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The self-consistent treatment of Kondo's effect by Nagaoka is revised by using the method 
of Gor'kov in the theory of superconductivity. Expressing the spin operators in terms of 
Fermi operators, such as Sz= (at+at-a.J.+a.t.)/2, the Green's functions of the type {ck'tSziCkt~ 
are decomposed into the sum of terms like <at+Ck't)~atlckt+~. The existence of these terms 
implies the existence of the bound state between the localized spin and the spin density of 
conduction electrorfs. Essentially the same expression for the Green's function of conduction 
electrons as in Nagaoka's treatment is obtained, but we also have the bound state in the 
case of ferromagnetic coupling. 

Magnetic susceptibility is calculated in our approximation and is , shown to be finite at 
T=O and increase with the increasing temperature tending to infinity like (Tc-T)-1 as T--'?Tc. 

§ I. Introduction 

Kondo1
) has first pointed out that the exchange interaction between conduc­

tion electrons and a localized spin in metals has the anomalous effects on various 
properties. He has shown that the resistivity calculated up to the third order 
of this interaction has a logarithmically divergent term as the temperature goes 
to zero. 

His treatment is, however, essentially the perturbational one, which cannot 
be considered to be valid in the case where such a singularity occurs. Many 
authors have tried to develope other methods in order to see what is the nature 
of this singularity. 2>' 3)'4),

7
) In particular, Nagaoka2

) (henceforth, referred to as N) 
has developed the method which has the direct analogy with Zubarev's treatment5

) 

of superconductivity, and has shown that the two-time Green's function of con­
duction electrons has a pole on the imaginary axis when the temperature is low 
enough, and that the resistivity increases with decreasing temperature, and has 
a finite value at T = 0. The equation determining the position of this pole is 
analogous to the gap equation in the theory of superconductivity, and has a 
non-zero solution only below a certain temperature Tc. This means that below 
Tc the perturbational treatment breaks down and a sort of bound state is formed 
between the localized spin and the spin density of conduction electrons. This 
bound state has the direct analogy with the Cooper. pair in superconductors. 

The existence of such a bound state is also suggested in the calculation by 
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344 F. Takano and T. Ogawa 

Abrikosov. 3
> He has summed up all of the most divergent terms in the pertur­

bation expansion, and obtained the result similar to N. The summation of infinite 
number of terms of special type in the perturbation series usually implies the 
existence of a bound state. 

Although the results of N seems to be quite reasonable, his calculation is 
very complicated. Actually, his equation determining the imaginary pole is an 
approximate one, and cannot be used when T "-/Tc. This complication comes 
partly from the use of the method of Zubarev in the theory of superconductivity. 
In this paper, we show that essentially the same results can be obtained very 
easily by the use of Gor'kov's method6

> in the theory of superconductivity. 
The self-consistent equation obtained can be solved exactly, and then, the mag­
netic susceptibility of the system is calculated very easily. 

The results obtained here are essentially the same as N with one exception. 
All these authors have concluded that the singularity occurs only in the case 
of anti-ferromagnetic coupling, but the similar singularity also occurs in the case 
of ferromagnetic coupling in our treatment. Because we cannot find the suitable 
physical interpretation of the difference between ferro- and anti-ferromagnetic 
coupling, it may be possible that the singularity occurs in both cases. 

The magnetic susceptibility of the localized spin is shown to remain finite 
even at T=0°K, and to increase with the temperature tending to infinity as 
(Tc-T)- 1 when T-'?Tc. 

Above Tc, the perturbational calculation will be good, but, in our treatment, 
the system behaves like free and the susceptibility obeys the Curie law. This 
is the same as the' situation in the Gor'kov or BCS theory of superconductivity. 
In these theories, the short range order is completely neglected, and the system is 
completely free above the transition temperatures. It is true that the short range 
order is unimportant in superconductivity, but it might not be true in our case. 
In the theory of second order phase transition, however, the molecular field or 
Bragg-Williams approximation which neglects the short range order gives the es­
sential nature of the transition and, in a similar sense, our treatment may be 
considered to give the essential nature of the system in this case. 

In § 2, we construct the basic equations using the retarded Green's function, 
and in § 3, these equations are solved when there is no external magnetic field. 
In § 4, we calculate the magnetic susceptibility. 

~ 2. Basic equations 

The system considered here is the conduction electrons interacting with a 
localized spin at the origin. For later convenience, we write down the Hamil­
tonian of the system with a uniform external magnetic field H, *> 

*) We take the unit h=l and the Boltzmann constant kB=l. 
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Self-Consistent Treatment of Kondo's Effect in Dilute Alloys 345 

at " + J " { ( + + ) sz + + . c-ut= .L..J EkCka-Cku- --- .L..J C kt Clf/ t- C /;;-} Ck' i- C!;;t Ck'i- u 
k,u 2Nk,k' 

+ C k~ Ck't S+} - JlsH {g' Sz + ___1-_:__gL:; (c tt C~;;t- c k~ c ki-)}. 
2 /;; 

(2 ·1) 

The notations used are almost the same as in N; Jls is the Bohr magneton, 
and g and g' are the g factors of the conduction electrons and the localized 
spin, respectively. We consider only the case S= 1/2 for simplicity. 

As in N, we use the retarded Green's function defined by 

Gk/;;' (t) = - i< [ck' t (t), c kt] +), t>O, 

=0, t<O, (2·2) 

and its Fourier transform is denoted by G;..,..., (w) = ((Ck'tiC,...;)). When we con­
struct the equation of motion of G, there appear terms which contain the higher 
order Green's function such as 

(2·3) 

N has constructed the equation of motion of T, and Green's functions of higher 
order than r are decomposed into the product of G or T with the statistical 
averages of some quantities. As mentioned in N and in § 1, this procedure is 
the direct analogy of Zubarev's procedure in the theory of superconductivity. 
On the other hand, it is well known that there exists a much simpler procedure 
by Gor'kov, which gives essentially the same results as Zubarev's. Gor'kov's 
procedure in this case corresponds to the following approximation. First, we 
express the spin operators in terms of Fermi operators, 

(2 ·4) 
where*l 

[a a-, c T.:a-'] + = 0 . · 

Using this expression, we can decompose T into the product of G and the 
thermal average of two Fermi operators. For example, 

((ck' t szjc ~t » =- ~ ((ck' t (a; at -at a,..) lc i~t» 

--
1

-- {<a; at - at a,..) (( c k' t Jc ,~ t)) 
2 

-<a; ck' t )((a,../c tt)) +<at ck' t )((a-1-lc tt))}. (2·5) 

*> The commutation relation between a and c can be taken as [a, c]=O, but the final results 
must be the same. 
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346 F. Takano and T. Ogawa 

It is true that the only state which has a physical meaning is that in which 
na=a{ a1 +at ar= 1, but that the unphysical states in which na = 0 or 2 plays 
some roles in our treatment. In fact, the true average <a+c) must vanish be­
cause na is a constant of motion. The assumption of the existence of this 
quantity, however, is considered to be convenient to describe the bound state 
between the localized spin and the spin density of conduction electrons. This 
is the direct analogy of Gor'kov's treatment of superconductivity, where the 
existence of the average <cfJcfJ) implies the formation of the bound state (Cooper 
pair). We shall discuss this question further in a later section. 

Following the above procedure, we obtain the closed system of equations 

for Gkk', and 

G ~k'=«ck'-t icl.;t)), 

Fk==«at ickt)), 

F~=«a-t \c/,;t)). 

The equations of motion of these quantities are 

(w- Ek' + _)_g fJ.BH) Gkk' + _!_ {szgk- v N (-~-a++ a-) Fk 
2 2N 2 

-. s- , } 1 -~ 
+vN 2 -Fk =

2
;uk,k', 

(w-E~;;,- -~g fJ.BH) G~k' + _!__ {- sz Qk'- v N- ( .. 1-a- +a+) Fi,; 
2 2N 2 

. fj+ -
+vN 2-- F~;;} -0, 

(2·6) 

(2·7) 

(w + __l_g' fJ.BH) F~;; + .j_ {6z (0) F~,;- v N (-1-a+ +a··) gk + vN 13
2
+ Q~} = 0, 

2 2N 2 

(w- __ l._g' fJ.BH) Fk' +- J__ {- 6z (0) F~- -- V N ( ~-a-·+ a 1
.) g~~+ v N _@.:=_ Qk} = 0, 

2 2N 2 2 

where we have denoted as 

S z 1 < + t- ) =- at at -a~ a~ , 
2 

+ 1 ~< + > a = 
1
-/ .LJ at ck't , 
v N k' 

a-= -L-ee L:<at c k' ~>, 
vN k' 

s- =-LL:<at ck't>, 
vN~>/ 

(2·8) 
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Self~Consistent Treatment of Kondo's Effect in Dilute Alloys 347 

and 

(2·9) 

Q~= ~ G~k' ((1)), 
k' 

and, we have assumed that a± and /3± are real. 
Thermal averages a+ and (3- defined in Eq. (2 · 8) can be calculated from 

F, F' by using the well-known relations 

with 

00 

a-+==,}· ( :E {- 2 Im F1.~((J)) }f(o)) dril, 
v N J 1.: 

-00 

00 ' 

{3-= ---1=-. \ ~{ -2 ImF~((J))}f((l))d(l) 
V'N) k 

-oo 

f((l)) = 1/ (e"'!T + 1). 

(2 ·10) 

(2 ·11) 

In order to calculate other averages, we need other Green's functions, but we 
do not write them down until they are necessary. 

§ 3. Solution when H=O 

First of all, we consider the case where no external magnetic field exists. 
In this case, we can expect the following relations to bolo, 

Sz=uz(O) =0, 

a-+ =a-=a, (3-+=/3-=/3. (3 ·1) 

Then, Eq. (2 · 7) becomes 

(fil -Ek,) Gkk' + 2-J-N ( ---~-a Fk + 1-{3F~) = 2~- iJk,k', 

((1)- Ek') G~k' + ·-.[___ (--.!- {3Fk ....--'-_l_ aFk') =0 
2V'N 2 2 ' 

(3·2) 

(1) Fk + __!__ __ (- 3- a Qk+ - 1-f3Qk') =0 
2V'N 2 2 ' 

(l)F~+ 2;'1\T(~ {3Qk--}-aQ~)=o. 
Solving this equation, we obtain 

Qk = __!__ 1 (1) ((1) + iA) 
2n (1)- Ek (w-+iA) 2 +B 2 

' 
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348 F. Takano and T. Ogawa 

g~ = _l _1_ i(J)B 
2n (J)- Ek ((J) + iAY + B 2 

' 

F k = __ __ L (3/2) a ((J) + iA) - i (1/2) {3B 
2v N 2n ((J)- Ek) [ c(J) + iAY + B 2

] 

F~=-~J~ i(3/2)f!B- C!/2)f3((l)+i4)_ 
2v N -2n ((J)- Ek) [ c(J) + iA)2 + B 2

] ' 

where we put 

and 

_ npJ2 3 B =- ------·- a{3. 
4N 2 

In this calculation, there appears the function 

P((J)) = ~--1-' 
k(J)-Ek 

and as in N we have taken only the imaginary part of this function as 

P((J)) = -inp((J)), 

(3 ·3) 

(3 ·4) 

(3·5) 

(3 ·6) 

where p ((J)) is the density of states of conduction electrons and is taken as a 

constant in the interval - D<(J)<D. 
a and {3 are determined by Eq. (2 ·10), from which we obtain 

[1-3V -3 (A 2 + B 2
) U]a + 2ABU{3=0, 

-6ABUa+ [1+ V+ (A2 +B 2)U]{3=0, 

where U, V are given by 
/) 

U = -/& j f(w) [w' -t (fl +-B)']w[oJ' +(A- B)'] doJ' 

D 

V = ~~ j f(oJ) [oJ'+ (A+ B)'~'[Oli+(A= B)'] doJ. 

(3. 7) 

(3 ·8) 

Equations (3 · 4), (3 · 7) and (3 · 8) determine the values of a and {3. The set 
of equations seems to be very complicated, but we can solve it exactly as fol­

lows. First of all, we obtain from Eq. (3 · 7) as a condition of the existence 
of the non-trivial solution except a= {3 = 0, 

[l-3V-3(A2 +B 2)U] [1+ V+ (A2 +B 2)U] 

+ l2A2B 2U 2 = 0. (3 ·9) 
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Self-Consistent Treatment of Kondo's Effect in Dilute Alloys 349 

Taking the difference of the upper equation of (3 · 7) multiplied by /3 and the 

lower one multiplied by 3a, and using the definition (3 · 4) of A, B, we obtain 

(3 ·10) 

The solution of Eq. (3 ·10) is 

B=O (3 ·11a) 

or 

(3 ·11b) 

We investigate these two cases separately. 

Case I. B~O 

We can solve Eqs. (3·9) and (3·11b) with respect to U, V, getting 

1 u = ±-----=~~ 
3Av A 2 -B 2

' 

v = ± y A.:~-:--_82 - _] __ . 
3A 3 

(3 ·12) 

Because the integral in Eq. (3 · 8) is negative (f(w) is finite for w<O and is 

very small for w>O), U and V are of opposite sign to J, and the double sign 

in Eq. (3 ·12) should be taken as consistent with this sign. The integrals in 

Eq. (3 ·8) can be simplified as follows, 

U= 
4
lB [W(A-B)- W(A+B)], 

V=4lB [(A+BYW(A-B)- (A-BYW(A+B)], (3·13) 

where 

(3 ·14) 

From Eqs. (3 ·12) and (3 ·13), we obtain 

W(A-B) = ±{~ J~1-~-~ --}-, (3 ·15) 

W(A +B)= =r= 2B j)~_+B- --~. 
3A A-B 3 

At T=0°K, W(x) becomes 
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350 F. Takano and T. Ogawa 

W(x) = Jp_ log_£ 
4N D' 

if we assume A, B~D. Therefore, we obtain from Eqs. (3 ·15) 

_J p log A--=--§~= ± -----=4f}__ 
4N A+B 3V A 2 -B 2

' 

which can be written as 

Jp 4 t 2 -1 
-log t= ±- -

2N 3 t 

by putting 

(3 ·16) 

Equation (3 ·16) always has a solution t =I, which corresponds to B = 0. In 
order to have a solution t~l, it is necessary that 

!J!p >}6. 
N 3 

(3 ·I7) 

In the actual case, the order of magnitude of !Jip/ N is O.I and, therefore the 
condition (3 ·I7) . can hardly be satisfied. We do not consider this case any 
longer, and proceed to the case B = 0. 

Case II. B=O 

In this case, the solution of Eq. (3 · 7) becomes 

(3 ·18a) 

or 

a= o, A 2U + v = ~- 1 . (3·18b) 

Using Eq. (3 · 8), we can see that 
]) 

A 2U + V =_.f_p_ (" f({J))-~-w ____ dw, 
4N j w2 + A 2 

-D 

and because the integral on the right-hand side is negative, Eq. (3 · 18a) has a 
solution when J<O, and (3 ·ISh) when J>O. Thus, we can summarize the 
final results as follows; 
(I) J<O (antiferromagnetic coupling) 

{3 = 0, and a is determined from the equation 
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Self-Consistent Treatment of Kondo's Effect zn Dilute Alloys 351 

(3 ·19a) 

(2) J>O (ferromagnetic coupling) 
a= 0, and {3 is determined from the equation 

D 

Jp ) {)) -- f(w)---- dw= -1 
4N w2 + A 2 

' 
-D 

(3 ·19b) 

It is easily seen that A is essentially the same as .:1 in N, and that the 
Green's function of conduction electrons. is of· the same form as in N. Thus, 
the conclusion about the physical behavior of the system is also essentially the 
same as N. 

The important difference is that we have the similar results for J>O as 
J<O. Thus, we can expect the anomalous .behavior for J>O as well as J<O. 

The other important difference is that our equation can be used in any 
temperature region. In N, the gap equation similar to Eq. (3 ·19a) cannot be 
used for small A owing to the approximation used,to derive the equation. Thus, 
nothing can be said about what happens just below the critical temperature Tc. 
In our treatment, the critical temperature Tc is determined by 

]) 

Jp ~·· 1 -tanh- oJ doJ= --~-, for J<O, 
4N o (u 2T(. 3 

or 1, for J>O. (3 ·20) 

The physical meaning of the conclusion that {3=0 for J<O and a=O for J>O 
is clear if we calculate the following quantity, 

P=<Ca; at-a! a-t)~(ckt ck't-ck-t ck'-t)), 
kk' 

which can be expressed in terms of a and {3 as 

p=2N( -a2 + {32
). 

Thus, we can see that for· J<O, {3 vanishes and p 1s negative, and that for 
J>O, a vanishes and p is positive, as expected. 

§ 4. Magnetic susceptibility 

As an example of applications, we want to show how the magnetic sus­
ceptibility of the system is calculated in our approximation. This quantity has 
been calculated by Yosida and Okijj/) and Miwa8> by using the perturbation 
expansion, which is considered to be valid above Tc from our point of view. 
Our calculation is valid below Tc, and can be said to be complementary to these 
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352 F. Takano and T. Ogawa 

of references 7) and 8) . 
In the calculation of the susceptibility, we need all quantities up to linear 

terms to the magnetic field H. For simplicity, let us consider the case J<O, 
and take {3 = 0 from the beginning. From the symmetry consideration, it is 
shown that 

a+ =a+oa, 

a-=a-oa, (4·1) 

where a is given by Eq. (3 ·19a) and oa is linear to H. Equation (2 · 7) be­
comes 

( 1 ) J { g --·( 3 1 ~ \ l 1 ~ {))- Ek'+-Y!lBH Gkk'+-- sz k- vN ---a--ua;Fkr =--ukk', 
2 2N 2 2 1 . 2n 

(4 · 2a) 

(4·2b) 

Dividing Eq. ( 4 · 2a) by ({))- Ek' + (1/2) g flBH) and taking the summation over k', 
we obtain 

gk+ ~ ( -inp+) {szgk_ vN ( ~ a- ~ oa)Fk} =-l; ;-_ E~-t- (~)2)U/l~H' 
(4·3) 

where we put P+=P((J)+ (1/2)Y!1BH). From Eqs. (4·2b) and (4·3), we obtain 

L:gk =- - 1
-· (J)P+ + __E__ -----1 - {A (:_l__ g' !1BH + __.[__rJ (0)) 

k 2 (J)+iA+ 2 ((J)+iAY 2 2N z 

+{)) -np(J)Sz+--npaoa , ( 
J 3J2 )} 

2N 8N 
(4. 4) 

L:Fk=- 3J__ a-P±_+ - - Jp -{((J)-iA)oa 
k 8v N {)) + iA+ 8v N((J) + iA)2 

+3a(__l_g' !lBH +_!_ rJz(O) -il.!__npasz)} 
I 2 2N 2N 

(4·5) 

up to linear terms to H. Here, A is given by Eq. (3 · 4) and A+ is given by 
replacing p in A by p +. 

(Jz (0) = __l_<:E (c tkck' t- c k-1- ck' "')) and oa can be calculated from the relations 
2 kk' 

co 

~~ Ckt ck't)= -2~ Im~gk((J))f((J))d(J) (4·6) 
-co 

and 
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Self-Consistent Treatment of Kondo's Effect in Dilute Alloys 353 

00 

a+oa=-V~ ~ Imz;;Fk(w)f(w)dw. (4·7) 
-a:> 

In order to calculate sz, we need another Green's function, 

(4·8) 

In the equation of motion of L constructed in a same way as before, there ap­
pears the Green's function 

(4·9) 

The set of equations of motion for L and M 1 •. can be solved in a similar way, 
g1vmg 

L= 2~ w+~A+ --l~- (w-+
1ifii{( ~ g'pBH+ 2~(Jz(O)) 

- _!_ np ASz- inpl_!__
2

-- aoa} 
· 2N 8N ' 

and the expression for :E M 1,, is the same as :E,...F1 •. , Eq. ( 4 · 5). 
1.-. 

From Eq. ( 4 ·10), we obtain 
00 

(a; at)= -2 ~ ImL(w)f(w)doJ, 

(4 ·10) 

(4·11) 

and, thus, we can get sz = (1/2) <(a{ 4t- at a~)). Calculating O"z (O), oa and sz by 
using Eqs. (4·6), (4·7) and (4·11), we obtain the closed set of equations for 
these quantities. In the calculation of the integrals of the first terms of Eqs. 
(4·4), (4·5) and (4·11), there appear integrals of the type 

which can be transformed into the form 
00 

~ w- (1/2) g ilBH 1 -------- -- p (w)f(w --g/1-BH)dw, 
(w- (1/2) g fJ-BHY +A 2 

· 2 
-oo . 

and is calculated up to linear terms to H; 
The set of equations for sz, O"z(O) and oa becomes 

sz = - _?~- v1 [_}_g' !J-BH + _{_6~ (0) - _!__e_ nAsz]- _?!__~pa (v2- A 2v 0) oa 
n 2 2N " 2N 4N ' 

O"z(O) =2pA2vl[_l__g' ilBH + _.!__6z(O) --
1-gpBH] 

2 2N 2 

3J2 2A ~ J 2A sz + -- np av2 ua + -np Va , 
8N N 
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354 F. Takano and T. Ogawa 

(4 ·12) 

where vn's are defined as 

(4 ·13) 

The integrals vo, v1 and v2 remmn finite In the limit D--'>oo, T--'>0°K, and, 
therefore we can put 

7C 
Vo=~--

4A3 ' 
1 v1 = --------

2A2' 

A simple transformation of the integral v 3 and use of Eq. (3 ·19a) gives-

4N 1 
v3=---+---

3Jp 2 

Thus, Eqs. (4·12) become very simple and the solution IS 

where we have put 

_Jp 
Y=2N' 

and the definition (3 ·19a) of A has been used. 
The uniform spin polarization of conduction electrons 

(4·14) 

( 4 ·15) 

can be calculated by using the Green's function G~.:,._,,, and IS shown to be 

1 H Jp sz (Jz=-PU/ln +- . 
2 2N 

(4 ·16) 

The first term of Eq. ( 4 ·16) is nothing but the usual magnetization, and the 
second term is the additional polarization due to the interaction. It has been 
shown by Yosida and Okiji7

> that the singular part of this additional term is 
proportional to. sz and the proportional coefficient is Jpj2N. Their calculation 
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I 
I 

I 

: 
l 
I 

: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

! 
I 
I 
I 

is a perturbational one and seems to 
be valid above Tc. Our calculation is 
considered to be valid below Tc, and 
thus, this character of the polarization 
may be considered to be a general one. 

~ 

The temperature dependence of 
S"/H comes from a 2 in Eq. (4·14). 
Since a 2 is proportional to (Tc- T) near 
T= Tc and increases with decreasing 
temperature remaining finite at T = 0° K 
(see Fig. 1 of reference 2)), S"/H re­
mains finite at T = 0° K and increases Tc T 

Fig. 1. Schematic behavior of Sz/H as a func- ·with increasing temperature, tending to 
tion ofT. infinity as (Tc-T)-1 near T=Tc. The 

schematic behavior of S"/~1 is shown in Fig. 1. 
As mentioned in § 1, the system is free above Tc in our approximation, so 

that S" /H obeys the Curie law. 
The calculation for J>O is essentially the same as for J<O. Equation 

( 4 · 16) still holds in this case and sz is given by 

S" = ~2 -- (g' + yg) !f.BH 

n2y2 {32 1 + 2y - (n2 I 4)y2 , 

where y is given by Eq. (4·15) and {3 is given by Eq. (3·19b). 
seen 'that the qualitative behavior of S"/H is completely same as in 
J<O. 

§ 5. Conclusion and discussions 

(4 ·17) 

It is easily 
the case of 

The self-consistent treatment of N is simplified by using the method similar 
to Gor'kov's method of superconductivity. Since the expression obtained for 
the Green's function of conduction electrons is completely the same as in N, 
the behaviors of the physical quantities such as the resistivity and the specific 
heat derived in N can be reproduced. The mathematics involved, however, 
becomes much simpler, and the equations obtained can be solved exactly. It is 
concluded that some sort of bound state between the localized spin and the 
spin density of conduction electrons is formed below a certain temperature Tc. 
While the behaviors of the system near Tc are ambiguous in the treatment of 
N, our treatment enables one to discuss them clearly. 

It is to be noted that our procedure corresponds to that used to obtain a 
new Hartree-Fock solution, when the normal solution becomes unstable. 9

) 

Another important conclusion is that the singularity occurs both in ferro­
and antiferromagnetic couplings. Although this is in contradiction with those 
of all other calculations, this conclusion might be true. The reason is that 
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. there seems to exist no suitable physical interpretation for the singularity to occur 
only in the case of J<O, as mentioned in § 1. 

We have calculated the magnetic susceptibility. The contribution from the 
localized spin remains finite at T=0°K, and increases with the temperature and 
is proportional to (Tc- T) -I near T = Tc. The polarization of conduction elec­
trons has an additional term due to the s-d exchange interaction. This additional 
term has been shown to be of the form (Jpj2N) sz, irrespective of the sign of 
J. This fact has also been obtained by Yosida and Okiji,7

) whose calculation 
is a perturbational one and seems to be valid above Tc. Since our calculation 
is considered to be valid below Tc, we feel that this fact is a general character­
istic of the system. 

Finally, one remark must be added on our treatment. As mentioned in § 2, 
the unphysical states in which nd=a{ at+ a{ a.J.. = 0 or 2 might play some roles in 
our treatment. The similar situation occurs in Gor'kov's treatment of super- · 
conductivity, but there seems to exist one important difference. In the theory of 
superconductivity, the total number N of electrons is very large, and the fluctua­
tion of this quantity can be neglected completely. On the other hand, nd in our 
system is of the order of unity, and the fluctuation of nd may not be neglected. 
Therefore, one might argue that our treatment is irrelevant to the singularity 
of the s-d interaction discussed by Kondo. 1

) The coincidence of our results to 
those of N, however, gives the opposite feeling. It might be true that our treat­
ment has nothing to do with the logarithmic singularity of the s-d interaction, 
but it might be also true that our method is closely connected with that of N. 
A further study is necessary to clarify this situation. 
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