w + %} v for
0<w< frp—1, wherel <r<nandl<t<m. 7

When b = 2 (mod 4), we have the following:
e There is only one self-orthogonal negacyclic code of length

2p™™ over Fgq, namely the zero code.
e There are precisely 2'72012v+28  distinet complementary-
dual negacyclic codes <Hie[ Ml(:c)> of length 2p™f™ over

Fq with I running over all subsets of

n m 28, —1vi—1 frt—1
(0" 0}u(UU U U U PTGk, 0), 600", "R,
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0", " q), 05" g" 0" ")} ).

When b =0 (mod 4), there are precisely
e 3¥ distinct self-orthogonal negacyclic codes

(L w5

G4pn[7n jeJ jredJ’

of length 2p™{™ over Fy, and
o 21V 2042 gistinet complementary-dual negacyclic codes

(00 Tt

of length 2p™{™ over Iy,
with I running over all subsets of GZPWM and J,J' running over

all subsets of 6/4-;;1 satisfying J U J' = Sypnym, where

Sprem = {0(p",0)}

n om 28,—1v—1fre—1
U(UU U U U 6067 7¢%0),00m 7" - thvgv)})
r=1t=1 k=0 u=0 w=0
and
m vi—1
Saprem = (U U {9(p",em-thU)}).
t=1 u=0

(i) When 22 20 (mod f), we have ., = [w—i—Arﬂ”}f # w for
0<w< fre—1, wherel <r <mandl <t <m. Further for

Frot
1<r<nandl <t<m,let wﬁ?,wfﬁ, e ,wit ) be the distinct

rt .
integers satisfying {0,1,2,..., fry — 1} = U,2, {wgt), (J)}

When b = 2 (mod 4), there are precisely
o 3% distinct self-orthogonal negacyclic codes

<Z€H Mi(z) [] M) T] Myi(a >

64pn[m jeJ jredJ’

of length 2p™{™ over IFy, and
o 212V H20+T gistinet complementary-dual negacyclic codes

i

el jeJ

of length 2p™¢™ over Iy,



SIMPLE-ROOT NEGACYCLIC CODES OF LENGTH 2p™¢™

981

with I running over all subsets of &} nem and J. J' running over
all subsets of 6/4;;71 satisfying JU J' = (‘5/4;;m, where

621)"@’" = {e(pnao)}

n m 26,—1v—1

s(UU U Utewr

Em thu 9(pn’€mfthuq) 9(pnfr k
r=1t=1 k=0 u=0

06" g",0)})
and

r,r,

U [_J U n r k gm tpu wﬁjg)})

64pnem = ( O

When b =0 (mod 4), there are precisely
o 3¥TS distinct self-orthogonal negacyclic codes

<Z€H M) [] M) T] Mye(a >

apnem jedJ Jj'ed’

of length 2p™l™ over Iy, and

HCS

o 21FVH204S distinct complementary-dual negacyclic codes

el ]EJ
of length 2p™¢™ over Iy,

—_~—

with I running over all subsets of &} .,m and J,J running over
all subsets of Sapnem satisfying J U J = Sypnem, where
n 26,—1

Sipen = 100", 001U (U U 106" 79",0)})

r=1 k=0
and

n m 20,—1vi—1 2
Gaprem = (U U U U U emth"), 00" g* e nt wi]ﬁ)})
r=1t=1

k=0 u=0 j=1
D. Let b be even and a =0 (mod 4)
(i) When b =2 (mod 4), there are precisely
o

30+8 distinct self-orthogonal negacyclic codes

<Z€H Mi(2) [] M) T] Myo(a >

apnem jedJ j'ed’

of length 2p™¢™ over Iy, and
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o 21H02v4S distinet complementary-dual negacyclic codes

<H Mi(a) [T M; ()30, <x>>
icl jed

of length 2p™{™ over Fy,
with I running over all subsets of Spngm and J, J' running over

—_~—

all subsets of Sapnem satisfying J U J' =
m vi—1

Sipren = (00,0 U (U U 100", 070", 00", 07~ 'h"q)} )

t=1 u=0

Suapnem, where

and

—1ve— 1frt 1

Gaprim = (U U U U U 1067 76",0),06" g% 0" 'htg )} ).

u=0 w=0
ii en b= 0 (mod 4), there are precisely
When b =0 d 4), th sel
30+v+S distinct self-orthogonal negacyclic codes

<M9n0) ) [ M) [T My (a >

jeJ jred’
of length 2p™¢™ over Fy, and
o 21TV ES distinet complementary-dual negacyclic codes

<M9 oy (@) T M ( >
jeJ
of length 2p™{™ over Iy,

with i € {0,1} and J, J' running over all subsets of Gypnem satis-
fying JUJ' = 64pn¢m, where

—1lvg— 1frt 1

UUU U wwrst oo,

1 k=0 u=0 w=0

64pnem = (

HC:

>

(""" )} ).
To prove this theorem, we need to prove the following lemma:

Lemma 9. For1<r<nand1<t<m,let0<u<p;—1,0<k<26.—1
and 0 < w < frp — 1 be fized integers. For each v and t, let y, and z; be as
chosen in Lemma 6(a) with y=' and z;*

as the multiplicative inverses of y,
and z; modulo A\, and pq, respectively

. Then we have
(a) C_opn,0) = Copm,0);
Copn-rgir,0) 4 @a=0 (mod 4);

(b) Cfe(pnirgk’o) - Ce(pnngk,O) Zfa’ =2 (mOd 4)’
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(c) for s €{0,1},

Ce(pn,ﬁanthuqé) Zf b =0 (mOd 4),
C_g(pTL’émfthuqs) = Ce(pnyernfthuqs) Zfb =2 (mod 4);
Ce(pnyeWLfthu}qs) Zfb 18 Odd,

(d)

C_b(pn—rgh em—thugv)
Ce(pnfrgk,emfthgtqmr,t) if b is odd and a = 2 (mod 4);
Ce(pnfrg;;ryemfthutqwr,t) if b is odd and a =0 (mod 4);
Copn—rgh gm—tpugirey i b is even and a =2 (mod 4);
4)

CG(p"*Tng,ém*th”qm) if b is even and a =0 (mod 4),

with 3 = [s+1], for s € {0,1}, k, = [k + 0rlys , Ur = [u+ %]Vt, where
U‘}nt: |:w+—)\r+#t:|
Fre
[w+yr /\+2)+M} if0<k<é,—1;
= Frot
Wyt = _
[0+ B Qo2 ““f]f if 6, <k <26, -1,
[ >\ —Z (Mt+1)} fo<u<¥—1;
Wy = frot -2
7 [ Az (#t 1)} if % <u<vy—1,
th
[,w_’_yr (Ar +2) 2y (/"t+1):| fO<k<d.—1 andogug%— :
frt
[ _’_yT aes —2) Zy (HH—l)} if 6, <k <25,—1and 0<u< %_ :
7 — th
Wyt = '
t [w_’_yT /\+2) 2 (e 1)} ifO<k<s,—1 and%gugut—l;
fT,t
[ +yr Ar=2) Zt e 1)} if 0p <k <20,—1and 5 <u<wv—1.
fT,t

Proof. (a) By Remark 1, there exists an element j € Gypngm such that
C,g(pnﬁo) = Cj.

By Proposition 2(b), we write j = 6(j1, j2), where (j1, j2) is either of the form
(p™,0) or (p™, £m~thuq®) or (p"~"g*,0) or (p"Tgk Amthiq?) with 0 < u <
vy —1,0<k<2,-1,0<w<fr;—1,1<r<n 1<t<mands=0
if b is odd and s € {0,1} if b is even. That is, we have C_g(pn 0y = Cy(jy o)
which holds if and only if there exists an integer v > 0 such that 6(ji,j2) =
—0(p™,0)¢" (mod 4p™¢™). This is equivalent to j3 = —p"q¢¥ (mod 4p™) and
j2 =0 (mod ¢™), which gives j; = p™, v = 1 and j, = 0. This proves (a).
(b) By Remark 1, there exists an element € € Gypngm such that

C*G(p"'frgk,o) = Ce.
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By Proposition 2(b), we write ¢ = 0(e1,€2), where (e1,€2) is either of the
form (p™,0) or (p™, €™~ th*q®) or (p"~" g*,0) or (p"~" g* 4 thug™) with
0<u<p—1,0<k <20 —1,0<w<fug—1,1<1 <n 1<
t <m,and s = 0if b is odd and s € {0,1} if b is even. That is, we have
C_gpr—rgr0) = Ch(ey,en), Which holds if and only if there exists an integer
Y > 0 such that (e;, e2) = —0(p"~"g*,0)¢¥ (mod 4p™¢™). This is equivalent
to €1 = —p" "gF¢¥ (mod 4p™) and ez = 0 (mod ™), from which we see that
€; must be of the form p”_Tgk/ for some k' (0 < k' < 26, — 1) and e2 = 0.
This gives ¢ ¥ ¢¥ = —1 (mod 4p"), which implies ¢*~¥¢* = —1 (mod 4)
and ¢" ¥ ¢¥ = —1 (mod p"). As g = 1 (mod 4) and ¢ = 3 (mod 4), we must
have Y = 1 (mod 2). Also by Lemma 6(a), we have ¢ = ¢¥° (mod p"),
which gives gF ¥ t¥0rY = _1 (mod p”). This implies that k — k' + y,6,Y =
% (mod A..d,), as g is a primitive root modulo p” and ¢(p") = A\.0,. As a
is even, we see that A, is even, which implies that ¢, divides k& — k’. Since
0 < kK < 26, — 1, we must have either |k — k| = 0 or |k — k| = §,. As
Y =1 (mod 2), one can observe that k£ = &’ holds only if a = 2 (mod 4) and
|k — k| =, holds only if a = 0 (mod 4). This proves (b).

(¢) When b is odd, we have s = 0. Here working in a similar way as in Lemma
7(b), one can show that C_g(yn gm—tpuy = Copn gm—tpur ), Where iy = [u + %} v
for each wu.

Next let b be even. Here s € {0,1}. By Remark 1, we see that there exists an
element ¢ € Gypnpm such that C_gn gm—tpugsy = C¢. By Proposition 2(b), we
write ¢ = 0(s1,s2), where (1, <2) is either of the form (p™, 0) or (p™, £ h¥'¢*")
or (p"~"gk 0) or (p" gk 0 RY ¢P) with 0 </ < vy — 1,0 <k < 20, — 1,
0<w< frp—1,1<r<n 1<t <mands € {0,1}. That is, we
have C_g(yn gm-tpugs) = Ch(qy ), Which holds if and only if there exists an
integer Z > 0 such that 6(c;,5) = —0(p™, ™" th%q*)q? (mod 4p™¢™). This
gives ¢; = —p"¢? (mod 4p") and ¢ = —™"th%¢*tZ (mod ™), which implies
that ¢g = p™, Z = 1 (mod 2) and ¢ = Em_thulqsl, where 0 < v < vy, — 1
and s € {0,1}. This further gives h*~* ¢*~5+Z = —1 (mod ¢!). By Lemma
6(c), we must have u’ = u, which implies that s — s’ + Z = £ (mod p), or
equivalently, Z = 5" — s + & (mod ;). As ji; is even and Z = 1 (mod 2), we
must have s—s’'+ £ = 1 (mod 2). This gives s’ = s+2+1 (mod 2), from which
it follows that s" = s if b =2 (mod 4) and s = [s + 1], = § if b =0 (mod 4).

(d) Working in a similar way as above and as in Lemma 7(d), part (d)
follows. (]

Proof of Theorem 2. It follows immediately from Lemmas 1 and 9, and Propo-
sition 1. O

4.3. ¢ = 3 (mod 4) and a is odd

Throughout this subsection, let ¢ = 3 (mod 4) and a be odd. In the fol-
lowing theorem, we observe that there does not exist any self-dual negacyclic
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code of length 2p"{™ over F,. We also determine all the self-orthogonal and
complementary-dual negacyclic codes of length 2p™¢™ over Fy.

Theorem 4. Let ¢ = 3 (mod 4) and a be odd. Then there does not exist any
self-dual negacyclic code of length 2p™{™ over IF,.
A. When b is odd, there are precisely

S+v+F
e 3

distinct self-orthogonal negacyclic codes

<M9(,,0) ) [T M5(2) T] My (= >

jeJ jreJ’

of length 2p™{™ over Fq,, and
. 21+ 5+1;+S

distinct complementary-dual negacyclic codes

o —

jeJ
of length 2p™0™ over g,
with i € {0,1} and J,J" running over all subsets of 6/4—;7:;‘"1' satisfying
JUJ = Gi_;g/m, where

Saprim = (U U | {0(p" " g*,0),0(p", " "h"),

0
e(pnfrgk,gmfthqu%@(pn r k+2 gm thu w)})

B. When b= 2 (mod 4), there are precisely
o 3545 distinct self-orthogonal negacyclic codes

( T s T aso TT 50
1€6] nom jeJ j'eJ’
of length 2p™{™ over Fq,, and

o 2LHSF2HT Gistinet complementary-dual negacyclic codes

<H M;() [T M () M; (»’C)>
icl jed

of length 2p™l™ over g,
with I running over all subsets of Spnpm and J, J' running over all

—_~—

subsets of Gapnem satisfying J U J = Gypnem, where

m vi—1

Sipeen = 100", 0} U (U U 100" 070, 06", "' h"0)} )

t=1 u=0
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and

(0

C. When b=0 (mod 4), there are precisely
o 33+V+S distinct self-orthogonal negacyclic codes

<M9(,,0) ) [T M5(2) T] My (a >

jeJ jreJ’

12fre—1

U{e nrk ) (pnrkgmthuw)})
w=0

F 1y

k=0 u=0

of length 2p™™ over Fq, and
o 21H5+V+S distinet complementary-dual negacyclic codes

<M9(,,n 0@ H M;( >

jeJ
of length 2p™™ over Iy,
with i € {0,1} and J,J" running over all subsets of 6/4;;e/m satisfying
JUJ = 6/4;;g/m, where

o n m% ly,—12fre—1
64p"em:(UU ) U U 06ran 0,00 00,
r=1t=1 u=0 w=0

To prove this theorem, we need to prove the following lemma:

Lemma 10. For1 <r<nandl <t<m,let0<u<r;—1land0 <k <J,—1
be fized integers. For each r and t, let y,. and z: be as chosen in Lemma 6(a)
with y! and z;l as the multiplicative inverses of y, and z; modulo A, and
e, respectively. For 1 <r <mn and 1 <t < m, let w be an integer satisfying
0<w<df+—1, where d =1 ifb is odd and 0 = 2 if b is even. Then we have

(a) C_opr,0) = Cogpn o),
(b) for s € {0,1},

Ce(pn,lanthuqé) Zf b = 0 (mOd 4),
C_g(anWLfthuqs) = Ce(pn,lanthuqs) Zfb =2 (mod 4),
Ce(pnyeWLfthu}qs) Zfb 18 Odd,

() C’—6’(17"”9’“,0) = C@(p"*Tgk;k,OV
C’e(pnﬂ KE gt gt if b is odd,

(d) C_gpr—rgrem—tpuqe)y = if b is even,

6(pn— rgk T m—thu w’r‘,t)



SIMPLE-ROOT NEGACYCLIC CODES OF LENGTH 2p™¢™ 987

with § = [s + 1], for each s € {0,1}, iy = [u+ %] ki =[k+ %] where

vt 6r

)

_ 1
|:’LU+ ()\T-l,-l)yrlg(p,,-i-l)zt :| Zfo < k < %71 and 0 <u< %7 .

™t

{w + (Ar_l)yilg(“t+1>zfl} ife <k<d—-1land0<u<%2-1;

- frot
Wyt = 1 qy—1 ’
v {w+ Qe Dy, =)z, }f fO<k<%—-1land% <u<i—1;
r,t
1 —1
w4 Qe leslo |yl < p<o,-1 and % <u< -1
fT,t

for 0 <w < fry—1 and wry (0 < Wy < 2f,p — 1) is an integer satisfying

-1
Wpp = w—i—% (mod fr¢) and Wy = w + L2 (mod 2) for 0 <
w < 2f,— 1. (Note that the integer w,; exists uniquely by Chinese Remainder
Theorem.)

Proof. Working in a similar way as in Lemmas 7 and 9, the result follows. O

Proof of Theorem 4. It follows immediately from Lemmas 1 and 10, and Propo-
sition 1. 0

4.4. Examples

1. To list all self-dual, self-orthogonal and complementary-dual negacyclic
codes of length 374 over F5, let p =11, { = 17, ¢ = 5 and m = n = 1. Here
we have a = 5, b = 16, ¢ = 13 and h = 5 so that f = ged(a,b) = 1. As
g =1 (mod 4), by Theorem 2, we see that there are precisely

e (4 distinct self-dual negacyclic codes

<HMj<z> I m<x>>

jed keSras\J

of length 374 over Fs,
e 729 distinct self-orthogonal negacyclic codes

<HMj<w> 11 fw}(ac>>

jeJ ey
of length 374 over Fs,
e (4 distinct complementary-dual negacyclic codes

<H M;(x) M; (I)>
jeJ
of length 374 over Fs,
\Eith J,J' running over all subsets of é748 satisfying J U J' = (~‘5748, where
Grys = {1,187,221,409,629, 715}.
2. Now we will list all self-orthogonal and complementary-dual negacyclic
codes of length 286 over 3. For this, we take p =11,/ =13, g =3 and n =
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m = 1. Here we have a = 5, b = 3, g = 13, and h = 2 with f = ged(a,b) = 1. As
g = 3 (mod 4) and both a, b are odd, by Theorem 4, we see that there does not
exist any self-dual negacyclic code of length 286 over F3. Further by Theorem
4(A) again, we see that there are precisely

e 2187 distinct self-orthogonal negacyclic codes

Myys(x HM H M,

JjeJ j'eJ’

of length 286 over F3, and
e 256 distinct complementary-dual negacyclic codes

Myyz(z H M;( (z)

JjeJ
of length 286 over Fj3,

with ¢ € {0, 1} and J,.J' running over all subsets of Gs7o satisfying J U J/ =
(‘5572, where Gs7o = {1,145,221,275, 353, 365,495}.
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