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Randomized controlled trials are accepted as the gold standard
for the evaluation of new health interventions. In the evaluation
of new drugs and vaccines, treatments are in general allocated
randomly to individual subjects, and methods for the design
and analysis of such trials are well established.

In some trials, however, interventions are randomized not to
individuals but to intact groups, clusters or communities, either
by choice or necessity. The clusters might be families, schools,
factories, villages, cities, or arbitrary geographical areas. For gen-
erality we shall refer to such studies as cluster-randomized trials.

The reasons for adopting cluster randomization have been
reviewed previously,1 and include: (1) evaluation of interven-
tions which by their nature have to be implemented at a com-
munity level, e.g. water and sanitation schemes, and some
educational interventions; (2) logistical convenience, or to avoid
the resentment or contamination that might occur if unblinded
interventions were provided for some individuals but not others
in each community; (3) where it is desired to capture the mass
effect on disease of applying an intervention to a large propor-
tion of community members, for example due to an overall
reduction in the transmission of an infectious agent; (4) where
efficacy has been established at individual level, but it is desired

to measure effectiveness when an intervention is applied on a
community-wide basis.

Several such trials have been conducted over the past 10
years. Some examples include a series of trials of the impact of
insecticide-treated bednets on child mortality in Africa,2–4 in
which treated nets were randomized to villages or geographical
clusters; a trial of a smoking cessation intervention, in which 22
communities in the US and Canada were randomly assigned to
intervention or control groups;5,6 and a trial of the impact of
improved treatment services for sexually-transmitted diseases
(STD) on the incidence of HIV infection, in which 12 rural com-
munities in Tanzania were randomly assigned to intervention or
control groups.7,8 This trial design may be of particular value 
in developing countries, in which infectious diseases are the
predominant cause of ill-health (see (3) above).

Statistical methods for the design and analysis of cluster-
randomized trials are less well established than those for
individually-randomized studies, and practitioners often have
difficulty in obtaining the simple guidance they need. In this
paper we focus on a key element of trial design, namely the
determination of sample size requirements. Because individuals
within clusters tend to be more similar than individuals in
different clusters, the information provided by a given sample
size in a cluster-randomized trial is generally less than in 
an individually-randomized trial, and this has to be taken into
account in the determination of sample size.
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A number of previous reports have discussed sample size
calculations for such trials.5,9–14 Most have focused on one par-
ticular type of outcome variable (continuous data, binary data
or person-years rates), relate either to matched or unmatched
study designs, and are sometimes too mathematical to be readily
accessible to the field epidemiologist. The aim of this paper is to
provide a simple review of methods applicable to each of the
above situations, and which can be used as a bench manual by
the practitioner.

We begin by providing simple sample size formulae for each
type of response variable (continuous, binary, person-years rates),
firstly for unmatched studies and secondly for pair-matched
studies. We assume the simplest case of two treatment groups of
equal size. The formulae require an estimate of between-cluster
variation, and we discuss how to obtain a suitable estimate. The
methods are illustrated by two case studies, one unmatched and
the other pair-matched. Statistical derivations of the methods
are provided in an Appendix.

Sample Size Formulae for Unmatched
Studies
We begin with unmatched studies, and assume that there are 2c
clusters, of which c are to be randomly allocated to the inter-
vention group. The problem is to choose how many clusters are
required.

Rates

We first consider incidence rates with a person-years denom-
inator, e.g. mortality rate or incidence rate of severe disease. The
objective of the trial is to compare the rates in the intervention
and control groups.

For an individually-randomized trial, a standard formula1

requires y person-years in each group, where

y = (zα/2 + zβ)2(λ0 + λ1)/(λ0 – λ1)2 (1)

In this formula, zα/2 and zβ are standard normal distribution
values corresponding to upper tail probabilities of α/2 and 
β respectively. This choice of sample size provides a power of
100(1 – β)% of obtaining a significant difference (P , α on a
two-sided test), assuming that the true (population) rates in 
the presence and absence of the intervention are λ1 and λ0
respectively.

For a cluster-randomized trial, suppose now there are y
person-years of follow-up in each cluster. Then c, the number
of clusters required, is given by:

c = 1 + (zα/2 + zβ)2[(λ0 + λ1)/y + k2(λ0
2 + λ1

2)]/(λ0 – λ1)2 (2)

In this formula, k is the coefficient of variation (SD/Mean) of
the true rates between clusters within each group. Estimation of
k is discussed in a later section.

Note that if there is no variation in disease rate between
clusters (k = 0), then ignoring the addition of 1, cy from equa-
tion (2) reduces to the total y required by equation (1). Note
also that the increase in sample size, required to allow for the
clustered design, depends on the extent of between-cluster
variation as measured by k. The addition of 1 in equation (2) is
to account for use of the t distribution rather than the normal
distribution for analysis, when there is a relatively small num-
ber of clusters.15

Proportions

In other studies, the objective is to compare the proportion 
of individuals with the outcome of interest (e.g. prevalence of
smoking) in the intervention and control groups.

For an individually-randomized trial, a standard formula
requires a total of n individuals in each group, where

n = (zα/2 + zβ)2[π0(1 – π0) + π1(1 – π1)]/(π0 – π1)2 (3)

where π1 and π0 are the true (population) proportions in the
presence and absence of the intervention, respectively.

For a cluster-randomized trial, suppose now that n individuals
are sampled in each cluster. Then c, the number of clusters
required, is given by:

c = 1 + (zα/2 + zβ)2[π0(1 – π0)/n + π1(1 – π1)/n 

+ k2(π0
2 + π1

2)]/(π0 – π1)2 (4)

where k is the coefficient of variation of true proportions
between clusters within each group. 

Means

With a continuous response variable (e.g. blood pressure), the
objective is to compare the mean of that variable in the inter-
vention and control groups.

For an individually-randomized trial, a standard formula
requires a total of n individuals in each group, where

n = (zα/2 + zβ)2(σ0
2 + σ1

2)/(µ0 – µ1)2 (5)

where µ1 and µ0 are the true (population) means, and σ1 and
σ0 are the standard deviations of the outcome variable, in the
presence and absence of the intervention, respectively.

For a cluster-randomized trial, suppose now that n individuals
are sampled in each cluster. Then c, the number of clusters
required, is given by:

c = 1 + (zα/2 + zβ)2[(σ0
2 + σ1

2)/n 

+ k2(µ0
2 + µ1

2)]/(µ0 – µ1)2 (6)

where k is the coefficient of variation of true means between
clusters within each group, and σ0 and σ1 are within-cluster
standard deviations.

In each case, above, the design effect associated with the
randomization scheme can be estimated by dividing the total
number of individuals (or person-years) required under cluster
randomization with the corresponding number for an
individually-randomized trial.

Sample Size Formulae for Pair-matched
Studies
In individually-randomized trials, the number of subjects random-
ized is generally large enough to ensure close comparability of
the treatment groups. In cluster-randomized trials, however,
the number of clusters randomized is often small (sometimes 
as low as 10), and so randomization cannot be relied upon to
achieve comparability.

A common strategy in such trials is to arrange the available
clusters into matched pairs. Randomization to treatment groups
is then carried out within pairs, and a matched analysis is
conducted. Clusters are matched on the basis of factors that are
expected to be correlated with the main study outcomes, with
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the aim of minimizing the degree of between-cluster variation
within matched pairs. Matching should lead to greater com-
parability of the intervention and control groups, and precision
and power should be increased to the extent that the matching
factors are correlated with the outcome. Set against this, there
may be some loss of power because a matched analysis leads to
a loss of degrees of freedom, particularly for small numbers of
clusters. The advantages and disadvantages of matching have
been discussed previously.7,16,17

For pair-matched studies, equations (2), (4) and (6) can be
used with two modifications. Firstly, the addition of 2 rather
than 1 to the required number of clusters, to adjust for the loss
of degrees of freedom.15 Secondly, k is replaced by km, the
coefficient of variation in true rates (or means or proportions)
between clusters within the matched pairs in the absence of
intervention. Estimation of km is discussed below.

Estimation of Coefficient of Variation:
Unmatched Studies
Apart from the usual assumptions regarding the approximate
magnitude of the outcome of interest, and the size of the effect
to be detected, cluster randomization requires that we provide
an estimate of k, the coefficient of variation of the rate (or pro-
portion or mean) between clusters. The coefficient of variation
is the standard deviation divided by the mean, and as a working
approximation we assume this is similar in the two treatment
groups.

To illustrate the interpretation of k, suppose we are designing
a cluster-randomized trial of the impact of vitamin A supple-
mentation on all-cause child mortality. On the basis of prior
mortality rates in the study area, child mortality (in children
aged 1–4 years) in the control clusters is expected to average
40/1000 person-years (py), so that λ0 = 0.040. Assuming that
the true cluster rates are approximately normally distributed,
95% of rates will lie within two standard deviations of the
mean. Therefore a k of 0.25 would imply that the true rates 
in the control clusters would vary roughly between λ0(1 ± 2k)
or from 20 to 60 per 1000 py. If the intervention reduces
mortality by 50% we have λ1 = 0.020, and the assumption of
equal k in the two treatment groups implies that cluster rates 
in the intervention group would vary between 10 and 30 per
1000 py.

For comparison, k values of 0.1 or 0.5 would imply cluster
rates in the control group ranging approximately from 32 to 48
per 1000, or from 0 to 80 per 1000, respectively.

A problem faced by investigators is that data on between-
cluster variation are seldom available when a trial is designed.
In the absence of empirical data, the best that can be done is to
examine the required sample size for various plausible values of
k. It may be helpful to draw power curves which demonstrate
the dependence on k (see below). As a rough guideline, experi-
ence drawn from several field trials suggests that k is often
<0.25, and seldom exceeds 0.5 for most health outcomes.

Sometimes there are data available from the study clusters, or
else from comparable units in a different but similar population.
For example, if clusters are villages, there may be data on village
rates in a different part of the same country. These data can 
be used to obtain an estimate of k. The procedure is to compute
the empirical variance of the cluster-specific results, and to

subtract the component of variance due to sampling error. It is
important to note that k is the coefficient of variation of true
rates (or proportions or means) between clusters, while the ob-
served cluster rates incorporate an element of (within-cluster)
random variation, which has to be subtracted. Formulae for 
the estimation of k are given below. It is assumed that these
represent the situation in the absence of intervention, so that
the results can be assumed to apply to the control group.

Rates

Suppose we have data from m clusters, and the observed rate 
in the jth cluster is rj (j = 1,...,m). Then the empirical variance of
the observed rates is: s2 = Σ(rj – r̄)2/(m – 1), where r̄ = Σrj/m is
the mean rate.

It can be shown (Appendix) that the expected value of s2 is
given by:

E(s2) = λ Av(1/yj) + σ2
c = λ Av(1/yj) + k2λ2 (7)

where λ is the true mean rate, yj is the person-years of follow-
up in the jth cluster, Av() indicates the mean over all m clusters,
σ2

c is the between-cluster variance of true rates, and k is the
coefficient of variation of those rates. Note that the empirical
variance has two components, the first representing Poisson
variation of each cluster-specific rate, and the second represent-
ing the extra-Poisson dispersion resulting from variation in true
cluster rates.

Hence, an estimate of σ2
c can be obtained as:

σ̂c
2 = s2 – r Av(1/yj) (8)

where r is the overall incidence rate computed from all clusters
combined, and k can be estimated as σ̂c/r.

Proportions

The expected value of s2, the empirical variance of cluster pro-
portions, is now:

E(s2) = π(1 – π) Av(1/nj) + σ2
c

where nj is the sample size within each cluster and π is the true
mean proportion. The first component represents the binomial
variation of cluster-specific proportions. Hence:

σ̂c
2 = s2 – p(1 – p) Av(1/nj) (9)

where p is the overall proportion computed from all clusters
combined, and k is estimated as σ̂c/p.

Means

The expected value of s2, the empirical variance of cluster
means, is now:

E(s2) = σ2 Av(1/nj) + σ2
c

where σ2 is the within-cluster variance. Hence:

σ̂c
2 = s2 – σ̂2 Av(1/nj) (10)

where σ̂2 is the usual estimate of within-cluster variance, and 
k is estimated as σ̂c/x̄ where x̄ is the overall mean computed
from all clusters combined.

Alternatively, σ̂2
c can be estimated in this case using mixed

effects analysis of variance.18 This will give a more reliable
estimate if sample sizes vary substantially between clusters.
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Estimation of Coefficient of Variation: 
Pair-matched Studies
As noted previously, the main rationale for a matched design is
to achieve a substantial reduction in between-cluster variation,
since the analysis is now conducted by comparing treatment
and intervention clusters within matched pairs. If prior data 
are available on the matched pairs to be employed in the study
(in the absence of intervention), it is possible to obtain empirical
estimates of the coefficient of variation km within matched
pairs, for use in sample size computations as described above. 
If only unmatched data are available, a conservative approach5

is to use k as an upper limit for km.

Rates

Let t be the number of matched pairs, so that we have a total of
2t clusters. Extending the notation, suppose the observed rate 
in the jth cluster in the ith pair is rij (i = 1,...,t; j = 1,2). Then 
the empirical variance of observed rates in the ith pair is given
by si

2 = (ri2 – ri1)2/2.
Then modifying equation (7) appropriately, we have:

E(si
2) = λi Av(1/yij) + km

2λi
2

Then if we define sm
2 = Σsi

2/t as the average of the within-pair
variances, it follows that:

E(sm
2) = Av(λi/yij) + km

2 Av(λi
2)

where the first of the averages is taken over all 2t clusters. Then
estimating λi as ri, the overall observed rate in the ith pair, we
can estimate km from

km
2 = [sm

2 – Av(ri/yij)]/Av(ri
2)

Proportions and means

Using analogous notation, we can estimate k from:

km
2 = {sm

2 – Av[pi(1 – pi)/nij]}/Av(pi
2) (11)

for proportions, and:

km
2 = {sm

2 – Av[σ̂i
2/nij]}/Av(x̄i

2)

for means.

Illustrative Case Studies
Unmatched trial of impregnated bednets in Kenya

To illustrate methods for unmatched studies, we consider sample
size requirements for a trial of insecticide-impregnated bednets
in Kilifi District, Kenya.3 One of the primary objectives of the
trial was to measure the impact of these nets on all-cause mor-
tality among young children aged 1–59 months. The proposed
study area was divided along administrative boundaries into
zones of approximately 1000 individuals of all ages, or about
200 children aged 1–59 months. The intervention was to be
randomly allocated to zones, and a demographic surveillance
system used to measure deaths of young children in each zone
over a 2-year follow-up period, from August 1993 to July 1995.

Mortality data were already available for 51 of the study
zones, for the 2 years prior to the study, and these data were
used to estimate k using equation (8). There were a total of 
321 deaths over 21 646 person-years of observation, giving an

overall mortality rate for the 51 zones of r = 321/21 646 = 0.0148
(or 14.8 per 1000 py). The empirical SD of the observed mor-
tality rates was s = 0.00758, and the average of the reciprocal
person-years per zone was Av(1/yj) = 0.00264, so that k is
estimated as follows:

σ̂c
2 = 0.007582 – 0.0148 × 0.00264 = 1.84 × 10–5

Therefore, k = √(1.84 × 10–5)/0.0148 = 0.29.
We can now use equation (2) to determine the number of

zones required. Assume that the mortality rate in control zones
remains constant at λ0 = 0.0148, and that we require 80%
power (zβ = 0.84) of detecting a significant difference (P , 0.05;
zα/2 = 1.96) if the intervention reduces mortality by 30% to λ1
= 0.7 × 0.0148 = 0.0104. Assuming y = 424 person-years of
observation in each zone (= 21 646/51), the number of zones
required in each treatment group is given by:

c = 1 + (1.96 + 0.84)2[(0.0148 + 0.0104)/424 + 

0.292(0.01482 + 0.01042)]/(0.0148 – 0.0104)2 = 36.2

Note that ignoring clustering, and using equation (1), we require

y = (1.96 + 0.84)2(0.0148 + 0.0104)/(0.0148 – 0.0104)2

= 10 205

person-years per group, corresponding to 10 205/424 = 24.1
zones. Thus, the expected design effect for this trial would be
36.2/24.1 = 1.50.

Trial size is also influenced by logistical and cost constraints.
In the event, this trial was conducted with 28 zones per group,
or a total of 56 (five more than in the pre-intervention survey
used to estimate k). The observed mortality reduction in children
aged 1–59 months was approximately 30%,3 and this effect was
statistically significant (P = 0.02).

If the numbers of zones and person-years are fixed, equation
(2) can be rearranged to derive an estimate of zβ, and hence the
study power. In this case, setting c = 28 and y = 424, we obtain
zβ = 0.49 so that the power was 69%.

Matched trial of STD treatment services in Mwanza
Region, Tanzania

Because the sexual transmission of HIV infection is enhanced in
the presence of other STD,19 it has been suggested that improved
treatment services for STD may be an effective intervention
against the HIV epidemic. To test this hypothesis, a community-
randomized trial was conducted in Mwanza Region, Tanzania.7,8

A ‘community’ was defined as the catchment population served
by a government primary health care centre together with its
satellite dispensaries. Most communities consist of several villages,
with a total population of around 25 000.

Communities were matched into pairs on the basis of locality
and type of community (roadside, rural, islands), and the inter-
vention (improved STD treatment services) randomly allocated
to one of the communities in each pair. To measure the impact
of the intervention, a cohort of adults (aged 15–54 years) 
was sampled randomly from each of the study communities.
The cohort was surveyed at baseline and 2 years later, and 
the proportions seroconverting to HIV were compared in the
intervention and control communities. The main outcome in
the Mwanza trial was therefore a proportion, rather than a rate
as in the Kilifi trial.
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No prior data were available on HIV incidence in the study
communities, although rural HIV prevalence among adults 
was known to be around 3–4% from a previous region-wide
sample survey,20 and a study in neighbouring Kagera Region
had documented an annual incidence in adults of around 1%.21

Sample size estimates for the Mwanza trial therefore had to be
based on plausible estimates of π0, π1 and k.

The protocol required 80% power of detecting a 50% reduc-
tion of annual incidence from 1% in the comparison group 
(π0 = 0.02 over 2 years) to 0.5% in the intervention group 
(π1 = 0.01). Unlike the Kilifi trial, in which all children living in
each zone were followed up, it was proposed to follow a random
sample of equal size n in each community. Thus, depending on
the value of n selected, the required number of matched pairs
from the matched-pair version of equation (4) is given by:

c = 2 + (1.96 + 0.84)2[0.02 × 0.98/n + 0.01 × 0.99/n
+ km

2(0.022 + 0.012)]/(0.02–0.01)2

To assist in the choice of c and n, a graph can be drawn showing
the number of pairs required for any given value of n, for a
range of values of km (Figure 1). It is evident from this graph
that, if there is substantial between-community variation, little
is gained by increasing the size of cohort in each community
much above 1000. It was therefore decided to select a cohort 
of 1000 from each community.7 Then setting n = 1000, and
guessing a plausible value for km (0.25), the number of pairs
required for 80% power was c = 6.8.

Note that ignoring clustering, and applying equation (3), we
would require

n = (1.96 + 0.84)2(0.02 × 0.98 + 0.01 × 0.99)/(0.02 – 0.01)2

= 2313

individuals per treatment group, giving an expected design
effect of 6800/2313 = 2.9.

In the event, six pairs were chosen. Results from the baseline
survey22 showed that the value of km in the six study pairs
(computed from equation [11]) was 0.28, quite close to the
assumed value of 0.25, although this was based on HIV pre-
valence rather than incidence. The final results8 showed that
improved STD treatment services reduced HIV incidence by an
estimated 42%, and this effect was highly significant (P = 0.007).

Discussion
In his seminal paper on cluster-randomized trials, Cornfield23

stated that ‘randomization by cluster accompanied by an ana-
lysis appropriate to randomization by individuals is an exercise
in self-deception’. The same observation applies to study design
and in particular to choice of sample size. It is common to see
reports of community intervention trials in which one inter-
vention community is compared with one control community.
This is equivalent to a clinical trial with one patient in each treat-
ment group. The complete lack of replication means that we
have no information on the variation between communities.
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Consequently, reliable inferences cannot be made on the extent
to which any observed difference is due to the effect of the
intervention, rather than to intrinsic differences between the
communities.

More investigators are now aware of the need for replication,
but often find it difficult to obtain simple advice on the number
of clusters needed. We hope that this paper will provide such
advice in a format readily usable by epidemiologists.

Standard sample size formulae are not applicable to cluster-
randomized trials. Individuals in the same cluster are often more
similar than individuals in different clusters, and this clustering
implies a design effect in excess of unity. The degree of clustering
can be measured in terms of either the intra-cluster correlation
coefficient or the between-cluster variance. Some previous papers
have worked in terms of the intra-cluster correlation coefficient,
but we have chosen to present our formulae in terms of k, the
between-cluster coefficient of variation. While the two approaches
are equivalent, we have found that field epidemiologists
generally find the coefficient of variation easier to understand.

We have presented simple methods for both unmatched and
pair-matched trials, and for a variety of outcome measures
(rates, proportions and means). We have also shown how prior
data can be used to estimate k, which plays a critical role in
determining the design effect.

A number of complications have not been considered in 
this paper. Firstly, we have assumed that all clusters are of equal
size, or at least that equal-sized samples are studied in each
cluster, so that n or equivalently y can be assumed constant. If
this is not the case, then the term λ0/y in equation (2) should
be replaced by λ0 Av(1/y0j), where Av(1/y0j) is the mean of the
reciprocals of the cluster sizes in the control group, and similarly
λ1/y should be replaced by λ1 Av(1/y1j). Similar adjustments
can be made to equations (4) and (6) by inserting Av(1/nij) 
as appropriate. If the variation in cluster size is moderate, this is
very similar to using the average cluster size for the calculations;
in fact we are using the harmonic means of the cluster sizes.

Secondly, we have assumed that k, the between-cluster
coefficient of variation, is equal in the two treatment groups.
For rates and proportions, this is valid if the intervention has a
constant proportional effect in all clusters, so that the ‘protect-
ive efficacy’ is constant; since then the true rate in each cluster
is divided by a constant, so that the mean and SD of the cluster
rates are both divided by that same constant. If intervention
effects are expected to vary substantially between clusters, our
formulae may underestimate sample size requirements some-
what. In this case, equations (2) and (4) may be adjusted by
replacing k2(λ0

2 + λ1
2) or k2(π0

2 + π1
2) by (σc0

2 + σc1
2), the

sum of the between-cluster variances in the control and inter-
vention groups, respectively. The cautious investigator may wish
to consider a range of assumptions concerning σc1

2, including
constant proportional effects, and constant absolute effects
(implying σc1

2 = σc0
2).

Our formulae are based on the assumption that the observed
cluster rates (or means or proportions) are approximately
normally distributed. If k is small, the distribution of these rates
will be dominated by Poisson (within-cluster) variation, and the
normal approximation should be adequate so long as the total
number of events in each group is reasonably large. If k is large,
the adequacy of the approximation depends on the distribution
of (true) cluster rates, and will improve as the number of clusters

increases. Applying a logarithmic or other transformation to the
cluster rates in the analysis is sometimes a useful strategy when
the observed rates are markedly non-normal.

A further possibility we have not discussed is a stratum-
matched design, with more than two clusters per stratum. Pro-
viding the stratification captures a substantial proportion of 
the variability between clusters, this design may be preferable to
the pair-matched design,24 since fewer degrees of freedom are
lost in the analysis. In this case, the term km in equations (2),
(4) and (6) should be replaced by ks, the coefficient of variation
between clusters within strata. The addition of 2 to the required
number of clusters, to allow for the loss of degrees of freedom
in a pair-matched design, will then be conservative, although it
is not clear to what extent.

Finally, there are a number of other complications in sample
size computations for individually-randomized studies which
apply equally to cluster-randomized trials, and which are topics
for further research. These include study designs with more than
two treatment groups; designs with unequal-sized treatment
groups; adjustments for losses to follow-up; and considerations
related to interim analyses.

One of the key obstacles faced by investigators in deciding 
on sample size requirements for cluster-randomized trials is that
prior data on the level of between-cluster variation are often
unavailable. We have shown how plausible assumptions about
k can be used to prepare graphs to assist with the choice of
sample size. However, there is an urgent need to document 
and accumulate empirical evidence on the level of variation
observed in actual trials, with different types of outcome and in
different population groups.10 Such data would be valuable 
in setting limits on likely values of k in any particular field
situation.
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Appendix
Brief derivations are given for person-years rates. Derivations
for proportions and means are analogous (details available from
authors).

Sample size formulae for unmatched studies

Notation
c = Number of clusters in each treatment group
y = Person-years of observation in each cluster
λij = True rate in jth cluster in ith group (i = 1 intervention; 

i = 0 control)
rij = Observed rate in jth cluster in ith group
r̄i = Mean of cluster rates in ith group = Σj rij/c

Assumptions
λij is sampled randomly from a distribution with E(λij) = λi and
Var(λij) = σci

2

ki = Coefficient of variation in ith group = σci/λi
For simplicity, assume k0 = k1 = k

Derivation
We assume that in the analysis, the observed rates in the two
treatment groups will be compared using the unpaired t-test, 
t = d/SE(d), where d = r̄0 – r̄1, and SE(d) is estimated as √(s0

2/c
+ s1

2/c) and si
2 is the sample variance of the rates in the ith

group.
Assuming first that the normal approximation can be used,

the standard method of sample size determination is to solve
the following formula for c, the required number of clusters per
group:

(zα/2 + zβ)2 Var(d) = E(d)2 (12)

where zα/2 and zβ are as defined in the main text. In this
formula, E(d) = λ0 – λ1 is the true difference in rates. To obtain
Var(d), we first determine Var(rij) as follows:

Var(rij) = E[Var(rij|λij)] + Var[E(rij|λij)] = 

E(λij/y) + Var(λij) = λi/y + σci
2 (13)

It follows that Var(r̄i) = (λi/y + σci
2)/c, and hence solving

equation (12) for c, we obtain:

c = (zα/2 + zβ)2[(λ0 + λ1)/y + (σc0
2 + σc1

2)]/(λ0 – λ1)2 (14)

= (zα/2 + zβ)2[(λ0 + λ1)/y + k2(λ0
2 + λ1

2)]/(λ0 – λ1)2 (15)

The more general form given in Equation (14) may be used if
we do not wish to assume that k0 = k1. To allow for use of the
t distribution in place of the normal distribution, Snedecor and
Cochran suggest as a simple approximation adding 1 to the
number in each group,15 and this yields equation (2).

If the person-years of observation yij varies between clusters,
equation (13) becomes:

Var(rij) = λi/yij + σci
2

and it follows that Var(r̄i) = [λiAv(1/yij) + σci
2]/c, leading to

replacement of the person-years in equation (2) by the harmonic
mean of the person-years per cluster.

Sample size formulae for pair-matched studies

The notation remains unchanged except that λij and rij now
represent true and observed incidence rates in the intervention
(i = 1) and comparison (i = 0) clusters in the jth matched pair 
(j = 1,...,c).
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A matched analysis can be performed by computing the
observed rate-ratio r0j/r1j in each matched pair, and applying
the paired t-test to these using a log transformation. This is
equivalent to computing dj = log(r0j) – log(r1j), and conducting
a paired t-test on the pairwise differences, as t = d̄/SE(d̄), where
d̄ = Σdj/c and SE(d̄) is estimated as sd/√c where sd is the sample
variance of the differences dj.

Assume that the jth matched pair can be regarded as rand-
omly sampled from a ‘stratum’ of communities with average
incidence λj and coefficient of variation km in the absence of
intervention. The effect of the intervention is to multiply the
rate by the factor θ (assumed constant).

To compute the sample size using equation (12), we need
expressions for E(d̄) and Var(d̄). We first determine E(dj) and
Var(dj) as follows. Conditional on λj:

E(r0j) = E[E(r0j|λ0j)] = E(λ0j) = λj

Hence E(logr0j) ≈ logλj

Var(r0j) = E[Var(r0j|λ0j)] + Var[E(r0j|λ0j)] = 

E(λ0j/y) + Var(λ0j) = λj/y + km
2λj

2

Hence Var(logr0j) ≈ 1/(λjy) + km
2

Similarly, E(log r1j) ≈ logθ + logλj and Var(log r1j) ≈ 1/(θλjy) 
+ km

2. Hence the conditional expectation and variance of dj
are given by:

E(dj|λj) ≈ logθ, Var(dj|λj) ≈ [1/λj + 1/(θλj)]/y + 2km
2

To find the unconditional expectation and variance of dj, we
may assume that the matched-pair λj are in turn sampled from
a distribution with mean λ. Then:

E(dj) ≈ logθ

Var(dj) ≈ [1/λ + 1/(θλ)]/y + 2km
2

Inserting Var(d̄) = Var(dj)/c in equation (12), solving for c, and
writing λ = λ0, θλ = λ1, we obtain:

c = (zα/2 + zβ)2[(1/λ0 + 1/λ1)/y + 2km
2)/(logθ)2 (16)

By using a power series approximation for √(1 – x).log(1 – x), it
may be shown that (logλ1/λ0)2 ≈ (1 – λ1/λ0)2/(λ1/λ0). Inserting
this in equation (16) and simplifying, we obtain

c ≈ (zα/2 + zβ)2[(λ0 + λ1)/y + 2km
2λ0λ1)]/(λ0 – λ1)2

For θ = λ1/λ0 in the range 0.5 to 1, 2λ0λ1 is similar to (λ0
2 +

λ1
2). After adding 2 to allow for use of the paired t-test, as

recommended by Snedecor and Cochran15 this yields:

c ≈ (zα/2 + zβ)2[(λ0 + λ1)/y + km
2(λ0

2 + λ1
2)]/(λ0 – λ1)2

Estimation of coefficient of variation

Notation
m = Number of clusters
yj = Person-years of observation in jth cluster
λj = True rate in jth cluster
rj = Observed rate in jth cluster
r̄ = Mean of cluster rates = Σj rj/m
s2 = Σ(rj – r̄)2/(m – 1)

Assumptions
λj is sampled randomly from a distribution with E(λj) = λ and
Var(λj) = σc

2

k = Coefficient of variation = σc/λ
Derivation
From equation (13), we have Var(rj) = λ/yj + σc

2

Now E(s2) = [ΣE(rj
2) – mE(r̄2)]/(m – 1) = [ΣVar(rj) – mVar(r̄)]/

(m – 1)
= ΣVar(rj)/m = λ Av(1/yj) + σ2

c
as in equation (7).
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